
Attack-Defense-Trees and other Security Modeling Tools

Benjamin Löhner
Advisor: Heiko Niedermayer

Seminar Future Internet SS2018
Chair of Network Architectures and Services

Departments of Informatics, Technical University of Munich
Email: b.loehner@tum.de

ABSTRACT
A recent study [14] shows that US companies took an aver-
age of 206 days to detect a data breach. With increasingly
complex computer systems and networks, mitigating such
attacks quickly becomes a major task for modern organiza-
tions. Taking into account the small margin of error, secu-
rity modeling and risk management tools present a viable
solution to cope with this issue. In this paper, we therefore
give an overview over some existing tools on security model-
ing. After an in-depth view of attack defense trees, we cover
alternative approaches using UML as well as practical im-
plementations in the form of the risk management software
Verinice. These tools are then evaluated and compared to
each other regarding various situations and questions from a
practical viewpoint. Finally, each tools strengths and weak-
nesses are summarized.

Keywords
IT-Security, Security Modeling, Attack Defense Trees, Uni-
fied Modeling Language, Misuse Cases, Mal-activity Dia-
grams, Extended Statechart Diagrams, Verinice

1. INTRODUCTION
Information is one of the main assets of many organizations.
In most modern businesses it is stored digitally, distributed
via networking infrastructure and processed on several end-
points. If this data is accessed by unauthorized actors,
the consequences can be devastating, ranging from business
crises to threads with nation wide impact. A rather extreme
example are the ransomware attacks on Germany in 2017,
which temporarily affected public infrastructure like the na-
tional railway and hospitals internal databases [11]. It is
known that its way of infection was based on the Ethernal-
Blue exploit, which was published by WikiLeaks after a data
breach at the CIA [28]. To keep the chance of an attack as
low as possible, a system must be sufficiently protected. To
aid this process, security models and risk management tools
have been introduced. With the above risks in mind, the
demand on such tools is high and manifold: First, it should
not only enable the user to build a good model of the real
components to be protected, but also help in finding pos-
sible attack vectors. After the surfaces are identified, it is
desirable for a model to support the addition of possible de-
fenses. Depending on the situation, a user might also want
to evaluate the resulting model mathematically, generating
metrics like probabilities to measure the risk of a successful
attack. Depending on the situation, further, more specific
questions may surface: How do we model dynamic defenses?

Can the tool deal with a defense failing? In this paper, we
present three tools for security modeling. Then, we compare
them by a number of features, including the requirements
and questions above. Finally, we evaluate their performance
and suitability in practical scenarios.

2. SECURITY MODELING TOOLS
2.1 Attack defense trees
2.1.1 Concept and features of ADTs

Similar to attack trees, ADTs are trees with labeled nodes.
These are split into two categories: Attacks an attacker
might launch against a systems component (attack nodes)
and countermeasures a defender employs to ensure the sys-
tems protection (defense nodes). While the former are drawn
as circles, defense nodes are depicted as rounded rectangles.
Edges represent causal relationships. By default, edges are
disjunctive, meaning that the parent nodes attack is consid-
ered successful, if at least one of its children’s condition is
true. On the contrary, edges adjacent to a parent can be
marked conjunctive by grouping them together with con-
necting arcs. Conjunctive edges simulate the behavior of
ATs by requiring every nodes condition in the group to be
fulfilled for the parents action to be successful. The distinc-
tion between attack and defense nodes induces two kinds
of relationships: Edges can connect two nodes of the same
category, thus decomposing them into components or dif-
ferent possibilities (refinements). Edges connecting attacks
and defenses are called countermeasures and are highlighted
by dotted lines. To simplify the structure, a node can only
have one child of the opposite type, which is usually drawn
as the rightmost child. Apart from these guidelines, the ba-
sic ADT can be modeled freely, including parents with edges
and connected nodes of mixed kinds.

2.1.2 An example
Figure 1 shows an example ADT based on the example in
Kordy’s 2014 paper [18]. As noted on the trees root, the
main goal is the protection of ”Data Confidentiality”. Indi-
cated by the two conjunctive edges leading to the defense
nodes ”Network Security” and ”Physical Security”, a breach
in either of these fields would result in data being exposed.
The latter is only directly affected by the possibility of a
”Break In”, which is then further decomposed into various
possible entry points. As any entry would result in a suc-
cessful break in, disjunctive edges are used. Network secu-
rity on the other hand is more multilayered, requiring mul-
tiple defense mechanisms to be active simultaneously in or-
der to protect the companies information. Namely in the

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

97 doi: 10.2313/NET-2018-11-1_13



Figure 1: Example attack defense tree

example, ”Access Control”, ”Firewalls” and ”Intrusion De-
tection Systems” are listed and further refined. Addition-
ally, there could be an attack on the companies employees.
This possibility is further refined into ”Corruption” and ”So-
cial Engineering”, which respectively is protected against by
”Screening” during the recruitment process and ”Sensitivity
Training” of employees.

2.2 Extended UML
Unified Modeling Language (UML) is a general purpose tool
for visualizing various views and components of computer
and software systems. As of 2018 it is one of the foun-
dational modeling tools in software engineering and taught
in almost every kind of software related education. Conse-
quently, this extensive use led to various extension to make
UML applicable to security modeling. Therefore in this sec-
tion, we present UML-based tools for security modeling. For
each tool, we first explain its design and extensions over
standard UML, followed by an example and finally provide
some information on the main scope and the models use
cases.

2.2.1 Misuse case diagrams
Misuse case diagrams (MCDs) [26] are an extension to com-
mon UML use case diagrams (UCDs). As opposed to UCDs,
which only feature neutral actors to interact with the sys-
tem, MCDs differentiate between non-evil actors and mis-
users, commonly distinguished by different colored symbols.
Similarily, uses cases are accompanied by their counterpart
misuse cases, using the same color code. These components
form nodes in a directed unweighted graph. For edges, ordi-
nary use case relationships like extend, generalize or include
are supported, while the security specific interactions are ex-
pressed by the new tags threaten and mitigate. A use case
which has a directed edge of latter type to a misuse case is
called security use case.

The example in figure 2 taken from Sindres paper [26] de-
picts use and misuse cases for an e-commerce store. In ad-
dition to the normal use cases of a system, security and
misuse cases are added. For instance, the actor ”Customer”
can ”Order goods”. One possible abuse would be to either
intercept traffic or use other means to capture sensitive data

Figure 2: Example misuse case diagram

while the user interacts with the ordering website. This is
depicted by the misuser ”Outside Crook”’s use case of ”Steal-
ing card info”, which has a threatening relationship to the
”Order goods” case. In this example, ”Order goods” includes
a ”Protect info” node, which could use measures such as
transport level encryption to protect against the attack, in-
dicated by the mitigate relationship to the ”Steal card info”
node. Likewise, other use cases partly involving different
actors are modeled.

By design, MCDs are most suitable for modeling threads
at the system boundary, providing a good overview of its
attack surfaces.

2.2.2 Mal-activity diagrams
Mal-activity diagrams (MADs) [25] use the same base syntax
as activity diagrams, while providing similar extensions as
the misuse case models. Namely, they support malicious
actors and malicious activities, distinguished by a different
color. In addition, we can use malicious decision boxes to
model decisions with malicious intent.

Figure 3: Example mal-activity diagram

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

98 doi: 10.2313/NET-2018-11-1_13



In the example taken from Sindres paper [25] in figure 3
on the left side, a supplier and a manager collude to get
fraudulent invoices paid and spend the profit themselves. A
mal-activity in the ”Supplier” column labeled ”Send Fake In-
voice” and one edge directed to a ”Manager” node ”Approve
invoice” model the malicious collaboration between supplier
and manager. After the next neutral activity ”Pay invoice” is
completed by the ”Accounting” department, a similar struc-
ture of mal-activities is used to describe the splitting and
spending of the profit. Similarly, the defense mechanisms
are depicted on the right. There, the node ”Swap approval
between persons” and ”Check articles delivered” add new
conditions to the completion of ”Approve Invoice” and ”Pay
invoice” respectively. Their exact function and behavior is
described in the constraint boxes on the very right. Like-
wise, ”Split profit”and ”Spend money”is extended by ”Check
undeclared incomes” and ”Investigate suspicious spending”
activities by the ”Tax auth / Police”.

MADs are more suitable for modeling attacks either inside
or outside of a system with a focus on involved actors.

2.2.3 Extended statechart notation
To avoid symbol ambiguity, extended statechart models
(ESMs) [8] introduce six new types of states. Theses are
given the descriptive names threatened state, vulnerable state,
defensive state, compromised state, quarantine state and re-
covery state, which are also used to label their depictions
(e.G. <<vulnerable>>). In addition, they can optionally
be distinguished by different color and symbols. Further-
more, the extended notation provides thread- and counter-
measure events to model offensive or defensive relationships
as well as inital thread- and final compromised nodes to indi-
cate special start or final states. Like extended states, they
can be colored differently. Optionally, thread event lines can
be drawn dashed.

Figure 4: Example extended statechart diagram

Extensive use of the different kinds of states can be seen
in the example in figure 4 taken from El-Attars paper [8].
It shows how Android phones are attacked by the ”Androi-
dOs.FakePlayer”malware and what defense mechanisms can
be used to treat such an attack. It first starts by describing

the way of infection, starting at the initial node on the left.
After the phone receives an MMS, it transitions from ”Idle”
to an vulnerable state, as it display the ”MMS Notification”.
As of this time, the system does not get infected as long
as the user leaves the notification unused. If it is opened
however, we transition the edge ”open MMS request” to the
threatened state ”MMS Opened”. This is the point where
the hacker actually gains access to the device, indicated by
a new initial node ”hacker intrusion”. From there on, the
”malware starts”, leaving the device in a compromised state,
after its ”Configuration Changed”. From there on, different
security measures are modeled, following the same princi-
ples as above. If abnormal behavior is detected, the device
launches a defensive security scan. If it can identify the mal-
ware, it transitions through multiple defensive states and fi-
nally reach recovery states where it removes the virus and re-
stores the devices original state. In the case of no successful
identification, it continues to transition through quarantined
states to disable to misbehaving components. Either way,
the thread is mitigated and phone goes into ”Idle” again.

ESMs are particularly useful to model one single process in
great detail.

2.3 Models in practical risk management tools
- Verinice

In the industry, the models presented are most of the time
not used in their theoretical forms. Instead, their concepts
are incorporated into risk management tools, which include
common scenarios and defenses, as well as providing ways
to automate and simplify some of the proof- and risk prob-
ability analysis tasks.

In the following section, we show the parallels between the-
ory and practice by describing some key aspects of the ap-
plication Verinice [10].

Figure 5: Example of models created with Verinice

Even though Verinice internal data structures are not visi-
ble, we can distinguish two modes of operation. In the ”BSI
Model” we can map scenarios from the German IT baseline
catalog (BSI) [9] to our business structure. This model is es-
pecially useful to find defenses that are commonly used. The
insights gained in this mode can then be used to generate

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

99 doi: 10.2313/NET-2018-11-1_13



”to do” lists to aid the implementation of those measures.

In figure 5 on the left hand side, we can see how that model
looks in practice. The company is decomposed into common
attack vectors like ”Buildings”, ”Network Connections” and
”Staff”. Each of that categories is then refined into individ-
ual instances like ”Headquarters”, which contain measures
to be taken to ensure their safety. In this case, the entries
”5.1.2 [A] Regulations governing access to distributors” and
”5.1.10 [Z] Safe doors and windows” from the BSI catalog
are chosen. Optionally, own company specific defense could
be added. Similarly, ”Network Connections” and ”Staff” is
further refined with specific instances and mitigation strate-
gies.

The second mode of operation, the ”Information Security
Model” (ISM) is used to model relationships between busi-
ness entities like assets or employees, attack scenarios and
defenses. It can then be used to calculate detailed reports
about the business security state, including risk possibili-
ties and costs in case of attacks. To create reports close
to reality, Verinice supports a wide selection of attributes
for each of the entities, as well as many different kinds of
relationships.

To get an idea of the ISM, figure 5 shows an example on
the right hand side. The ”AnalysedCompany” contains the
asset ”Confidential Information” and the employee ”E1 Em-
ployee”. In addition, it implements the controls ”T 5.3.5
Training on security safeguard” and ”T 5.3.30 Selection of
employees” from the BSI catalog. Furthermore, the scenar-
ios ”T 5.42 Social Engineering” and ”T 5.104 Espionage” are
possible. These entities are connected by using relationships.
One example are the relationships related to the social en-
gineering scenario, as shown in the bottom right edge of
figure 5. There, the malicious social engineering scenario is
shown to be one member of the relevant thread ”employee
attack”. It is modeled by the person ”E1 Employee” and di-
rectly affects the asset ”Confidential Information”. Besides
the attack side, there also is a defense. As shown in the
relationships panel the likelihood of this kind of attack is
reduced by the control measure ”Training on security safe-
guards”. Similarly, the scenario espionage is modeled.

3. COMPARISON
After we briefly introduced common security modeling tools,
this section compares and evaluates their usefulness in an-
swering practical questions.

In general, Verinice is a practical tool build for use in in-
dustry, while the other models are developed from a more
academic perspective. This becomes even more obvious con-
sidering the use cases: On one hand, Verinice is well-suited
for aiding a companies general decision making in instances
like asset management, where the value of an asset and the
cost of its protection need to be compared to each other. On
the other hand it can actually suggest measures to ensure the
security of systems and devices. In many situations, this can
be done by employees with limited training, as many steps of
the vulnerability and defense finding process are automated
by external tools or simplified by Verinice’s databases.

On the contrary, the UML-based modeling tools and ADTs

are better-suited to gain insight into the attack vectors of
possibly new systems. They provide the means to struc-
turally examine systems on different levels and visualize
their components and their weaknesses. The resulting ab-
stract models can then be used to find possible defenses
or evaluate the efficiency of known countermeasures. It is
therefore mainly used in academia.

To provide more detailed insight, the following subsections
compare the tools in their capability to solve practical prob-
lems.

3.1 Discovering attack vectors and defenses
One of the main use cases of security modeling tools is to
map a real word situation and its defenses in order to find
uncovered or not sufficiently protected components.

ADTs are very suitable for this purpose, as they enable a
user to start modeling the system at a very generic degree,
which can then be refined to an arbitrary level of detail.
Each of the resulting subcomponents can then be evaluated
by their current state of protection, leading to quite a com-
plete analysis of the system.

UML on the other hand does not offer multiple levels of de-
tail in one model. Instead, a user first needs to select the
scope of his analysis. If he wants to keep an overview over
the full system and possible loopholes on the system bound-
ary, MCD are most suited. Close views of single compo-
nents or processes can be modeled with MADs and ESMs.
While the former is more useful to model interactive pro-
cesses involving multiple actors, the latter provides stronger
focus on the process itself. Even though MADs and ESMs
could be used to discover exploitable components, they are
more suited to develop defenses, once the possible attacks
are known. To fully analyze a system, a combination of mul-
tiple of above types is often needed, making the approach
less structured than using ADTs.

Verinice faces the problem that it provides almost no visual
representation of relationships between attacks, defenses and
system components. As the tree like structure and a word-
based search are the only ways of navigating the provided
data, manual attack discovery is complex and important
links are easily overlooked. The main strengths of Verinice
in that area are therefore its features as a practical software
tool. For instance, it enables a user to directly import data
automatically generated by vulnerability scans on the net-
work or the connected hosts. Besides the ability to find loop-
holes by itself, Verinice offers the functionality of importing
databases of common scenarios. The data can either be used
to automatically add suitable defenses and relationships to
the vulnerabilities discovered before, or can lead the user
through a catalog of commonly found attack vectors, who
can then add them and their countermeasures to his security
model. The databases are based on the German baseline se-
curity catalog [9] or the ISO 27000 standards [15], adding
the general advantages of standardized procedures. Besides
that, especially for non-standard systems, non-IT compo-
nents or very process-based situations, above features can
not be utilized. Therefore, Verinice is only partly suited for
attack discovery.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

100 doi: 10.2313/NET-2018-11-1_13



3.2 Dealing with failing defenses
Due to their static nature, one central question is how well
the presented tools can model measures after defenses fail.

With ADTs, the closest such feature are multiple disjunctive
child defense nodes. If one of these nodes fail, the parent sys-
tem is still protected by the other remaining defense nodes.
Dynamic processes of the form ”if defense A fails, activate
measure B” can not be expressed, thus significantly limiting
ADTs capabilities for that kind of situation. One proposal
for an extension of attack trees to include this feature are
Boolean logic Driven Marcov Processes [22].

As opposed to ADTs single-model approach, UMLs multi-
layered modeling is able to better capture such situations.
Like ADTs, MCDs static nature make them unsuitable for
that task. Instead, MADs and ESMs can be used to add
more detail to selected processes. While activity-diagrams
and the presented extensions support conditional nodes to
choose different paths, ESMs can be used to express parting
ways by drawing multiple outgoing edges for an activity.

Verinice on the other hand does not support any kind of
event sequences, rendering its model more limited than
UML. It makes up for that shortcoming with its feature-
richness regarding different relationships and accurate met-
rics. While the user can specify an attack’s impact on avail-
ability, confidentiality, integrity and overall value of an asset,
defenses can be modeled to reduce the weight of such conse-
quences. Alternatively, they can be altered to decrease the
likelihood of a specific attack’s success. As a result, Verinice
can approximate an attack’s probability and simulate the
business state after its success, including the expected use-
fulness of other relevant defenses. It is therefore still superior
to ADTs in evaluating consequences of a failing defense.

3.3 Prioritizing defenses and dependencies
In practice it is often desirable to rank priorities. This is
useful if decisions regarding the implementation of a defense
need to be made and factors like cost, usefulness or impact
on business operation are compared.

ADTs do not provide direct means of ranking of any kind.
The only way to model an order is by using the refinement
feature, which can be used to express the dependency of a
parent node on the success of its child nodes. Priorities be-
tween direct children of a node are not possible. For attack
trees, Baca and Peterson proposed a notion using integer
annotations to rank the attacks- and countermeasures miti-
gation impact [3], which might be transferable to ADTs.

While the presented extension to UML do not directly sup-
port ranking, the UML base notation does. By using UML
constraints, any kind of dependency can be informally an-
notated, including notes on prioritization with any of the
above factors. As these notations do not carry any formal
meaning, their use is limited to aid a discussion of an at-
tack’s or defense’s suitability, but are useless for any kind of
automatic mathematical processing or proofs.

As already mentioned in ”Dealing with failing Defenses”,
Verinice supports weighting of assets, relationships, attacks
and defenses. Thus, limited prioritization within the bound-

Table 1: Strengths and weaknesses of the presented
tools

Model
/Tool

Strenghts Weaknesses

Attack
de-
fense
tree

• Different levels of
detail in one model
• Mathematically
thoroughly defined

• Limited to static
processes
• Unprioritized
defenses

UML • Widely used and
easily learnable
• Allows for dynamic
process modeling
• Multiple models
for different levels of
detail

• Often requires
multiple models for
complete analysis
• Mostly useful for
visualization, no
mathematical
foundation
• Only informally
prioritized defenses

Verinice • Automatic analysis
via external tools
• Access to
standardized
scenario catalogs
• Report generation
including accurate
metrics
• Prioritizing of
defenses possible

• Steep learning
curve
• Time consuming
for non-standard
situations
• Almost no
visualization of
relationships

aries of Verinices supported metrics is possible. In this case,
automatic processing and report generation from those val-
ues is supported, making it partly superior to UML.

3.4 Strengths and weaknesses
To complete the comparison, a brief overview of the pre-
sented tools is shown in table 1. The row labeled UML
contains information on the collective use of misuse cases,
mal-activity diagrams and extended statechart diagrams.

4. RELATED WORK AND FURTHER READ-
ING

ADTs base their ideas on other concepts, including fault
trees [29], threat trees [2, 30] and attack trees [24]. The lat-
ter was then extended by various researchers as summarized
by Piètre-Cambacédès and Bouissou [22]. Many approaches
extend the features and semantics of ADTs. In a theoretical
context, the relation between ADTs and game theory has
been analyzed [17]. ADTs computational aspects have been
studied in [19], where semantics based on De Morgan lat-
tices were used. Furthermore, ADTs quantity capabilities
were evaluated in a practical case study [4].

In addition to the UML models presented in this paper,
other approaches were proposed to enable secure
software engineering, including UMLSec [16] and Secure-
UML [21]. As a contrast to MADs, there was an attempt to
directly model secure business processes, concentrating more
on modeling a process after security problems and counter-
measures have been found [23]. Similar to MCDs and MADs,
abuse frames are another example of an approach to system

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

101 doi: 10.2313/NET-2018-11-1_13



exploitation from the perspective of an attacker [20]. Mis-
use cases have also received a number of extensions, like
specialization and generalization support [27]. Beside the
theoretical perspective on UML, there has also been various
tests on UML in realistic scenarios [1, 7, 12].

As Verinice is a practical tool, academic literature beyond
its short mention is limited. Consequently, information can
be found concerning its data sources ISO-27000 and the BSI
baseline catalog [5, 6, 13].

5. CONCLUSION
In general, there is no tool to fit every situation. Verinice
has strengths in its automatization capabilities and the high
accuracy of its generated output, but it can only be used
to model certain standard scenarios. UML on the other
hand provides a high degree of freedom and flexibility while
being easy to learn, but lacks a rigid formal foundation.
ADTs form a compromise: While unifying multiple levels of
accuracy in one model, they still provide a formal structure
to work with. In practice, a combination of above tools
may be employed. ADTs could be used as an overview to
find attack vectors in top-level components, while detailed
vulnerability discovery on process level might be done with
MCDs or MADs. The resulting information could then be
fed into Verinice to calculate actual attack probabilities and
cost impact. Either way the presented models form a good
base to thoroughly analyze a system to identify and later
evaluate possible defenses, making risk management easier
and general system security better.

6. REFERENCES
[1] I. Alexander. Initial industrial experience of misuse

cases in trade-off analysis. In Requirements
Engineering, 2002. Proceedings. IEEE Joint
International Conference on, pages 61–68. IEEE, 2002.

[2] E. G. Amoroso. Fundamentals of computer security
technology. PTR Prentice Hall New Jersy, 1994.

[3] D. Baca and K. Petersen. Prioritizing countermeasures
through the countermeasure method for software
security (cm-sec). In International Conference on
Product Focused Software Process Improvement, pages
176–190. Springer, 2010.

[4] A. Bagnato, B. Kordy, P. H. Meland, and
P. Schweitzer. Attribute decoration of attack–defense
trees. International Journal of Secure Software
Engineering (IJSSE), 3(2):1–35, 2012.

[5] K. Beckers, H. Schmidt, J.-C. Kuster, and
S. Faßbender. Pattern-based support for context
establishment and asset identification of the iso 27000
in the field of cloud computing. In Availability,
Reliability and Security (ARES), 2011 Sixth
International Conference on, pages 327–333. IEEE,
2011.

[6] I. BSI. Baseline protection manual. 2000.

[7] F. den Braber, T. Dimitrakos, B. A. Gran, K. Stølen,
and J. Ø. Aagedal. Model-based risk management
using uml and up. Issues and Trends of Information
Technology Management in Contemporary
Organizations, pages 515–543, 2002.

[8] M. El-Attar, H. Luqman, P. Kárpáti, G. Sindre, and
A. L. Opdahl. Extending the uml statecharts notation

to model security aspects. IEEE Transactions on
Software Engineering, 41(7):661–690, July 2015.

[9] B. für Sicherheit in der Informationstechnik.
Bsi-grundschutz katalog. Available at
http://www.bsi.de/gshb/deutsch/index.htm (Aug.
2018), 1996.

[10] S. GmbH. Verinice website. Available at
https://verinice.com/ (Aug. 2018).

[11] Heise. Ransomware wannacry befällt rechner der
deutschen bahn. Available at
https://www.heise.de/newsticker/meldung/
Ransomware-WannaCry-befaellt-Rechner-der-

Deutschen-Bahn-3713426.html (Jun. 2018).

[12] S. H. Houmb, F. Den Braber, M. S. Lund, and
K. Stølen. Towards a uml profile for model-based risk
assessment. In Critical systems development with
UML-Proceedings of the UML’02 workshop, pages
79–91, 2002.

[13] E. Humphreys. Implementing the ISO/IEC 27001
information security management system standard.
Artech House, Inc., 2007.

[14] P. Institute. 2017 cost of data breach study: Global
overview. Available at
https://www-01.ibm.com/common/ssi/cgi-bin/
ssialias?htmlfid=SEL03130WWEN (Aug. 2018).

[15] Information technology – Security techniques –
Information security management systems – Overview
and vocabulary. Standard, International Organization
for Standardization, Geneva, CH, Feb. 2018.

[16] J. Jürjens. Secure systems development with UML.
Springer Science & Business Media, 2005.

[17] B. Kordy, S. Mauw, M. Melissen, and P. Schweitzer.
Attack–defense trees and two-player binary zero-sum
extensive form games are equivalent. In International
Conference on Decision and Game Theory for
Security, pages 245–256. Springer, 2010.

[18] B. Kordy, S. Mauw, S. Radomirović, and
P. Schweitzer. Attack–defense trees. Journal of Logic
and Computation, 24(1):55–87, 2014.

[19] B. Kordy, M. Pouly, and P. Schweitzer.
Computational aspects of attack–defense trees. In
Security and Intelligent Information Systems, pages
103–116. Springer, 2012.

[20] L. Lin, B. Nuseibeh, D. Ince, and M. Jackson. Using
abuse frames to bound the scope of security problems.
In Requirements Engineering Conference, 2004.
Proceedings. 12th IEEE International, pages 354–355.
IEEE, 2004.

[21] T. Lodderstedt, D. Basin, and J. Doser. Secureuml: A
uml-based modeling language for model-driven
security. In International Conference on the Unified
Modeling Language, pages 426–441. Springer, 2002.

[22] L. Piètre-Cambacédès and M. Bouissou. Beyond
attack trees: Dynamic security modeling with boolean
logic driven markov processes (bdmp). In 2010
European Dependable Computing Conference, pages
199–208, April 2010.

[23] A. Rodŕıguez, E. Fernández-Medina, and M. Piattini.
Capturing security requirements in business processes
through a uml 2.0 activity diagrams profile. In
International Conference on Conceptual Modeling,
pages 32–42. Springer, 2006.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

102 doi: 10.2313/NET-2018-11-1_13



[24] B. Schneier. Attack trees. Dr. Dobb’s journal,
24(12):21–29, 1999.

[25] G. Sindre. Mal-activity diagrams for capturing attacks
on business processes. In P. Sawyer, B. Paech, and
P. Heymans, editors, Requirements Engineering:
Foundation for Software Quality, pages 355–366,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[26] G. Sindre and A. L. Opdahl. Eliciting security
requirements with misuse cases. Requirements
Engineering, 10(1):34–44, Jan 2005.

[27] G. Sindre, A. L. Opdahl, and G. F. Brevik.
Generalization/specialization as a structuring
mechanism for misuse cases. In Proceedings of the 2nd
symposium on requirements engineering for
information security (SREIS’02), Raleigh, North
Carolina, 2002.

[28] F. times. Leaked cia cyber tricks may make us
wannacry some more. Available at
https://www.ft.com/content/a7a6c91c-3a35-11e7-
ac89-b01cc67cfeec (Jun. 2018).

[29] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and
D. F. Haasl. Fault tree handbook. Technical report,
Nuclear Regulatory Commission Washington DC,
1981.

[30] J. D. Weiss. A system security engineering process. In
Proceedings of the 14th National Computer Security
Conference, volume 249, pages 572–581, 1991.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

103 doi: 10.2313/NET-2018-11-1_13


