
Self-Driven Computer Networks

Simon Klimaschka
Advisor: Fabien Geyer

Seminar Future Internet SS2018
Chair of Network Architectures and Services

Departments of Informatics, Technical University of Munich
Email: simon.klimaschka@tum.de

ABSTRACT
This paper provides an overview about the different kinds of
machine learning algorithms that can be used for detecting
anomalies in computer networks regarding how the different
algorithms work and how they are beneficial for anomaly de-
tection in computer networks. It also provides an overview
about which paper uses which machine learning technique
and how those techniques worked out. Furthermore, it gives
an introduction to anomaly detection with graphs and what
advantages graph-based anomaly detection has compared to
machine learning based approaches. In the end, the paper
presents the implementation of a supervised and an unsu-
pervised machine learning algorithm for anomaly detection
from the scikit module and evaluates the used algorithms in
terms of overall detection performance and computing time.

Keywords
anomaly detection, machine learning, graph, computer, net-
work, scikit

1. INTRODUCTION
One of the inventions, that brought humanity the most ad-
vantages is undoubtedly the internet. While in the beginning
very few people used this new achievement, the e-mail traffic
grew very fast in the first years. The web pages in these days
were very lightweight and hacker attacks not very frequent.
But in the past years, more and more services use the in-
ternet. Nowadays, nearly everyone owns a smartphone, up-
loads their data to the cloud, streams movies from services
like Netflix or Amazon Prime or can look up nearly every
information they want to. Companies also use the internet
to be more connected and use it to connect their facilities.
The Internet of Things (IoT) will enable devices like light
bulbs, refrigerators or a door bell to be connected via the
internet. This will result in billions of new devices in our
networks. As can be see, the poor security in those devices
can result in big attacks like the mirai attack [1]. With so
many different devices and very diverse usages, it gets more
attractive for hackers to intrude networks and devices. Pos-
sible attack scenarios are stealing classified data from com-
pany networks and blackmailing them, infiltrating military
networks to gather data about upcoming missions, hack-
ing the networks of banks and payment service providers to
make money or even distributing malicious software through
the whole internet like in the WannaCry attack [2] which
affected railway services as well as hospitals. All these at-
tack ideas underline, that we need systems, which can detect
anomalies in networks, which often are attacks. To get an

idea about how anomaly detection in computer networks
works, we will observe two different ideas. In section 2, we
will address the different machine learning approaches and
how they can be beneficial for anomaly detection. Section 3
is dedicated to how graphs can be used to detect anomalies,
as well as comparing graph-based approaches to machine
learning approaches with an eye on their respective advan-
tages. In the end, we will evaluate two implementations of a
supervised and an unsupervised machine learning approach
and compare them regarding their detection accuracy and
computation time.

2. ANOMALY DETECTION IN COMPUTER
NETWORKS USING MACHINE LEARN-
ING

Anomaly detection plays an important role in computer net-
works nowadays, especially regarding security and stability.
Agrawal and Agrawal [3] define ”Anomaly detection [a]s the
process of finding the patterns in a dataset whose behavior
is not normal on(sic!) expected.”
Spotting anomalies means spotting behaviours which do not
occur very often and are most likely not wanted. As we want
to focus on anomaly detection in computer networks in this
paper, this could happen during an attack by hackers or due
to malfunctioning hardware or software. As can be assumed,
classifying packets is not trivial at all, many factors have to
be considered.
Machine learning is very good at tasks like classifying high-
dimensional data or reducing high-dimensional data to lower
dimensions. To further survey machine learning for anomaly
detection, we have to consider the different machine learn-
ing techniques at first, regarding how they work, for which
cases they will work and if it will be beneficial for anomaly
detection in computer networks:

• Artificial Neural Networks: Artificial Neural Net-
works (ANNs) can ”approximate any given function”
[9], which also includes anything non-mathematical,
like image recognition or natural language processing.
ANNs consist of so called neurons, which are connected
to each other. The neuron is based on the way the neu-
rons in the brains work, hence the similar names. In
which manner they are connected depends on the style
of the network.
A feed forward network for example has an input layer,
an output layer and an adjustable number of hidden
layers. Every neuron in a layer is connected to the

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

43 doi: 10.2313/NET-2018-11-1_06



Figure 1: Neural Network

neurons of the anterior and posterior layer, as can be
seen in figure 1. Every connection has a corresponding
weight, which is altered depending on the usage of the
network. Altering the weights of a network to a spe-
cific use-case is called training. When fitting an ANN,
we use the properties of supervised training:

– In supervised training, a training data set has to
consist of the input values and the expected out-
put values. Regarding a specific input, the out-
put of the network is calculated and compared
to the expected output. Based on the rules of
backpropagation the weights of the network are
adapted. For anomaly detection, the ANN could
be design with one output neuron and trained to
output 1 for anomalies and 0 for normal pack-
ages. While the result is exactly what we want,
the training process needs a lot of work done in
advance for our use-case. Typical training data
sets consist of hundreds of thousands of data sam-
ples which all need to be classified as normal or
abnormal. This is not only a huge workload, dif-
ferent persons also classify the same packages dif-
ferently, even the same persons tend to change
their mind when classifying the same packages.
[4, Section 1.2]. Furthermore, anomalies are per
definition unusual and uncommon, which makes
them even harder to spot. Lippmann and Cun-
ningham [14] used a ANN with selected keywords
as inputs. The ANN was able to detect 80% of all

occurring anomalies with just about 1 false alarm
per day. Palagiri and Chandrika [17] used a neu-
ral network trained with data from the DARPA
1999 training data set. While detecting all normal
packages correctly, it could only identify 24% of
all attacks, 76% were falsely classified as normal.
The main problem they had was the low number
of occurrences of attacks in the data set. When
they trained the network for just one attack, they
were able to detect all attacks with a false posi-
tive rate of 0%.
This leads to the main problem with neural net-
works: They provide excellent results for very
specific purposes, like a single attack, but get
weaker the more attacks they should be able to
recognize. They also struggle with detecting at-
tacks they were not trained for. A solution for
this could be creating an own neural network for
every attack. This won’t solve the new-attack
problem, but will increase the rate of detected at-
tacks, although it requires training many times
over. Though the training time is relatively long,
the detection itself can be done in quasi real-time.

– Unsupervised training, in contrary, doesn’t need
classified training data, it makes the classifica-
tion internally by itself. An unsupervised learning
technique is described in the subsection Cluster-
ing.

• Fuzzy Rules: Fuzzy sets are an extension of normal
sets. In a conventional set, an object either is or isn’t
a member of the set. For example, the number 4 is a
member of the set ’even numbers’ but 5 isn’t. Fuzzy
logic allows objects to be a member of a set in a cer-
tain percentage. In a conventional set, 29◦C will be
considered as normal, but 30◦C already as hot. The
difference is not that big, but the outcome is very dif-
ferent. In fuzzy logic, 29◦C can be a member of warm
with 60% and a member of hot with 40%. For anomaly
detection in networks, fuzzy rules have the big down-
side, that the training cannot be done automatically
like with neural networks. Though neural networks
could help with for example feature reduction, the se-
lection of features and the definition of the rules has
to be done by the system administrator with his ex-
perience. This yields the risk, that the administra-
tor forgets certain attacks or might even not be aware
of them being existent. How well fuzzy logic detects
anomalies is therefore dependent on the system admin-
istrator creating the rules. However, the construction
of the if-then rules is easier than describing attacks
in a normal fashion, as it mimics human thinking [7].
Fuzzy logic can also work with other data mining algo-
rithms and extend them, providing more abstract and
flexible methods for creating rules [10]. Thus, fuzzy
logic can be powerful when set up correctly.

• Bayesian Networks: When working with a network
we often know the statistical features between the vari-
ables in our network, but keeping an eye over all of
them and how they all correlate is not an easy task.
Bayesian networks can close this gap and provide an
overview over the variables and their relations with
a probabilistic graph model, represented by a direct

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

44 doi: 10.2313/NET-2018-11-1_06



Figure 2: A comparison of the clustering algorithms
in scikit-learn [20]

acyclic graph with each node being one system variable
and every edge showing that one node is influenced by
another. This system could answer questions like with
which probability an attack is happening if the system
variables have a certain setting [22]. The problem with
this technique is that you need to know about the sta-
tistical dependencies of your networks variables, which
is not given very often, especially not in new networks,
as it requires experience in working with networks.

• Clustering: This technique doesn’t need labeled data,
it’s an unsupervised algorithm. Clustering is able to
discover structures and patterns in any-dimensional
data. There exist various methods:

– Connectivity models group the data points based
on the distance between them

– Distribution models assume, that groups are ac-
quiescent to a statistical distribution

– Density models use dense regions and connected
regions to group data points

– Graph models sets of connected nodes describe
each cluster while every node holds an edge to at
minimum another node in the set [5]

The big advantage for clustering is it’s ability to learn
from arbitrary data and that it doesn’t need a supervi-
sor which defines possible attack scenarios. This free-
dom also comes with a downside, to get acceptable re-
sults we have to choose an appropriate algorithm. As
can be seen in figure 2, depending on the organization
of the data points, an algorithm could be better than
another one. In terms of computing we also should
consider, that some algorithms like DBSCAN don’t
scale very well as they are very memory demanding.
Leung and Leckie [13] used the approach fpMAFIA de-
scribed in their paper, a density- and grid-based high
dimensional clustering algorithm. It has a high detec-
tion rate, but a rather high false positive rate com-
pared to other approaches like k-nearest neighbour or
support vector machines. How well clustering performs
is dependent on the choice of the used algorithm and
how the data is structured.

• Ensemble learning: Ensemble learning refers to the
approach of combining several weak learning algorithms

to improve their total performance [22]. As it depends
on the choice of algorithms and their connection how
this technique performs, we will not look any further
into it.

• Evolutionary/Genetic: Genetic learning is inspired
by nature and the principle of evolution. We start with
organizing the problem structure in a chromosome like
data structure. To solve the problem, the genetic al-
gorithm uses the chromosomes of the best solutions
and mixes them together to create new chromosomes.
This leads, given some slight randomization, to a bet-
ter solution every epoch. In computer networks, Khan
[11] uses genetic algorithms to develop detection rules.
Every chromosome consists of genes like the used ser-
vice, if the user is logged in, uses a root shell or is a
guest. Genetic algorithms have the advantage, that
it searches for the best anomaly finding solutions from
all directions, whilst needing no prior knowledge of the
network. However, this can take a while, the comput-
ing power needed is comparatively high [8].

• Support Vector Machines: Support Vector Ma-
chines (SVMs) are able to classify data points into two
different classes. The two classes are divided by a hy-
perplane, which is outlined by a set of support vectors
which have to be members of the training input. In
contrast to clustering with the k-nearest neighbours
approach, SVMs can handle big dimensions, because
an upper bound is set on the margin between the dif-
ferent classes. SVMs have the crucial advantages, that
their real-time performance can be better than neural
networks and they are easily scalable, in the size of the
data points as well as for dimensionality [15]. Mukka-
mala et al. [15] concluded, that the time to train a
SVM is significantly shorter than for neural networks
(17.77s and 18min) while delivering the same accu-
racy in detecting anomalies. The downside with using
SVMs is that you can only make binary decisions like
is anomalous or not. This could become a problem,
if the attacks are very different and we would need to
divide into different kinds of anomalies to detect them
correctly [15].

• Self-Organized Maps: Kohonens Self-Organizing Maps
[12] are able to convert many-dimensional data into a
two-dimensional map using the internal representation
of a map. The method a self-organizing map (SOM) is
trained, is related to competitive learning. All points
of the map are initialized randomly, then the training
data is presented to the map. The map-point, which
is fitting the best to the data-point, is pulled towards
the data-point. All surrounding map-points are pulled
towards the data-point too, but the further they are
apart, the less they are pulled. As the training pro-
gresses, the points are pulled a little bit less. The
SOM creates an internal representation of the given
data in the process. In our use-case, the SOM clas-
sifies all packet classes, without any prior definitions,
just by the input data [21]. A restraint for SOMs is
that it only considers the bulk of a traffic class, not the
exception that occur seldom, which are no anomalies,
but would be classified as one by the SOM [19].

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

45 doi: 10.2313/NET-2018-11-1_06



2.1 Conclusion
Anomaly detection with machine learning plays it’s advan-
tages if we already have collected a lot of data from the
network. This, for example, could be a recording of all pack-
ages that are passing the network. The more training data
we have, the more accurate our model gets. The training
itself can be very costly and tedious, but when trained, it
delivers very accurate results. In the last two years hybrid
approaches were mainly used, for example combining PSO
and K-means with fuzzy logic [10] or combining Naive Bayes
and CF-KNN to gain better results than with just one algo-
rithm [16]. A comparison between different implementations
in papers can be seen in Table 1.

3. GRAPH BASED ANOMALY DETECTION
3.1 Overview
In section 2 we focused on anomaly detection in data sets
which are based on multi-dimensional data points. If we
consider, that the relationship between such data points can
be important, we should rethink our model. For example, in
big networks, the structure of the network and the depen-
dencies are absolutely essential for detecting anomalies. An
easy but powerful representation for such cases are graphs.
They are described by nodes which are connected with each
other by edges. Obviously, our old techniques for detecting
anomalies are not compatible with graph-based data, so we
need to develop new ideas.

3.2 Graphs and anomaly detection
Before we can discuss how graph based anomaly detection
can be beneficial for computer networks, we have to figure
out how anomaly detection in graphs works in general.
Akoglu et al. [4] differentiate between anomaly detection in
static graphs and in dynamic graphs.
In static graphs, used methods are further divided into structure-
based (searching for frequent patterns in the graphs and
subgraphs) and community-based (searching for nodes that
belong together as a community) methods. For the former,
the following approaches exist:

• Feature-based approach: Extracts structural graph-
centric features from the graph layout and combines
them with other features already known from other
sources. This remodels the problem to an anomaly de-
tection problem with multi-dimensional data points,
which we already covered in section 2.

• Promixity-based approach: The main goal of this ap-
proach is to highlight the closeness of nodes in the
graph, as objects that are very close to each other of-
ten belong to the same class (e.g if one person is in-
volved in crimes, his or her acquaintances are likely to
also be involved).

For the latter, the main idea is trying to find communities,
like a group of friends or servers that work closely together,
which are densely connected. Detecting anomalies is then
basically just finding connections, that are not in between
communities.
Static graphs can also have attributes, for example interests
of the users of a social network or purposes of a server (http,

mail, ftp, ...) for a computer network. The anomaly detec-
tion in those graphs are for the most part the same, so the
main idea is still spotting structures or communities. For
the latter, outliers in a community can now also be spotted,
like if there is one smoker in a community of fitness enthu-
siasts. A new method in attributed static graphs are rela-
tional learning based methods, which can detect much more
complicated relationships between nodes to group them into
normal and anomalous nodes.
In dynamic graphs, we focus on detecting anomalies in dy-
namic or time-evolving (meaning a sequence) graphs. There
exist four ways:

• Feature-based events: In graphs that evolve, consecu-
tive graphs should have similar properties like diame-
ter or degree distribution. This approach considers a
time step as anomalous, if the properties change too
much. It is very crucial to choose the right properties
that will be observed, as they change depending on the
problem.

• Decomposition-based events: This approach converts
the time-series of graphs into matrices or tensors, which
then are interpreted with chosen eigenvectors, eigen-
values or similar indicators.

• Community- or Clustering-based events: Here, the fo-
cus is not on monitoring the network as a whole but
detecting communities or clusters and watching the
structural change in them.

• Window-based events: This approach works with time
windows, e.g. a predefined number of previous graphs
is taken into account to decide whether the current
graph is anomalous or not. They represent the largest
category of anomaly detection methods in dynamic
graphs.

This is just a very shallow outline of how graph-based anomaly
detection works. For more details, look into [4].

3.3 Graph based anomaly detection for com-
puter networks

Computer networks can be easily represented with graphs,
as their structure is very similar, with computers and servers
acting as nodes and connections between them being edges.
Those edges might be weighted with the current load or data
flow. We assume, that the weight of edges changes when the
computer network is under attack. The two big problems we
face are on the one hand, that watching just single nodes and
edges will miss all dependencies in the graph, which would
destroy one big advantage, graph-based anomaly detection
has. On the other hand, big networks with a lot of edges get
very expensive to monitor in parallel.
In conclusion, graph based anomaly detection has advan-
tages when having a big structured network and the knowl-
edge, how the structure looks like exactly. This approach is
also very powerful when we deal with newly set up networks
for which we do not have any previous data.

4. COMPARISON OF THE IMPLEMENTA-
TIONS OF TWO MACHINE LEARNING
APPROACHES

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

46 doi: 10.2313/NET-2018-11-1_06



Table 1: Comparison of machine learning algorithms used for anomaly detection
Reference Use-case Machine learning method Result

[14] Detecting attacks with keywords
and DARPA Intrusion Detection
Data Base [6]

Neural Network 80% of attacks detected with one
false alarm per day

[17] Detecting attacks with DARPA In-
trusion Detection Data Base [6]

Neural Network and SOM 24% of all attacks correctly pre-
dicted, when trained with one at-
tack 100% prediction rate

[7] Detecting attacks with own data
set

Fuzzy networks Detected nine TCP port scans and
four ping scans in three weeks

[10] Detecting attacks with generated
dataset from CCNx software

Fuzzy anomaly detection based
on hybridization of PSO and K-
means clustering algorithms over
Content-Centric Networks

Detection rate of 100% with a false
positive rate of 1,847%

[5] Detecting attacks with KDD Cup
1999 Data Set

Evolutionary Computations Detection rate of 94,19% with false
positive rate of 5,81%

[13] Detecting attacks with KDD Cup
1999 Data Set

Cluster detection using fpMAFIA Performance value of 0,867

[11] Detecting attacks with KDD Cup
1999 Data Set

Genetic algorithms Reliability of 94,64% to detect an
attack and 1% difference of detect-
ing attacks between training and
test data

[15] Detecting attacks with 1998
DARPA Intrusion Detection Data
Set

Support Vector Machine Detection rate of 99,5% while need-
ing just 17s training time (com-
pared to 18min for neural network)

[19] Detecting attacks with MIT Lin-
coln Labratory DARPA Intrusion
Detection Evaluation Project data
set

Self organizing maps 1,19% false positive rate for DNS,
1,16% false positive rate for HTTP

4.1 The used data set
The data set used for testing the following implementations
is the KDD Cup 1999 Data Set. It was used for the Third
International Knowledge Discovery and Data Mining Tools
Competition to build a network intrusion detector which
should be able to detect attacks. The data contains nine
weeks of TCP dumps simulating a U.S. Air Force LAN which
was under attack to generate the anomalous data. The
whole data set is labeled with not just normal or anomalous,
it also contains information about the type of the attack.
The attacks can be classified into four different categories:

• Denial of service attacks

• Unauthorized access from a remote machine like guess-
ing a password

• Unauthorized access to local superuser privileges

• Surveillance or probing activities like port scanning

The test data also includes attacks which did not occur in
the training set to create a more genuine simulation, as in
the real world new attacks are discovered all the time.

4.2 Programming language and machine learn-
ing library

The most important goal for these implementations were
fast prototyping whilst performance could be neglected. The
tests should provide an overview about the different ap-
proaches and how they perform related to each other, so it’s

not important that the implementation itself is the fastest.
For this reason, Python was chosen as a programming lan-
guage. It’s rather easy to code in Python, providing a lot of
built-in features that make preprocessing a lot easier while
still providing decent performance. There also exist a lot of
libraries for Python that fit our needs.
The chosen machine learning library was scikit-learn [18],
as it’s available for free and provides packages for classifica-
tion, regression, clustering or dimensionality reduction and
different approaches for preprocessing data.

4.3 Preprocessing
The data from the KDD Cup 1999 Data Set is organized line-
wise. Every line represents one connection with features like
the duration, the used protocol, sent bytes or if it attempted
to gain superuser rights. The last element is not a feature,
it’s the classification of the connection. They are ’normal’
in most cases, but also contain attacks like ’buffer overflow’,
’guess passwd’ or ’rootkit’. Not only the classification itself
is a string, but also the second, third and fourth feature are
no numeric values but a string. Machine learning algorithms
can only work with numeric values, so we have to convert all
strings to numeric values. At first, all string valued features
were taken out of the training data and collected in one
array each. From the preprocessing package, we used the
LabelEncoder, which provides a normalization of labels. It
can also convert hashable and comparable strings into nor-
malized numeric values by hashing them at first and them
normalizing them. Every features LabelEncoder instance
was fit to the data of the repective feature and then trans-
formed into a numeric value which can be used for machine

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

47 doi: 10.2313/NET-2018-11-1_06



learning. After the process, the features were add back into
the data set.

4.4 The testing system
The code was tested on a laptop from ASUS, with a Intel
Core i5-7200U CPU and 24 GB of memory. The data set
was saved on a SSD, the code was also run on a SSD.

4.5 A supervised learning approach
For the supervised learning approach, a standard neural
network should be evaluated. From the skicit-learn pack-
age, the MLPClassifier was chosen. It implements a multi
layer perceptron (MLP) using backpropagation for training,
which describes the approach we made in section 2 for the
supervised network. The MLPClassifier has some parame-
ters which can be altered, like the use of which activation
function for the hidden layers, the used solver, the size of
the hidden layers or if it should implement early stopping.
Early stopping refers to the technique of reserving 10% of
the training data for validation purposes and stopping the
training if the results of the validation data set did not im-
prove for more than two epochs.
To find the best parameters for anomaly detection, the al-
gorithm was fed with the training data from the KDD Cup
1999 Data Set and validated with it’s testing data set. The
results for the different parameters can be found in table 2.
One can easily see, that more neurons does not mean better
accuracy, but introducing a second layer resulted in just a
fifth false alarms. Sgd performed not as well as adam, while
being a lot better in recognizing the anomalies, it generates
a lot of false alarms. The activation functions didn’t have a
big impact on the results, just the identity function gener-
ates worse results. It took about 4,5 minutes to run on the
testing system. The following parameters were tested:

• Solver: The solver for weight optimization, choos-
ing from lbfgs, which wasn’t used as it’s for smaller
data sets, sgd, the stochastic gradient and adam, a
stochastic-gradient optimizer which works good for big-
ger data sets.

• Hidden Layer Size: The hidden layers are denoted
with parentheses and commas, where every part rep-
resents the number of neurons in a layer, e.g. (30,10,5)
are 30 neurons in the first hidden layer, 10 neurons in
the second and 5 in the third.

• Activation Function: The activation function used
for the neurons of the hidden layer, with the follow-
ing possibilities: Identity (f(x) = x), Logistic (logistic
sigmoid function), Tanh (the hyberbolic tan function)
and relu (the rectified linear unit function)

• Correct Predictions: How many out of the 311.030
connections were predicted correctly

• False negatives: How many percent of the wrong
predictions were classified as normal, but are an attack

• False positives: How many percent of the wrong pre-
dictions were classified as attack, but are a normal con-
nection

4.6 An unsupervised learning approach
For the unsupervised learning approach, the k-means algo-
rithm from the scikit-learn package was chosen. Other algo-
rithms like DBSCAN or Birch, which would also make sense
for our use-case and can handle high dimensional data were
not able to run on the previously describe testing system as
they were too memory demanding.
K-means tries to cluster the data into any desired number
of clusters of equal variance. The goal of the algorithm is to
choose the centroids of the clusters in such a way, that the
distance to all points belonging to it will be as small as possi-
ble. This raises a few problems when having elongated clus-
ters or other irregular shapes, because the algorithm works
best for convex blobs of points. For high dimensions, the
euclidian distance between points become more and more
irrelevant, which is also known as the curse of dimensional-
ity.
K-means doesn’t have much parameters that can be changed
or would be useful changing. The number of clusters for our
example is fixed, as we only want to distinguish between
normal and anomalous. We could also take the number of
different attacks as the number of clusters and it could be
working better, but in a normal environment we don’t know
how many attacks occur in our training sample. If we an-
alyzed the training samples the major advantage that we
don’t have to look into the data would be completely gone.
The programmed algorithm ends with 60.593 wrong predic-
tions. It took about 4,5 minutes on the testing system.

4.7 Comparison of the two approaches
The supervised algorithm outperformed the unsupervised
algorithm in nearly every setting. This was expectable, the
supervised algorithm knows how to trim it’s network to get
the best results while the unsupervised algorithm can only
depend on the structural organization of the data points
when detecting anomalies. We also have to consider the
fact, that in a real world environment, we would have to
classify the training data before being able to use the su-
pervised algorithm. While the best setup for the supervised
variant had about 92% correct predictions (23000 wrong pre-
dictions), the unsupervised variant is just 37.000 worse and
works without classifying the data beforehand. Neverthe-
less, with feature reduction or other related techniques, the
results of the unsupervised algorithm can be enhanced.

5. CONCLUSION
The paper provides a survey about the different types of
anomaly detection existent for computer networks. At first,
the different machine learning techniques were explained and
evaluated in the terms of their usability in anomaly detec-
tion for computer networks. Then we examined graph based
anomaly detection in terms of how it works and what bene-
fits it has for anomaly detection in computer networks, espe-
cially in comparison to machine learning based approaches.
To round this off, we conclude the survey with an overview
of machine learning methods used in different papers with
their respective outcomes. In the end, a example data set
was taken and two algorithms were evaluated, a supervised
machine learning algorithm and a unsupervised one. Fur-
thermore the supervised algorithm was tested with different
parameters. Nearly all settings outperformed the unsuper-
vised algorithm. Generally, there are a lot of different al-
gorithms that can be used for anomaly detection, but there

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

48 doi: 10.2313/NET-2018-11-1_06



Table 2: Result of the supervised learning implementation
Solver Hidden Layer Size Activation Function Correct Predictions False Negatives False Positives
adam (30) relu 92.33% 95.22% 4.78%
adam (15) relu 85.09% 97.78% 2.22%
adam (45) relu 91.96% 95.88% 4.12%
adam (30,10) relu 92.11% 98.85% 1.15%
adam (30,20,5) relu 91.88% 98.82% 1.18%
adam (80,55,30,10,5) relu 92.00% 98.88% 1.12%
adam (30) identity 81.81% 97.82% 2.18%
adam (30,20,5) identity 89.48% 96.71% 3.29%
adam (30) logistic 91.89% 96.43% 3.57%
adam (30,20,5) logistic 91.94% 97.99% 2.01%
adam (30) tanh 91.91% 96.40% 3.60%
adam (30,20,5) tanh 91.73% 96.52% 3.48%
sgd (30) tanh 90.91% 96.00% 4.00%
sgd (30,20,5) tanh 81.39% 98.40% 1.60%

is no best algorithm for all cases. When selecting one, we
always have to think about the structure of the data and
what our goal is. Newer papers also try to combine different
algorithms to use their best properties and combine them
with for example fuzzy logic. For future work, one could
look into how the different algorithms could be combined
the best and which difficulties occur.

6. REFERENCES
[1] The mirai botnet: all about the latest malware ddos

attack type. https:
//www.corero.com/resources/ddos-attack-types/

mirai-botnet-ddos-attack.html. Accessed:
31.03.2018.

[2] Wannacry ransomware attack summary.
https://www.dataprotectionreport.com/2017/05/

wannacry-ransomware-attack-summary/. Accessed:
31.03.2018.

[3] S. Agrawal and J. Agrawal. Survey on anomaly
detection using data mining techniques. Procedia
Computer Science, 60:708 – 713, 2015.
Knowledge-Based and Intelligent Information
Engineering Systems 19th Annual Conference,
KES-2015, Singapore, September 2015 Proceedings.

[4] L. Akoglu, H. Tong, and D. Koutra. Graph based
anomaly detection and description: a survey. Data
Mining and Knowledge Discovery, 29(3):626–688,
2015.

[5] A. L. Buczak and E. Guven. A survey of data mining
and machine learning methods for cyber security
intrusion detection. IEEE Communications Surveys
Tutorials, 18(2):1153–1176, Secondquarter 2016.

[6] R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L.
Garfinkel, I. Graf, K. R. Kendall, S. E. Webster,
D. Wyschogrod, and M. A. Zissman. Evaluating
intrusion detection systems without attacking your
friends: The 1998 darpa intrusion detection
evaluation. Technical report, MASSACHUSETTS
INST OF TECH LEXINGTON LINCOLN LAB, 1999.

[7] J. E. Dickerson and J. A. Dickerson. Fuzzy network
profiling for intrusion detection. In Fuzzy Information
Processing Society, 2000. NAFIPS. 19th International
Conference of the North American, pages 301–306.

IEEE, 2000.

[8] P. Garcia-Teodoro, J. Diaz-Verdejo,
G. Maciá-Fernández, and E. Vázquez. Anomaly-based
network intrusion detection: Techniques, systems and
challenges. computers & security, 28(1-2):18–28, 2009.

[9] K. Hornik, M. Stinchcombe, and H. White. Multilayer
feedforward networks are universal approximators.
Neural Networks, 2(5):359 – 366, 1989.

[10] A. Karami and M. Guerrero-Zapata. A fuzzy anomaly
detection system based on hybrid pso-kmeans
algorithm in content-centric networks.
Neurocomputing, 149:1253 – 1269, 2015.

[11] M. S. A. Khan. Rule based network intrusion
detection using genetic algorithm. International
Journal of Computer Applications, 18(8):26–29, 2011.

[12] T. Kohonen. The self-organizing map. Proceedings of
the IEEE, 78(9):1464–1480, Sep 1990.

[13] K. Leung and C. Leckie. Unsupervised anomaly
detection in network intrusion detection using clusters.
In Proceedings of the Twenty-eighth Australasian
conference on Computer Science-Volume 38, pages
333–342. Australian Computer Society, Inc., 2005.

[14] R. P. Lippmann and R. K. Cunningham. Improving
intrusion detection performance using keyword
selection and neural networks. Computer networks,
34(4):597–603, 2000.

[15] S. Mukkamala, G. Janoski, and A. Sung. Intrusion
detection using neural networks and support vector
machines. In Neural Networks, 2002. IJCNN’02.
Proceedings of the 2002 International Joint Conference
on, volume 2, pages 1702–1707. IEEE, 2002.

[16] H. H. Pajouh, G. Dastghaibyfard, and S. Hashemi.
Two-tier network anomaly detection model: a machine
learning approach. Journal of Intelligent Information
Systems, 48(1):61–74, 2017.

[17] C. Palagiri. Network-based intrusion detection using
neural networks. epartment of Computer Science
Rensselaer Polytechnic Institute Troy, New York,
pages 12180–3590, 2002.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

49 doi: 10.2313/NET-2018-11-1_06



E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[19] M. Ramadas, S. Ostermann, and B. Tjaden. Detecting
anomalous network traffic with self-organizing maps.
In International Workshop on Recent Advances in
Intrusion Detection, pages 36–54. Springer, 2003.

[20] scikit-learn developers. A comparison of the clustering
algorithms in scikit-learn, available http://scikit-
learn.org/stable/modules/clustering.htmlclustering
(accessed on 31.03.2018).

[21] T. Shon and J. Moon. A hybrid machine learning
approach to network anomaly detection. Information
Sciences, 177(18):3799–3821, 2007.

[22] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin.
Intrusion detection by machine learning: A review.
Expert Systems with Applications, 36(10):11994–12000,
2009.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

50 doi: 10.2313/NET-2018-11-1_06


