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ABSTRACT
Fog Computing or edge computing is a new approach to
perform services and applications at the edge of the net-
work, which keeps latency and bandwidth usage to a mini-
mum. Therefore fog computing is a way to enable fast re-
sponding applications in smart buildings. This paper evalu-
ates the suitability of multiple frameworks for fog comput-
ing and from different usage areas, for use in building au-
tomation tasks. Especially compatibility with low-powered
hardware, strategies for failures of components or infrastruc-
ture as well as soft-realtime capability are necessities to such
frameworks. We use these three formulated requirements, to
evaluate the basic architecture of six frameworks, which are
from different areas of research and usage. Throughout the
paper we find that there is currently no suitable candidate
for deployment in smart environments. But the results of the
evaluation can be used to develop a suitable framework.
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1. INTRODUCTION
With the introduction of the Internet of Things (IoT) we
find ourselves confronted with not only new possibilities, but
also new problems to overcome. As the number of sensors
in our environment rises and therefore the amount of data
that needs to be transmitted, analyzed and stored, the cur-
rently used paradigm of cloud computing is unsuited for the
development of the full potential of the IoT [13]. Especially
if we do not only want to gain information by analyzing the
data, but want to act on it in a timely manner, the round-
trip-time is too high for many scenarios like health care or
smart home/city. For example when sensor data represents
user-interactions, which need to be analyzed to influence ac-
tuators near the vicinity of the user, we have very strict
delay requirements [5]. Additionally conglomerating all sen-
sor data to centralized data centers is infeasible, since the
network bandwidth would saturate and not be scalable. Fi-
nally moving processing of gathered data to the cloud raises
security concerns, since there is no direct influence on how
privacy is handled by the provider of the cloud [3].
To circumvent these restrictions, the new approach of fog
computing was introduced [13]. Thus fog computing enables
low bandwidth and latency by using devices (fog nodes) in
the vicinity of the user to store and analyze data. These
fog nodes can be any type of device in the network, includ-

ing devices that already have their own purposes, such as
routers. To enable a multitude of services on devices with
very different hardware specifications, fog computing relies
very heavily on virtualization.

Figure 1: Distributed data processing in a fog-
computing environment. Collected sensor data is
dynamically procesed by nearby fog devices, includ-
ing gateways and private clouds. Taken from [3].

By using fog nodes, which physically reside near the smart
objects as can be seen in Figure 1, it is possible to keep la-
tency to a minimum and perform most analysis of the sensor
data without reaching out to the public cloud and thereby
saving bandwidth and keeping data secure.
The previous advantages of fog computing are very impor-
tant for the IoT, but most applications still require global-
ization as provided by the cloud. Therefore fog computing
is no replacement but an expansion to the cloud, where ser-
vices can be transparently moved from a centralized cloud
to the very edge of the network. With the localization of
services some difficulties are introduced, like the need to
move the services on a fog node along with the user while
he moves and the need for interoperability between differ-
ent nodes, which has to be solved by frameworks using fog
computing [1].
In the context of smart buildings most applications and ser-
vices are latency-sensitive, for example light switches and
blinds. Fog computing can be used to act upon user interac-
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tions or events within a timely manner. Since fog computing
uses a distributed approach, even with increasing amounts
of sensors and therefore generated data, existing infrastruc-
ture can be used to enable smart buildings, since bandwidth
requirements remain stable.

In this paper we evaluate a variety of frameworks, which
rely on fog computing, for their suitability for use in build-
ing automation tasks. Reliability is an important require-
ment for this task, since especially in cases of emergency
the system needs to function to a certain degree. The eas-
iest way to accomplish this is by building the framework
with no hard dependencies on connectivity or distant re-
sources, like the cloud. To keep deployment in buildings
inexpensive and make use of ”leftover” computation power
of smart objects, such frameworks should have low hard-
ware requirements. Finally many tasks, like switching lights
on and off or streaming content, have soft-realtime charac-
ter, which frameworks need to support. Thus strategies to
instruct powerful enough devices to handle such tasks, or
handle them in between multiple devices in cooperation are
required. The evaluation will cover these three requirements,
namely reliability, hardware requirements and soft-realtime
capability.

In Section 2 we give some background on fog computing and
describe the most common components of frameworks incor-
porating this approach. The frameworks to be evaluated, are
introduced in Section 3. In Section 4 we formulate multiple
evaluation criteria based on the basic requirements to frame-
works using fog computation within smart buildings, and
evaluate the previously introduced frameworks with them.
Finally a conclusion is drawn, which approaches are espe-
cially noteworthy and should be included in frameworks for
smart buildings.

2. FOG COMPUTING
In scientific literature the terms of fog computing and edge
computing are interchanged quite often, ignoring the differ-
ences in meaning of the two terms. While edge computing
targets the locality where services are instantiated, the edge
of the network, fog computing implies the distribution of
computing power, communication and data storage to de-
vices close to the users requiring them [11]. Therefore the
terms of edge computing and fog computing have a certain
overlap, but while hardware for edge computing is bound
to a specified service, fog computing is about creating the
possibility to run any service at the edge of the network.
Thus hardware for fog computing has to provide a common
interface that is suitable for many different tasks, which is
accomplished by virtualization of the hardware. This has
the added advantage, that there are no restrictions to the
devices, which are called fog nodes, that are used in fog com-
puting. That means, that fog computing can make use of
any device from a smart light-bulb or a router with ”left-
over” computing power, to whole clusters of computers or
even data centers, as long as a device can run the agent
software needed for virtualization and communication be-
tween the fog nodes.
Not specified in the definition of fog computing but used
by many frameworks that embody fog computing, is the so-
called fog server. While fog nodes are the workers of such a
framework, the fog server is the boss and janitor. It takes

care of organizational tasks, like instantiation, deployment,
migration and termination of tasks, which are then executed
on fog nodes, chosen by the fog server. Additionally the fog
server handles maintenance tasks, which include logging of
events and redistributing work, when nodes or parts of the
infrastructure fail.

3. FRAMEWORKS
In the recent years multiple groups of scientists incorporated
fog computing into their projects, thus creating a huge vari-
ety of frameworks with very diverse approaches to the topic.
Most frameworks are tailored to the requirements of their
projects and are therefore not necessarily suited to other
uses. Still there are not yet enough research projects into
fog computing for smart buildings, to enable an evaluation
solely using such frameworks. Therefore the frameworks,
to be introduced, are not necessarily developed for the pur-
pose of enabling smart buildings. They were selected for
their unique approaches to one or more of the requirements
listed in Section 1, not their compatibility with the actual
automation of building tasks.

3.1 EHOPES
EHOPES is designed for the topic of smart living, which is
separated into multiple subtopics for modularization. The
subtopics, further on called applications, are Smart Energy,
Smart Healthcare, Smart Office, Smart Protection, Smart
Entertainment and Smart Surroundings. Each application
brings up its own sub-network of smart objects, which pro-
vide the necessary data and actions to perform its work.
EHOPES has the goal of minimizing transmission latency
that smart living frameworks utilizing cloud computing show
and is developed by Li et al.. The framework utilizes a star
topology for its framework, where a fog server is the cen-
tral node and fog nodes are the outer nodes. Additionally
fog nodes can be connected to other fog nodes, to establish
direct communication between them, but each fog node has
to be connected to the fog server with a one-hop distance.
Unfortunately Li et al. do not mention any reason for this
restriction [6].

Fog Node A fog node (FN) in EHOPES is adjacent to
smart objects and provides processing power as well
as storage and communication abilities. As long as
the agent software of EHOPES, can run on a device,
it can be used as a FN. Additionally they have various
interfaces to connect to smart objects, like Wi-Fi or
Bluetooth. Their main purpose is to filter repetitive
data from smart objects and make decisions, based on
which they can take actions. FNs support collabora-
tion between themselves and other FN and can have
different capabilities depending on the requirements in
a network. Last but not least, FNs are self-configuring
and provide routing, security and QoS.

Fog Server The Fog Server (FS) of EHOPES is the bridge
between FNs and the cloud. It hosts , not further de-
scribed applications, and stores data acquired by the
FNs. The applications and data are used to support
FNs, additional to leasing processing power on request.
With an on-demand connection to the cloud, the FS
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can work jointly and independent with/from it. Be-
tween the Cloud and the FS exists a high speed inter-
net connection, to provide fast access to data stored
in the cloud. EHOPES supports multiple FSs within
a single fog network, and one physical device can take
the roles of FN and FS simultaneously.
The tasks of a FS include advanced routing and switch-
ing between FNs, storing of data and applications,
configuration of FNs, QoS, security and remote ac-
cess for management by a maintainer. The remote ac-
cess includes application deployment, data offloading,
network configuration, optimization, billing and other
services. How this remote access is designed, is not
described by Li et al.

3.2 FRODO
Developed by Seitz et al., FRODO [10] is a fog computing ex-
tension to MIBO [9]. MIBO is a framework for multimodal
intuitive building controls intended for smart buildings, that
utilizes the cloud approach for a centralized decision-making
and action-taking core. FRODO moves part of the tasks of
the core to the edge of the network, by providing all the
functionalities of the FS at each fog node (FN). Thus the
FS does only handle decision-making and action-taking on
the inter-FN level, while a FN can handle everything on
intra-FN level.

Figure 2: Architecture of FRODO, with FNs dis-
tributed on a per-room basis, taken from [10]

FRODO makes decisions based on many rules and defini-
tions, which are used to infer the actions to take. The rules
and definitions are stored in such a way, that both FS and
FN can access those that are required by them, while ignor-
ing all others. This means that a FN is a tailored clone of
the FS with partial knowledge of all rules and definitions.
Rules in MIBO and FRODO are created by privileged users,
for example by requesting that ”All blinds are closed after
6 pm”. Definitions can be created by users, for example

by stating: ”Open the blinds”. If the previous definition is
stated after 6 pm, it will contradict the previously specified
rule, thus creating a conflict.
MIBO is able to negotiate such conflicts and infer the ac-
tion that should be taken. FRODO moves this process to the
FNs, which has the additional advantage of introducing the
context of the location. Thereby decisions can also be easily
tailored to specific peculiarities of the location of deploy-
ment, which is a huge improvement compared to MIBO.
Additionally FRODO is robust to network outages, since
each FN can work independently from the FS. Seitz et al.
propose the distribution of FNs based on rooms, as shown
in Figure 2, to make rules and decisions as independent and
straight forward as possible. The fog node in a room then
handles all smart devices within this room. The resulting
network between the FS and the FNs resembles a star topol-
ogy with the FS in the center.

3.3 Gabriel
Gabriel [5] is developed by Ha et al., as an assistive system
for wearable devices like Google Glass. It uses fog comput-
ing to provide crisp low-latency interaction, by offloading
resource intensive processing tasks to nearby Cloudlets (fog
nodes). To support mobility of the user, Gabriel supports
hand-offs between Cloudlets and has multiple offload strate-
gies implemented. Those strategies include the use of a) a
nearby Cloudlet b) the distant Cloud and c) on-body de-
vices like laptops or smartphones. If the Wearable device
loses connection to a nearby Cloudlet it queries a Cloud-
hosted list of Cloudlets for a new one nearby, that can be
used to offload processing tasks. If no one is found, it of-
floads tasks to the Cloud and if that is also impossible, for
example when no connection to the internet can be estab-
lished, to the on-body device. Gabriel is additionally built
to take the different latencies of the offload strategies into
account and adjusts the user interface accordingly.

Figure 3: Back-end Processing on Cloudlet (fog
node) of Gabriel, taken from [5]

As seen in Figure 3 Gabriel uses independent virtual ma-
chines (VM), with specialized cognitive engines running on
them, in its Cloudlets, to provide different aspects of image
processing. The cognitive engines are thinly wrapped by
Gabriel to access the required sensor streams and to pub-
lish their results in a defined way. Additional to the virtual
machines holding the cognitive engines (Cognitive VMs), a
Cloudlet consists of two other VMs.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

37 doi: 10.2313/NET-2018-11-1_05



The Control VM takes care of the the transportation of all
required sensor data to the Cognitive VMs via an UPnP
server and a publish-subscribe service. The incoming sen-
sor data is additionally preprocessed by the Control VM, to
reduce redundant tasks within the Cognitive VMs, like de-
coding.
The outputs of the Cognitive VMs are handled by the User
Guidance VM, which integrates all of them and performs
higher level cognitive processing to generate the actual user
assistance that is sent to the Google Glass device, which can
vary from visual aid to speech guidance.
Gabriel is a highly power saving approach, that goes as far
as to switch of sensors when they are not needed and keeps
processing on the wearable device very small, by offloading
as much work as possible.

3.4 MACaaS
Monitoring, Analyzing and Controlling as a Serivce, in short
MACaaS, developed by Byeon et al., is a platform utilizing
fog computing to provide the aforementioned services for IoT
devices [2]. In contrast to all other introduced frameworks,
MACaaS is data-driven and utilizes a learning engine to infer
new rules. Since MACaas does not include communication
between fog nodes, it has no need for a fog server.

The IoT devices that can be connected to a fog node of
MACaaS are separated into two groups, depending on their
capabilities. If an IoT device is intelligent enough, to directly
connect and communicate with MACaaS, it is classified as
High-end IoT Device. If it has not the capabilities to do so
(e.g. Low-end IoT Device), it will be first connected to an
Edge Gateway, which is connected with the fog node instead
of the device itself. The Edge Gateway can be understood as
a wrapper for the IoT device, which handles communication
with the framework.

A fog node of MACaaS provides all services of the platform
namely Monitoring (MaaS), Analyzing (AaaS) and Control-
ling (CaaS). MaaS handles authentication, saving of gener-
ated data, classification of said data and monitoring of IoT
device nodes and their status. AaaS tracks changes in users,
IoT devices and environmental data and extracts important
features of the tracked data through a learning engine, to
generate new knowledge. CaaS updates event triggers and
modules with the analyzed data and controls the IoT device
nodes. For data backup and restoration a fog node can have
more than one fog storage.

3.5 NetFATE
A solution tailored to providers of telecommunication ser-
vices (TELCO) is NetFATE, which is developed by Lom-
bardo et al. [7]. NetFATE incorporates the paradigms of
Software Defined Networks (SDN) and Network Functions
Virtualization (NFV), additional to fog computing to bring
services to the edge of a TELCO network. Noteworthy
is that NetFATE only relies on infrastructure components
that are already existent in the current infrastructure of a
TELCO network. Thus it is easy to deploy, as it does not
need any changes to the network.
The aim of NetFATE is to provide the three service deliv-
ery models a) Infrastructure as a Service, b) Platform as a
Service and c) Network as a Service.

NetFATE separates all its hardware components into three
types, that take care of different aspects of the framework.
The three logical components required for NetFATE are:

CPE/PE Node The CPE nodes and PE nodes are the
fog nodes of NetFATE, since they are equipped with a
virtualization framework and provide resources for the
execution of VMs with network functions (NF). Phys-
ically there are two different types of nodes, the Con-
sumer Premises Equipment (CPE) node, that resides
at the location of the consumer and acts as gateway
to the TELCO network. Similar to the current setups,
each customer has one such CPE node, which is used
exclusively by him.
The second type of fog nodes is the Premises Equip-
ment (PE) node, which resides within the TELCO core
network and has the task of aggregating many CPE
nodes and is therefore used by many customers.
The fog nodes of NetFATE are general purpose com-
puters with CentOS as a base operating system. The
framework uses para-virtualization with NFs encapsu-
lated within light network oriented OSs which can be
executed on CPE/PE nodes. The nodes use the Xen
Hypervisor for para-virtualization and OpenvSwitch to
handle the internal network traffic between the VMs
and the base OS. Deployed VMs can be migrated to
other nodes on request, to support mobility of cus-
tomers.

Data Centers While data centers are listed as required
components, neither in the paper of Lombardo et al.
nor in its cited sources exists a definite description for
what they are used for.
The according ETSI Group Specification [4] lists them
as environment for application virtualization and sup-
port for other nodes. Therefore it can be assumed,
that the data centers support CPE/PE nodes on re-
quest and provide additional resources for processing
and storage of data, as well as acting as fog nodes
themselves within NetFATE. While this somehow de-
scribes their purpose, it does not describe why they
are listed as required components, as they do no work
that could not be done by other components.

Orchestrator The orchestrator is fog server of the frame-
work. It handles the tasks, mentioned in Section 2 and
controls the SDN by realizing routes and configuring
the network interfaces of the nodes on the route. The
orchestrator is a dedicated server within the telco core
network and communicates with the VM hypervisor of
the fog nodes via the IP network of the TELCO.
The orchestrator can be separated in three separate
entities, a) the SDN Controller realized with POX,
b) the NFV Coordinator, handling all tasks concerning
VMs and c) the Orchestration Engine, which gathers
information on the network and decides how the re-
sources of the devices should be managed.
The information gathered by the Orchestration Engine
includes among other things the topology of the net-
work, the number of connected clients and the required
network services. The policies used for the manage-
ment of the resources can range from energy consump-
tion to the number of hops on a route in the SDN.
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can handle loss of
Framework supports application migration cloud connection device failure fog node failure fog server failure

EHOPES ! ! % partial !

FRODO % ! % % partial

Gabriel ! ! not applicable ! not applicable

MACaaS % not applicable ! % not applicable

NetFATE ! % not applicable partial %

ParaDrop ! partial % % %

Table 1: Results of the evaluation of reliability

Since NetFATE is intended for big TELCO networks, it is
understandably oversized for smart buildings. While this is
the case, the infrastructure does suite buildings very well.
When looking at the framework as a hierarchy, the orches-
trator with the data center stands at the top, followed by
the PE nodes which finally aggregate the CPE nodes.
Comparable to the hierarchy of NetFATE, buildings can also
be separated in the same way. As CPE nodes are the out-
ermost nodes of the network in NetFATE, it is intelligent
to distribute them room-wise in a building, as services will
most likely be used on a per-room basis as well. The next
bigger node in the hierarchy of a building would be the floor,
which is reflected by PE nodes in NetFATE. Like each floor
contains multiple rooms, each PE node aggregates multiple
CPE nodes. Additionally when users move from room to
room, a service has to be migrated to the PE node only.
And only when a user changes floors it has to be migrated
to the datacenter and back to the PE node of the new floor.
Finally the orchestrator and data center of NetFATE can be
placed anywhere in the building, while a uniform distance to
all PE nodes is best for latency. As one can see, NetFATE
reflects the hierarchy of buildings and thus suits the topic
of smart buildings even if it is intended for distinctly bigger
use-cases.

3.6 ParaDrop
ParaDrop [12] makes use of the gateway that exists in every
home with internet access. Developed by Willis et al. from
the University of Wisconsin, ParaDrop uses the gateways as
fog nodes and positions the orchestrator in the cloud. The
orchestrator of ParaDrop manages deployment and migra-
tion of VMs on fog nodes and provides APIs for companies
to enable communication between their applications on the
fog nodes and their services in the cloud. ParaDrop uses
the widely acknowledged RESTful paradigm and a JSON-
backend, for the communication between the single compo-
nents, thereby simplifying development of chutes.
The virtualization in ParaDrop is realized with Linux Con-
tainers (LXC), which provides fully, virtually isolated com-
pute containers, called chutes. In comparison to OS-level-
virtualization (e.g. Lguest) LXC has the advantage of bet-
ter performance and less overhead in network operations as
well as fairer distribution of resources. As Willis et al. have
described in their paper, LXC should be favored for I/O in-
tensive applications. While the advantages of LXC are very
interesting for devices with limited resources, the disadvan-
tage is that applications need to be runnable on the base OS,
since deployment of fully private OSs is not supported. In
essence this means, that the application must be supported
by the kernel used by the base OS of the fog node. The de-

velopers still claim, that porting of applications to ParaDrop
containers is very easy and goes often without the need to
rewrite code.
ParaDrop uses OpenFlow for effective networking between
the gateway and the chutes, to distribute network resources
fairly. Additionally the framework enforces very strict re-
source policies on CPU, RAM and the network, which can
be manually edited via a management interface provided by
the orchestrator. Unfortunately Willis et al. present no de-
tails on restrictions to the usage of storage space, which is
most times just as limited.
Like Gabriel and NetFATE, ParaDrop supports migration
of containers from one fog node to another, thus remov-
ing restrictions to the mobility of users. Even when being
migrated, containers retain the user state and can resume
processing of data seamlessly.

4. EVALUATION OF FRAMEWORKS
In this section we evaluate the Frameworks for their suit-
ability for smart buildings. Since the previously described
frameworks have mostly other purposes than enabling smart
environments, we restrict this evaluation to the basic under-
lying architecture of them. To enable the evaluation of the
frameworks, we use three major criteria, which are described
below. The findings for each criteria are presented in a con-
densed form in Tables 1, 2 and 3.

4.1 Reliability
Power outage, network faults, sensor faults and loss of in-
ternet connection are only some of the problems that need
to be gracefully handled by frameworks for smart buildings.
In the best case, the maintainer is notified instantly and the
problem is circumnavigated internally without the normal
user being any the wiser, until it is solved, by switching re-
sources or using other algorithms. But in some cases it is
impossible to remain in full operational mode, when com-
ponents fail. Like loss of internet connection, when a user
demands a resource that is not locally available. Here frame-
works should notify the user but remain operative as far as
possible. Lastly smart buildings have to take the safety of
inhabitants into account. For example switching on lights in
case of a fire, so people can leave safely. All this needs intel-
ligent fallback strategies that imbue all aspects of a frame-
work.

Of the introduced frameworks, Gabriel provides the best
strategies for loss of connection to certain components. It
gracefully falls back to the next best offload device reliantly,
and returns to better options when they are available again.
Additionally it can handle faults of Cognitive VMs since it
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requirements to
Framework hardware independence virtualization technique fog node fog server infrastructure

EHOPES ! unknown claimed low unknown high
FRODO unknown not applicable unknown unknown unknown

Gabriel ! XEN medium not applicable low
MACaaS not applicable not applicable medium not applicable not applicable

NetFATE ! XEN medium high low

ParaDrop ! LXC low not applicable none

Table 2: Results of the evaluation of hardware requirements

gathers all data within the User Guidance VM which in-
tegrates them to the user interface [5]. FRODO has an-
other interesting approach, in deploying nodes that work
independently where possible and only rely on other re-
sources when required. Thus providing most functional-
ity even when there are sever problems like network faults
in critical connections. The main problem of FRODO is
the single fog server that has no backup available [10]. If
this server fails, no connection between FENs is possible.
EHOPES handles this problem by allowing more than one
fog server which can work completely independent from the
Cloud if necessary. Unfortunately the paper does not go
into detail, how the migration from one server to the other
works [6]. MACaaS is a special case when looking at the
fog server. While fog nodes contain a subcomponent that is
called fog server, one must not confuse this with the similar
named physical component in other frameworks. MACaaS
is a framework that relies on one single fog node, that is
directly connected to IoT devices, with no communication
between fog nodes. Thus it has the fog node as single point of
failure. MACaaS can handle failing IoT devices very grace-
fully, with logging, notifying the maintainer and vendor and
even updating drivers transparently [2]. Which stands in
contrast to all other frameworks, which have absolutely no
strategy to handle misbehaving IoT devices.
While most of the frameworks can handle outage of the fog
server more or less gracefully, many frameworks have prob-
lems when fog nodes fail. The exceptions being Gabriel,
EHOPES which can at least redistribute applications to
other nodes and only loose the connection to the IoT de-
vices connected to the failing node [7] [6]. NetFATE can
redistribute work when a PE node fails, but failing CPE
nodes can not be compensated, since no other connection to
the customer exists.
The framework with the worst reliability is ParaDrop, since
the orchestrator is positioned in the cloud. Therefore it re-
quires internet connection for installing and migrating ap-
plications and maintanance of nodes by the network main-
tainer, and fails at doing these tasks when the node looses
internet connection. Fortunately ParaDrop can handle loss
of connection to the cloud when the previously mentioned
tasks are not required by the fog node [12].

4.2 Hardware Requirements
For the practical use of a framework in a smart building
not only the features it provides are of interest, but also the
requirements in hardware and infrastructure. For example
deploying expensive specialized hardware as fog nodes is not
viable for big buildings, since the cost would be immense.
Thus frameworks with low hardware requirements, that can

use cheap nodes like a Raspberry Pi and are platform inde-
pendent, will be favored against ones with high restrictions
to hardware. Additionally frameworks with low hardware
requirements make it possible to use ”leftover” computa-
tional power of smart devices, that are deployed in a building
and are not powerful enough to support demanding frame-
works. Finally the hardware should also be power efficient
to minimize maintenance cost.

With the exception of EHOPES and FRODO all frameworks
provide at least some data, with which it is possible to in-
fer their actual hardware requirements. ParaDrop requires
the least amount of resources, with the orchestrator being
maintained by the developers of ParaDrop itself. Thus it
does not count to the actual nodes required for deployment.
Additionally the fog node runs on consumer routers, com-
parable to ones currently distributed by TELCOs and is
available as VM that can be deployed to a virtualisation en-
vironment [8]. In the paper of Willis et al. they are able to
provide two additional applications to the standard router
and gateway functionality on a router with an AMD Geode
500MHz CPU and 256MB of RAM as the fog node. This is
possible because ParaDrop uses LXC for virtualization and
not Lguest or a comparable method, which is more resource
intensive [12].
While ParaDrop shines in terms of hardware requirements,
MACaaS is able to work with little more resources. Byeon et
al. provide no direct data on the hardware of the fog node
used in MACaaS, but the applications installed on it, be-
ing Nginx, OpenMediaVault and MySQL running on Linux,
point to very low requirements. To simulate the IoT device
nodes, Byeon et al. use smartphones in the mid-range price
segment and Raspberry Pi 2[2].
Gabriel uses for its Cloudlets clusters of four desktop ma-
chines with an IntelR© CoreTM i7-3770 and 32GB of RAM,
calling these machines modest [5]. While this amount of
computing power and RAM is partially required for the re-
source intensive computations the Cognitive VMs need to
handle, this is also owed to the use of para-virtualization
in contrast to application virtualization, since it has higher
overhead, as tested by Willis et al. in their paper [12].
Therefore it can be assumed, that fog nodes of Gabriel have
higher resource demands compared to ParaDrop.
Still Gabriel supports fallback strategies to less powerful de-
vices, like smart phones, and should therefore have scalable
hardware requirements. But the paper does not include if
the decrease in functionality, when migrating to a fog node
with less power, is only in terms of Cognitive VMs or the
overall system.
In contrast to the prior frameworks NetFATE has signifi-
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Framework soft-realtime capable chosen approach

EHOPES ! cooperation of fog nodes

FRODO ! reduction of latency by local decision-making

Gabriel ! choosing of most powerful fog node with lowest latency
MACaaS unknown

NetFATE ! choosing of capable node

ParaDrop ! use of low latency virtualization method

Table 3: Results of the evaluation of soft-realtime capability

cantly higher requirements. Intended for huge networks of
TELCOs, it is understandably completely oversized when
looking at smart buildings. Mainly the orchestration en-
gine on each fog node, building on the Xen Hypervisor for
para-virtualization of the NFs, requires at least a general-
purpose computer, which makes deployment in smart build-
ings costly and possibly not viable. It is up for debate, how
far NetFATE could be trimmed down to be in a competitive
position to ParaDrop or MACaaS.
While EHOPES has no data on the actual hardware require-
ments, the paper of Li et al. mentions independence from
hardware provided by Foglet and claims low requirements to
the fog edge nodes. The main disadvantage of EHOPES is
the restriction that fog server and fog nodes must be in one-
hop proximity. Whether this refers to the term“hop”used in
networking, thus disallowing switches or routers inbetween
nodes, or means that no FENs are stringed together is not
described in the paper [6]. If it is meant in the former we
postulate that deployment in larger buildings will be very
hard to realize with this restriction. Thus making EHOPES
only viable for smaller buildings like small homes. If Li et al.
mean stringing together FENs, it has no detrimental impact
on deployment in large buildings.

4.3 Soft-Realtime Capability
The inhabitants of a smart building will evaluate the frame-
work on reliability, evaluated in Section 4.1, and latency,
since those are the two aspects which influence the user in-
terface the most. In other terms the soft-realtime capability
of a framework is as important as reliability. For example
switching the light on and the framework actually switch-
ing the intelligent light bulbs on, should be two events with
at the most a few seconds in between. While this scenario
is not very resource intensive, there are other scenarios like
streaming digital content on-demand that are harder to ac-
complish in nearly realtime. Therefore it is important that
frameworks can handle tasks in soft-realtime, no matter how
resource intensive they are.

The most obvious approach to support soft-realtime, ist to
minimize latency wherever possible. FRODO does this by
making decisions, concerning IoT-devices connected to a sin-
gle fog node, internally in this node and thereby saving the
hop to the fog server [10]. Willis et al. decided against
OS-level-virtualization and for containerization to minimize
latency and overhead and distribute resources more fairly in
fog nodes of ParaDrop [12]. Gabriel implements the elabo-
rate fallback strategies, additional to the restriction of com-
munication between Cloudlet and cloud to non-time-critical
parts of the code [5]. Finally Li et al. do also claim that
EHOPES has very little overhead, but do not go into further

detail [6].
While all those approaches are essential to enable realtime
capability, they assume that one fog node will be able to han-
dle the task on its own. This may be true for most tasks, but
sometimes the physical capabilities of a fog node are inade-
quate for a certain task. Only NetFATE and EHOPES have
implemented additional measures, to support these cases.
EHOPES enables fog edge nodes to collaborate via Foglet
and share resources, thereby working jointly to handle the
workload. NetFATE does not allow such cooperation, but
the orchestrator selects a node that is capable of handling
the task on its own [7]. While this still assumes that there
is a node within the network that can handle the task, it
does not require every single fog node to provide the re-
sources needed to handle every possible task. Thus allowing
lightweight CPE/PE nodes and a heavy-duty node in the
form of a data center. Of course this comes with additional
latency, since the data center might not be in the vicinity of
the user.

5. CONCLUSION
Fog computing plays a central part in enabling IoT. Espe-
cially for latency sensitive applications, like smart buildings,
it can be of great advantage. None of the introduced frame-
works include all necessary parts to be a perfect fit for smart
buildings. Still each framework has its unique approach, pro-
viding different interesting advantages.
EHOPES brings the best reliability concerning fails of major
components, with the possibility to duplicate the fog server.
Additionally it handles resource intensive tasks gracefully by
collaboration between multiple FENs. This approach is in
some way mirrored by FRODO, where fog nodes are able to
make decisions independently when they only concern smart
devices attached to themselves, which ensures valuable func-
tionality in emergency situations. MACaaS is the framework
of choice, if many devices should be connected that are not
able to communicate with the IoT on their own. But with
the missing cooperation between multiple fog nodes it is not
viable for large buildings. Finally ParaDrop shows an effi-
cient framework for small lightweight nodes, that is easily
distributed in buildings, but does not have the necessary re-
liability for smart buildings.
As described in Section 3.5, NetFATE is in terms of infras-
tructure a perfect fit for large smart buildings. Therefore it
is a great start to create a framework for such buildings. To
be really suitable for this scenario, it needs down-scaling of
especially the CPE nodes, which can be done by utilizing
the approach of ParaDrop for example. To circumvent the
single point of failure the orchestrator presents, EHOPES
and FRODO show great potential. When inhabitants of the
building are on the move, Gabriel presents a nice strategy,
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which nodes should be used as the current offload device.
And finally MACaaS can be incorporated, to support even
devices that existed prior to deploying the framework in the
building.
Thus a suitable framework for smart buildings is a conglom-
eration of all introduced frameworks.

6. REFERENCES
[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog

computing and its role in the internet of things. In
Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC ’12, pages 13–16,
New York, NY, USA, 2012. ACM.

[2] G. Byeon, M. Shon, H. Lee, and J. Hong. Macaas
platform for fog computing. In Proceedings of the
International Conference on Research in Adaptive and
Convergent Systems, RACS ’17, pages 287–292, New
York, NY, USA, 2017. ACM.

[3] A. V. Dastjerdi and R. Buyya. Fog computing:
Helping the internet of things realize its potential.
Computer, 49(8):112–116, Aug 2016.

[4] ETSI GS NFV 002. Standard V1.1.1, ETSI, 650 Route
des Lucioles, F-06921 Sopia Antipolis Cedex, FR, 10
2013.

[5] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive
assistance. In Proceedings of the 12th Annual
International Conference on Mobile Systems,
Applications, and Services, MobiSys ’14, pages 68–81,
New York, NY, USA, 2014. ACM.

[6] J. Li, J. Jin, D. Yuan, M. Palaniswami, and
K. Moessner. Ehopes: Data-centered fog platform for
smart living. In Proceedings of the 2015 International
Telecommunication Networks and Applications
Conference (ITNAC), ITNAC ’15, pages 308–313,
Washington, DC, USA, 2015. IEEE Computer Society.

[7] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci,
C. Rametta, and V. Riccobene. An open framework to
enable netfate (network functions at the edge). In
Proceedings of the 2015 1st IEEE Conference on
Network Softwarization (NetSoft), pages 1–6, April
2015.

[8] ParaDrop. Paradrop v0.10.3 documentation, 2017.
Retrieved March 31, 2018 from
http://paradrop.readthedocs.io/en/latest/device/.

[9] S. M. Peters. MIBO - A Framework for the Integration
of Multimodal Intuitive Controls in Smart Buildings.
PhD thesis, Technische Universität München, 2016.

[10] A. Seitz, J. O. Johanssen, B. Bruegge, V. Loftness,
V. Hartkopf, and M. Sturm. A fog architecture for
decentralized decision making in smart buildings. In
Proceedings of the 2Nd International Workshop on
Science of Smart City Operations and Platforms
Engineering, SCOPE ’17, pages 34–39, New York, NY,
USA, 2017. ACM.
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