
An overview over Capsule Networks

Luca Alessandro Dombetzki
Advisor: Marton Kajo

Seminar Innovative Internet Technologies and Mobile Communications
Chair of Network Architectures and Services

Department of Informatics, Technical University of Munich
Email: luca.dombetzki@tum.de

ABSTRACT
Hinton et. al recently published the paper “Dynamic Routing
Between Capsules” [20], proposing a novel neural network
architecture. This Capsule Network (CapsNet) outperforms
state-of-the-art Convolutional Neural Networks on simple
challenges like MNIST [13], MultiMNIST [20] or smallNORB
[6]. In this paper, we describe multiple aspects of the current
research in Capsule Networks. This includes explaining the
shortcomings of CNNs, the idea and architecture of Cap-
sule Networks and the evaluation on multiple challenges.
Furthermore, we give an overview of current research, im-
provements and real world applications, as well as advantages
and disadvantages of the CapsNet.

Keywords
capsule networks, overview, computer vision, convolutional
neural networks, pooling

1. INTRODUCTION
In 1986 Geoffrey E. Hinton revolutionized artificial neural
networks with the use of the backpropagation algorithm.
Since then artificial intelligence has made a big leap for-
wards, especially in computer vision. Deep Learning gained
in popularity, when deep convolutional networks performed
extraordinarily well on the ImageNet challenge in 2012 [10].
It has since been a very active field of research, with compa-
nies like Google and Microsoft being dedicated to it. This
brought forth ideas like Inception [23] and Residual blocks
[5], boosting the performance of CNNs. However, all of these
advancements build upon the basic structure of a CNN.

Based on his research in human vision, Geoffrey E. Hinton
stated that there is something fundamentally wrong with
CNNs [7]. By trying to replicate the human visual cortex,
he came up with the idea of a capsule as a group of neurons.
In “Dynamic routing between capsules” [20] Hinton et. al
developed a first working implementation, proving this theory.
In computer graphics, a scene is built by putting known
parts into relation, forming a more complex object. Inverse
graphics does the exact opposite, the scene is deconstructed
into parts and their relationships. The main goal of the
Capsule Network is to be capable of performing inverse
graphics [7]. To achieve this, Hinton proposed to encode the
idea of an entity inside a neural network, a capsule [7].

In the following, we first explain the basic structure of a
Convolutional Neural Network and its possible shortcomings
in Section 2. In Section 3.1 and 3.2, we describe the architec-

ture of a Capsule Network by comparing it to a general CNN.
Furthermore, we explain the idea and implementation of
routing-by-agreement algorithm, as well as the loss functions
and the training of the network (Section 3.3-3.4). Section
3.5 shows the network’s performance on multiple challenges,
including an overview over novel matrix capsules in Section
3.6. After summarizing the main advantages and disadvan-
tages in Section 3.7 and 3.8, we look at improvements to
the CapsNet (Section 3.9). Before drawing a conclusion in
Section 4, we outline some real world use cases of capsule
networks in Section 3.10.

2. CONVOLUTIONAL NEURAL NETWORKS
2.1 Basic CNN architecture

Figure 1: Basic architecture of a CNN; figure from [15]

Fig. 1 shows the basic architecture of a Convolutional Neural
Network. The network first extracts learned features, which
are then fed through a fully connected neural network, that
produces a classification. The network can learn features by
chaining together convolutional blocks. Such a block consists
of a convolutional layer, an activation function and a pooling
layer. The convolutional layer learns multiple simple fea-
tures, also called kernels. To learn more complex, non-linear,
problems, the output is fed through a non-linear activation
function (e.g. ReLU). To connect the blocks together, the

Figure 2: Max pooling example; figure from [2]

outputs of the previous block need to be routed to the next
block’s inputs. The most commonly used routing algorithm

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

89 doi: 10.2313/NET-2018-11-1_12

is pooling. Max pooling can be seen in Fig. 2 To improve
the classification significantly, it discards unimportant acti-
vations and only propagates the most prominent ones. This
allows the next convolutional layer to work only on “im-
portant” data and makes the classifier robust against small
transformations in the input data.

Figure 3: Feature detections of a CNN from [14]

Adding more blocks allows later blocks to extract features
from results of the previous block. Thereby the network can
learn more and more complex features. Like in Fig. 3 this
means that the first block of a CNN might learn edges, the
next block learns parts of an object parts and ultimately
the last block learns complete objects like a dog, a plane,
etc. With enough pooling layers, the network can become
location invariant. Hence a car in the top left corner of the
image is detected as well as one in the lower right.

2.2 Problems with pooling for routing
In his talk “What is wrong with convolutional nets?”[7],
Hinton stresses his belief in convolution, however he brought
forth four main arguments against using pooling for routing.
They are explained in the following.

2.2.1 Pooling is unnatural
Hinton states that pooling is a “bad fit to the psychology of
shape perception”. Human vision detects the object instanta-
neously. Based on the information this object holds, we route
it to the area in the brain that best handles that information.
Max pooling on the other hand routes the most active in-
formation to all subsequent neurons. This is unnatural and
prevents the network from learning small details.

2.2.2 Invariance vs. equivariance

Figure 4: Both images are being classified as “face” by a
CNN; figure from [9]

CNNs try to make the neural activities invariant to small
changes in the viewpoint, pooling them together [7]. This
is helpful for classification tasks, since the label should be
the same, no matter where the object is (spacial invariance).

However changes in viewpoint should ideally lead to changes
in neural activities [7] (spacial equivariance). This is espe-
cially important for segmentation and detection tasks, but is
also needed in classification. Fig. 4 shows that CNNs can
only detect features, but cannot relate them. This means
that, in an extreme case, both images are perfect representa-
tions of a face for a CNN.

2.2.3 Not using the linear structure of vision
A single transformation, such as rotation, can change a signif-
icant number of pixels in the image. Thereby the viewpoint
is the largest source of variance in images [7]. In computer
graphics, composing the scene of multiple parts is a linear
problem, since we know all the relations between the parts.
Without using this linear structure in computer vision, the
problem of detecting an object is not linear anymore, but
far more complex. As a result, a normal CNN has to be
exponentially increased in size and trained with a similarly
exponential amount of data [20].

2.2.4 Dynamic instead of static routing
Pooling collects the most prominent activations, but trans-
ports them to the same neurons of the following layer. This is
like broadcasting an important information. Thereby, if the
input image is translated, a completely different set of neu-
rons is responsible for handling different kinds of activations.
Our human vision however is smart enough to understand
that the image is translated and activates the same neurons.
This happens at runtime, hence is dynamic, and not statically
preconnected like pooling. This is like letting the neurons
from the next layer choose, what is most interesting to them.
In a nutshell, pooling chooses the best input, while dynamic
routing chooses the best worker neuron.

Nonetheless, pooling still works, as long as the network is
big enough and trained with enough data, that neurons
of the following layers can handle every input type. As a
result, CNNs perform very well, when classifying images
with only one kind of object. But especially in detection and
segmentation, they lack in performance, since the information
of multiple objects has to stay separated.

2.3 Solution
To solve these shortcomings, Hinton proposes to propagate
not only the probability of a feature’s existence, but also
the spacial relationships, i.e. the pose of the feature[7].
By adopting biological research he tries to tackle all of the
problems stated above. His implementation of this solution
is known as Capsule Networks.

3. CAPSULE NETWORKS
Hinton’s basic idea was to create a neural network capable of
inverse graphics. In other words the network should be able
to deconstruct a scene into co-related parts. To achieve this,
the architecture of a neural network needs to be changed to
reflect the idea of an entity. Every entity gets its own part of
the network, encapsulating a number of neurons. This entity
is called a capsule.

3.1 The capsule
A normal layer of neurons will be divided into many cap-
sules, which in turn contain the neurons [20] (see Sec. 3.2).

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

90 doi: 10.2313/NET-2018-11-1_12

Figure 5: An capsule and neuron in comparison [8]

Therefore a capsule is a wrapper around a dedicated group
of neurons. Fig. 5 shows a simplified comparison between
a capsule and a neuron. A neuron computes a scalar value
from a list of scalar values. Since a capsule essentially wraps
a group of neurons, it computes a vector from a list of in-
put vectors. It is now able to encode entity parameters like
location, skew, etc. [20]. However this also means, that
it does not represent the probability for the existence of
a feature anymore. Instead the length of the vector can
be used as the probability for feature existence, while not
losing the important pose information. Furthermore this
also enables the network to learn the parameters by itself,
removing the need for crafting them by hand. This means
that a n-dimensional (nD) Capsule can learn n parameters
and outputs a n-dimensional vector.

For the output vector to model a probability, it’s length has
to stay between 0 and 1. Normal activation functions like
ReLU only work on scalar values, hence a novel non-linear
squashing function Eq. 1 was introduced.

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

(1)

To understand how the inputs of the capsule are combined
to sj , we will now look into the architecture of the Capsule
Network presented in [20].

3.2 Architecture

Figure 6: Capsule Network Architecture as described in [20]

The architecture in Fig. 6 shows a Capsule Network for
classifying images from the MNIST dataset [13]. An input
image is transformed into 10 scalar values, representing the
probability for each number 0-9.

3.2.1 Conv1
The first layer applies a normal convolution with a 9× 9× 1
kernel to the 28× 28× 1 image over 256 channels.

3.2.2 PrimaryCaps
The next layer consists of 32 channels, each channel a 6× 6
grid of so called primary capsules. They serve as a transition
between the scalar values of the convolution to 8D vector
outputs. The primary capsules can be seen as another convo-
lutional layer with a 9× 9× 256 kernel, just with squashing

as their activation function. This means that the weights, i.e.
the kernel, are shared between all capsules in each 6× 6 grid.

3.2.3 DigitCaps
Following is the DigitCaps layer, fully connected to the
primary capsules. These are now pure 16D capsules getting
their inputs from the previous primary capsules. The weight
matrix Wij transforms the 8D output of primary capsule i
to a 16D vector as input for digit capsule j (ûj|i) Eq. 2.

sj =
∑

i

cijûj|i , ûj|i = Wijui (2)

Therefore each digit capsule has a weighted sum of 32× 6× 6
8D vectors as input (sj). Instead of using pooling, the new
technique of routing-by-agreement is used to focus on the
most important inputs. This is discussed in section 3.3.

3.2.4 Class predictions
The 10 16D vectors correspond to the numbers 0-9 (10
classes). Because of the squashing function, the length of
each of the vectors can be directly used as a probability for
each class. Hence there are no more fully connected layers
needed for classification (compare to Fig. 1).

3.3 Routing-by-agreement
Routing-by-agreement is a novel dynamic routing technique.
In contrast to pooling, the routing happens at runtime. The
goal of this technique is to redirect previous capsule outputs
to a following capsule where it agrees with other inputs. In
the scope of inverse graphics this can be compared to routing
a detected nose to the face-capsule and not the car capsule.
A detected nose, eye and mouth agree together in the face-
capsule, while the nose would not agree with a wheel and
door in the car capsule.

This works because of “coincidence filtering”. In a high
dimensional space - in this case the parameter dimension - it
is very unlikely for agreements to lie close to another. So a
cluster of agreements can not be, in a probabilistic way, a
coincidence.

As an implementation, Hinton et. al chose an iterative
clustering algorithm, see Alg. 1.

Algorithm 1 Routing algorithm. (from [20])

1: procedure Routing(ûj|i, r, l)
2: for all capsule i in layer l and capsule j in layer (l+1):
bij ← 0.

3: for r iterations do
4: for all capsule i in layer l: ci ← softmax(bi)
5: for all capsule j in layer (l + 1): sj ←

∑
i cijûj|i

6: for all capsule j in layer (l + 1): vj ← squash(sj)
7: for all capsule i in layer l and capsule j in layer

(l + 1): bij ← bij + ûj|i.vj

return vj

In simple terms, the algorithm finds the mean vector of the
cluster (sj), and weighs all inputs based on their distance to
this mean (bij) and normalizes the weights with the “routing
softmax” (ci) 3.

cij =
exp(bij)∑
k exp(bik)

(3)

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

91 doi: 10.2313/NET-2018-11-1_12

The number of iterations r is a hyperparameter for the
network and is empirically found to produce the best results
around 3 to 5 iterations. When the routing is finished the
input vectors now have an associated weight cij [20].

3.4 Training
A Capsule Network produces vectors as outputs. Hinton et.
al proposed multiple loss functions to be used at the same
time for training [20]. Reconstruction loss is used to train
the capsule parameters, while margin loss is used to optimize
digit classification. Both are explained below.

3.4.1 Reconstruction loss
This loss is normally used to train a neural network unsu-
pervised. It is mostly used in autoencoders [7] to force the
network to find a different representation of the data. There-
fore it makes sense to train Capsule Networks the same way,
to force the capsules to find adequate pose parameters.

Figure 7: Decoder network, building on top of the DigitCaps
layer, as described in [20]

To implement this loss, the previous architecture of Fig. 6
is extended with a decoder network (Fig. 7) to form the
typical architecture of an autoencoder. The decoder network
consists of two fully connected layers with ReLU activation
and one sigmoid activated layer. The output of 784 values
represents the pixel intensities of a 28× 28 image, the same
size as the images from the MNIST dataset.

As the actual reconstruction loss Hinton et. al [20] used
the euclidean distance between the actual image and the
sigmoid layer output. Additionally, the DigitCaps layer is
masked to exactly one capsule as input for the decoder. The
masked capsule corresponds to the ground thruth label, e.g.
the numbers 0 to 9 as in [20]. This forces the DigitCaps to
encode the actual digits [20].

3.4.2 Margin loss
Lk = Tk max(0,m+−||vk||)2+λ (1−Tk) max(0, ||vk||−m−)2

(4)
Eq. 4 shows the mathematical definition of the margin loss.
In [20], the constants were chosen as m+ = 0.9 and m− = 0.1.
Tk acts as a switch between two cases. Tk = 1 if a digit of
class k is present Tk = 0 if not. This loss ensures that the
output vectors of the digit capsules are at least m+ long,
when the class is detected, and at most m− long when that
class is not detected. λ = 0.5 is used to prevent the loss from
shrinking all vectors in the initial learning phase.

This loss function is applied to each digit capsule individually.
The total loss is simply the sum of the losses of all digit
capsules [20].

Table 1: CapsNet classification accuracy. The MNIST aver-
age and standard deviation results are reported from 3 trials.
Methods used were B=Baseline=CNN and C=CapsNet. [20]

Method
Routing

Iterations
Rec.
Loss

MNIST
(%)

MultiMNIST
(%)

B - - 0.39 8.1
C 1 no 0.34±0.032 -
C 1 yes 0.29±0.011 7.5
C 3 no 0.35±0.036 -
C 3 yes 0.25±0.005 5.2

Figure 8: Resulting reconstructions if one of the 16D in a
digit capsule is alterered marginally [20].

Scale and
thickness

Localized
part

Stroke
thickness
Localized
skew
Width and
translation

Localized
part

3.4.3 Hyperparameters
As stated in Sec. 3.4.2, the margin loss parameters were
defined in [20] as m+ = 0.9, m− = 0.1 and λ = 0.5.

The total loss to be optimized is a weighted combination
of both losses. To prevent the reconstruction loss from
dominating the margin loss, the reconstruction loss is scaled
down by 0.0005 [20].

Hinton et. al [20] experimented with the number of itera-
tions in the routing algorithm 1. They empirically found 3
iterations, combined with the reconstruction loss, to produce
the best results. This can be seen in table 1.

3.5 Evaluation
For evaluation, Hinton et. al generated a new dataset called
MultiMNIST. For each sample two digits from the MNIST
dataset were overlapped by 80% [20].

The proposed network has been tested on the MNIST and
MultiMNIST dataset. The results are depicted in table 1.
This shows that Capsule Networks are able to outperform
the baseline CNN in both challenges, achieving significantly
better results in the MultiMNIST dataset.

3.5.1 Representation of the pose parameters
To prove their goal of encoding transformation parameters
in the capsule, Hinton et. al fed a capsule prediction to the
decoder network (see 3.4.1. Fig. 8 displays how small changes
to some of the 16D parameters affect the reconstructions.
The results suggest that their goal has been reached.

When decoding the two predicted capsules, this leads to
very accurate reconstructions, see Fig. 9.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

92 doi: 10.2313/NET-2018-11-1_12

Figure 9: Correct reconstructions (lower image) of the Caps-
Net on MultiMNIST test dataset (upper image). L:(l1, l2)
represents the label for the two digits in the image. R:(r1, r2)
represents the two digits used for reconstruction. [20]

R:(6, 0) R:(6, 8) R:(7, 1) R:(8, 7) R:(9, 4) R:(9, 5) R:(8, 4)
L:(6, 0) L:(6, 8) L:(7, 1) L:(8, 7) L:(9, 4) L:(9, 5) L:(8, 4)

Figure 10: Capsule Network forced to reconstruct on false
lables (marked with *) on the MultiMNIST dataset. [20].

*R:(5, 7) *R:(2, 3) *R:(0, 8) *R:(1, 6)
L:(5, 0) L:(4, 3) L:(1, 8) L:(7, 6)

3.5.2 Smart reconstructions
As another experiment they forced the decoder network to
reconstruct non-predicted capsules (Fig. 10). It can be
observed, that the CapsNet only reconstructed digits that it
also detected. Hinton et. al proposed [20], that the model
is not just finding the best fit for all the digits in the image.
Instead it also includes the ones that do not exist. Hinton
et. al suggest, that “in case of (8, 1) the loop of 8 has not
triggered 0 because it is already accounted for by 8. Therefore
it will not assign one pixel to two digits if one of them does
not have any other support”[20].

3.6 Matrix Capsules with EM routing
Hinton et. al published another paper, currently under open
review, called “Matrix Capsules with EM routing” [6]. They
propose to use a EM [6] algorithm instead of the current
routing algorithm 1 from [20]. Additionally they changed
the capsules to use a 4× 4 pose matrix instead of a vector.
Such a matrix is used in computer graphics to compute the
scene, like it would be seen through a virtual camera. This
is called the viewport. Since the network is able to learn this
matrix, it is able to become viewport invariant [6].

They tested this new network on smallNORB dataset (Fig.
11) and outperformed the current state of the art CNN by
45%, reducing the error percentage from 2.56% to 1.4% [6].
Furthermore, they conducted an experiment, training the
network only on specific viewpoints and testing it on unseen
viewpoints [6]. Both networks were trained to the same error
of 3.7% on seen viewpoints. While the baseline CNN’s error
increased to 20% on unseen viewpoints, the Capsule Network
still achieved 13.5%. Based on these results, CapsNets seem
to be able to generalize better than CNNs, being able to
adapt to 3D viewports in 2D images.

Figure 11: Example images from the smallNORB dataset [6].
Multiple object classes in different viewports.

3.7 Advantages of Capsule Networks
Capsule Networks show multiple advantages compared to
classic Convolutional Neural Networks. The following list
with explanations is adapted and extended from [4].

3.7.1 Viewpoint invariance
The use of parameter vectors, or pose matrices [6], allows
Capsule Networks to recognize objects regardless of the view-
point from which they are viewed. Furthermore Capsule
Networks are moderately robust to small affine transforma-
tions of the data [20].

3.7.2 Fewer parameters
The connections between layers require fewer parameters,
since only neuron groups are fully connected, not the neurons
themselves. The CNN trained for MultiMNIST consisted of
24.56M parameters, while the CapsNet only needed 11.36M
parameters [20]. This is close to half as many as before.
Matrix capsules with EM-routing required even less [6]. This
also means that the model can generalize better.

3.7.3 Better generalization to new viewpoints
CNNs memorize, that an object can be viewed from different
viewpoints. This requires the network to “see” all different
transformations possible. Capsule Networks however general-
ize better to new viewpoints, because parameter information
of a capsule can capture these viewpoints as mere linear
transformations [7]. Therefore CapsNets are not as prone to
misclassification of unseen data, as shown in Sec. 3.6.

3.7.4 Defense against white-box adversarial attacks
Common attacks on CNNs use the Fast Gradient Sign Method.
It evaluates the gradient of each pixel against the loss of the
network. The pixels are then changed marginally to maximize
the loss without distorting the original image. This method
can drop the accuracy of CNNs to below 20%. Capsule
Networks however maintain an accuracy over 70% [4].

3.7.5 Validatable
A problem for industry usage of CNNs is their black box
behaviour. It is neither predictable how a CNN will perform
on new data, nor can its performance be properly analyzed
and understood. Because Capsule Networks build upon the
concept of inverse graphics, the network’s reasoning can be
explained considerably better than CNNs. Shahroudnejad

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

93 doi: 10.2313/NET-2018-11-1_12

et. al [21] proposed an explainability method building natu-
rally upon capsules and their structure. This suggests, that
Capsule Networks are superior to CNNs in validatability.

3.7.6 Less amount of training data
Through unsupervised learning and the dynamic routing
procedure, Capsule Networks converge in fewer iterations
than CNNs. Furthermore, CNNs need exponentially more
training data to understand affine transformations [20].

3.8 Challenges for Capsule Networks
The CapsNet’s early development stage, brings not only
common problems with it, but also reveals unique challenges.
In the following both kinds are listed in more detail.

3.8.1 Scalability to complex data
Hinton et. al [20] evaluated the network experimentally on
the CIFAR10 dataset, failing to perform as good as cur-
rent CNNs. The results were comparable to the first CNNs
tackling the challenge. Matrix capsules and other discussed
approaches in section 3.9 try to tackle this problem but are
still far from performing on the ImageNet challenge.

3.8.2 Capsules need to model everything
As described in [20], capsules share this problem with gener-
ative models. The network tries to account for everything in
the image. This also means that it performs better, if it can
model the clutter like background noise, instead of having
an extra “not-classifiable” category. LaLonde et. al [12] try
to solve this issue by reconstructing not the whole image,
but only the segmentation. This removes the need for the
network to model the background and allows it to concen-
trate only on the active class. For solving their challenge of
segmenting medical images, this approach shows promising
results.

3.8.3 Structure forcing representation of entities
The concept of entities was introduced to Capsule Networks
to aid in computer vision and perform inverse graphics. This
network architecture could therefore prevent the network
from being applied to non-vision areas. However this has not
yet been investigated thoroughly.

3.8.4 Loss functions
Since the network produces vector or matrix outputs, existing
loss functions cannot be simply reused. However, they can
often be adapted and sometimes leverage the additional data,
as can be seen in the reconstruction loss. Still, using the
CapsNet on a new dataset will often require a new loss
function as well.

3.8.5 Crowding
Human Vision suffers from the “crowding” problem [16]. We
cannot distinguish objects, when they are very close together.
This can also be observed in Capsule Networks [20], since
this concept was used to model the capsule in the first place
[20]. Capsules are based upon the idea, that in each location
in the image is at most one instance of the type of entity
that the capsule represents [20]. While this enables capsules
to efficiently encode the representation of the entity [20], this
could also present itself as a problem for specific use cases.

3.8.6 Unoptimized implementation
The original, but not sole, implementation of the Capsule
Network can be found at [22]. It shows, that Capsule Net-
works present multiple challenges for current deep learning
frameworks. Neural networks are often represented as a
graph. Therefore, the number of routing iterations must
be defined empirically [20], allowing for the for loop to be
unfolded beforehand and chained r times together in the
graph. Another problem for training neural networks is that
the routing algorithm is dynamic and not easy to paral-
lelize, preventing GPUs from leveraging their full computing
power. Nevertheless it is very likely that these deep learning
frameworks will adapt with time.

3.9 Further improvements
The performance and scalability of the original Capsule Net-
work has been analyzed by Xi et. al in [26]. They came to
the conclusion that, apart from minor improvements, the
Capsule Network does not work very well on complex data.
Capsule Networks initially showed a lot of problems similar
to CNNs before 2012. These were problems like unoptimized
algorithms, vanishing gradients, etc. This inspired further
research in this area, producing multiple different approaches
for a new routing algorithm, new losses, or even complete
restructuring of the architecture. Some of these publications
are presented below.

Phaye et. al [17] investigated using DenseNet-like skip-
connections to increase the performance of the Capsule Net-
work. The resulting DCNet was furthermore restructured
in a hierarchical manner (DCNet++), outperforming the
original CapsNet.

Rawlinson et. al [18] also proposed a change in the Cap-
sule Net architecture. By removing the margin loss (sec-
tion 3.4.2) and introducing sparsity to the capsules, the
network achieved similar results and generalized very well.
Furthermore the network could now be trained completely
unsupervised.

Bahadori et. al [3] developed a novel routing procedure.
The algorithm is based on the eigen-decomposition of the
votes and converges faster than EM-routing, described in [6].
The connection between the proposed S-Capsules and EM-
Capsules is analogous to the connection between Gaussian
Mixture Models and Principal Component Analysis. This
analogy suggests why S-Capsules are more robust during the
training [3].

Wang et. al [24] optimized the routing algorithm by leverag-
ing Kullback-Leibler divergence [11] in regularization. Their
proposed routing outperforms the original routing procedure
in accuracy 1.

3.10 Use in real world applications
Capsule Networks are currently evaluated on challenging
tasks and in difficult environment, where typical CNNs fail
to produce acceptable results. In the following, three example
cases are presented.

Afshar et. al [1] use Capsule Networks for brain tumor type
classification. Capsule Networks require less training data

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

94 doi: 10.2313/NET-2018-11-1_12

than CNNs. This is very important in the medical environ-
ment, resulting in CapsNets being the superior network for
this task.

Wang et. al [25] employ the capsule concept in a Recurrent
Neural Network. Thereby they achieved state-of-the-art
performance in sentiment analysis tasks.

LaLonde et. al [12] designed a new network architecture
similar to U-Nets [19]. Apart from outperforming the baseline
U-Net model on large 512 × 512 images, they reduced the
parameters needed by 95.4%.

4. CONCLUSION
Hinton et. al propose with Capsule Networks a completely
new way for Convolutional Neural Networks to analyze data.
The routing-by-agreement algorithm 1 tackles the problems of
pooling (2.2) [7]. Together with the concept of capsules, this
enables networks to be viewpoint invariant and robust against
affine transformations. This eliminates the main reason
for huge amounts of data being needed in CNN training.
Overall the new architecture holds many advantages over
the typical CNN. Current research shows that, with some
alterations, Capsule Networks are able to perform even in
complex scenarios [1]. However, Capsule Networks have to
be developed further to outperform, or even replace CNNs in
real world scenarios, especially when data is not a problem.

5. REFERENCES
[1] P. Afshar, A. Mohammadi, and K. N. Plataniotis.

Brain tumor type classification via capsule networks.
CoRR, abs/1802.10200, 2018.

[2] Aphex34. Convolutional neural network - max pooling.
https://en.wikipedia.org/wiki/Convolutional_

neural_network#Max_pooling_shape; last accessed on
2018/06/14.

[3] M. T. Bahadori. Spectral capsule networks. 2018.

[4] S. Garg. Demystifying “matrix capsules with em
routing.”. https://towardsdatascience.com/
demystifying-matrix-capsules-with-em-routing

-part-1-overview-2126133a8457; last accessed on
2018/06/14.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385,
2015.

[6] G. Hinton, S. Sabour, and N. Frosst. Matrix capsules
with em routing. 2018.

[7] G. E. Hinton. What is wrong with convolutional neural
nets? Talk recorded on youtube,
https://youtu.be/rTawFwUvnLE; last accessed on
2018/06/14.

[8] K.-Y. Ho. Capsules: Alternative to pooling.
https://datawarrior.wordpress.com/2017/11/14/

capsules-alternative-to-pooling/; last accessed on
2018/08/18.

[9] T. Kothari. Uncovering the intuition behind capsule
networks and inverse graphics.
https://hackernoon.com/

uncovering-the-intuition-behind-capsule-networks

-and-inverse-graphics-part-i-7412d121798d; last
accessed on 2018/06/14.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton.

Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[11] S. Kullback and R. A. Leibler. On information and
sufficiency. The annals of mathematical statistics,
22(1):79–86, 1951.

[12] R. LaLonde and U. Bagci. Capsules for Object
Segmentation. ArXiv e-prints, Apr. 2018.

[13] Y. LeCun, C. Cortes, and C. Burges. Mnist dataset,
1998.

[14] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng.
Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In
Proceedings of the 26th annual international conference
on machine learning, pages 609–616. ACM, 2009.

[15] Mathworks. Convolutional neural network. https:
//www.mathworks.com/solutions/deep-learning/

convolutional-neural-network.html; last accessed
on 2018/06/14.

[16] D. G. Pelli. Crowding: A cortical constraint on object
recognition. Current opinion in neurobiology,
18(4):445–451, 2008.

[17] S. S. R. Phaye, A. Sikka, A. Dhall, and D. Bathula.
Dense and diverse capsule networks: Making the
capsules learn better. arXiv preprint arXiv:1805.04001,
2018.

[18] D. Rawlinson, A. Ahmed, and G. Kowadlo. Sparse
unsupervised capsules generalize better. CoRR,
abs/1804.06094, 2018.

[19] O. Ronneberger, P. Fischer, and T. Brox. U-net:
Convolutional networks for biomedical image
segmentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer, 2015.

[20] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic
routing between capsules. In Advances in Neural
Information Processing Systems, pages 3859–3869,
2017.

[21] A. Shahroudnejad, A. Mohammadi, and K. N.
Plataniotis. Improved explainability of capsule
networks: Relevance path by agreement. CoRR,
abs/1802.10204, 2018.

[22] soskek. Capsnets tensorflow implementation.
https://github.com/soskek/dynamic_routing_

between_capsules; last accessed on 2018/06/14.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[24] D. Wang and Q. Liu. An optimization view on dynamic
routing between capsules. 2018.

[25] Y. Wang, A. Sun, J. Han, Y. Liu, and X. Zhu.
Sentiment analysis by capsules. In Proceedings of the
2018 World Wide Web Conference on World Wide
Web, pages 1165–1174. International World Wide Web
Conferences Steering Committee, 2018.

[26] E. Xi, S. Bing, and Y. Jin. Capsule Network
Performance on Complex Data. ArXiv e-prints, Dec.
2017.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

95 doi: 10.2313/NET-2018-11-1_12

