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ABSTRACT

Cyclic redundancy checks within Ethernet do not provide
data integrity, which can be solved by using message au-
thentication codes (MACs) within Ethernet frames. This
paper gives theoretical background on hash functions and
hash-based MACs, different schemes are compared for the
usage in Ethernet frames by multiple attributes such as
performance, output lengths and security. The functions
Poly1305, Skein and BLAKE2 are tested for throughput
against implementations of a SHA-2 HMAC and SipHash
and the results are discussed. Numerical measurements and
results show that Poly1305 is a suitable candidate for the
usage as a per-packet MAC.
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1. INTRODUCTION

In daily communication within LANs, MANs and WANSs,
computers use the Ethernet protocol and furthermore send
so called Ethernet frames over the network in order to com-
municate. These frames possess a checksum calculated with
a cyclic redundancy check (CRC), which is a code to detect
errors, in the form of flipped bits, within the frame [27].
This ensures that transmission errors are detected.

Using CRC has the advantage of needing only a small amount
of space (32 bits) and having a code that can be computed
in short time. The problem with CRC is that it does not
indicate data integrity of the frame if an attacker tries to
maliciously alter it. The attacker can easily recompute the
CRC since there is no secret protecting the checksum [31].

In order to combat the problem of data integrity message
authentication codes (MAC) are often used in cryptographic
protocols. MACs based on cryptographic hash functions
can use an additional secret key in order to combine the
integrity of the frame with a shared secret, thus blocking a
potential attacker from altering the frame and computing
a correct checksum. A popular usage of hash functions in
MACs are hash-based message authentication codes defined
in Section 2.3, although M ACs do not have to be constructed
with or from hash functions. Another application of hash
functions are TCP SYN cookies, which are used in order to
combat T'CP SYN flooding attacks [28], where an attacker
intentionally doesn’t complete the 3-way-handshake of TCP
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connection establishment in order to waste resources on the
server until a denial of service is reached. To combat this
attack scheme, a hash function is used to compute a hash
combining the IP address of the client, port numbers and a
timestamp. This hash is then used as the sequence number
for the packet. This way the client is identified by this hash,
thus the server can free old resources if a new SYN is sent by
the client. Another important usage for hash functions are
lookup tables, where hash functions are used to group val-
ues into segments that can be retrieved in faster time than
a simple lookup in a set of elements.

1.1 Outline

This paper is structured as follows: At first it will explain
the theory behind hash functions and hash-based MACs in
Section 2. Section 3 will give an overview over possible can-
didates for the usage as a MAC scheme within Ethernet and
Section 4 will explain the testing environment and discuss
test results. The conclusion to the test results and further
discussion is given in Section 5.

2. HASH FUNCTIONS

A hash function h is defined as a one-way function
h:¥" = %"

where ¥ = {0,1}, X" denotes all bitstrings of length n and
" denotes all bitstrings of arbitrary length [6, p. 177]. In
order for this function to be cryptographically secure the
function needs to have weak and strong collision resistance.
Weak collision resistance is defined as the absence of an effi-
cient algorithm that, for a given m, can find a m’ such that
h(m) = h(m'). Strong collision resistance is defined as the
absence of an efficient algorithm that can find any m and
m’ such that h(m) = h(m’). These properties are impor-
tant for the use of these hash functions in a MAC scheme
since we don’t want an attacker to be able to guess what
possible alterations can be made to the content of the mes-
sage or, even worse, find out what the shared secret key is.
Hash functions that possess these properties are known as
cryptographic hash functions.

2.1 Security of hash functions

When talking about cryptographic strength of a hash func-
tion, what is really talked about is the computational com-
plexity of finding a collision. Let h be a perfect hash func-
tion with perfect weak and strong collision resistance and
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an output length of n. In order to find a collision, an at-
tacker would need to randomly try out different m and m/’
and check if h(m) = h(m'). Since hash functions have a
fixed output length the number of possible hash values is
limited. Due to the birthday paradox [6, p. 175-180] the
complexity of randomly trying out different input values is
23 . Generally, a hash function is considered unsafe once
this complexity can be reduced drastically and thus mak-
ing it practically possible to brute-force collisions or even
compute them outright.

This example is known as a birthday attack. This attack
cannot be improved if the hash function has perfect strong
collision resistance. Another attack is the pre-image attack,
which describes finding an appropriate  to a given y such
that h(z) = y. Brute-forcing this = has the complexity of
2" where n is the output length of h. This attack cannot
be improved if the hash function has perfect weak or strong
collision resistance.

2.2 Construction

Constructing hash functions has many strategies. One of the
most popular schemes is the Merkle-Damgard construction
described by Merkle [24, p. 13-15]. This construction splits
the message into blocks and applies a function f(k,m) to
these blocks:

FOf(F(5,b1),b2) . ..bn)

where s denotes a fixed starting value and b,, denotes the nth
message block. There can be a finalization function applied
on the result of this computation. f could be an encryption
function that takes a key k and a message m. Popular hash
function families like MD, SHA-1 and SHA-2 all use this
kind of construction.

Of course there are many ways of constructing hash func-
tions such as using permutation networks, S-Boxes and other
parts of block ciphers in order to build a one-way function.
JH [15, p. 26], BLAKE [18] and Keccak [17] are examples
of that.

The aforementioned substitution boxes (S-Bozes) are used by
many hash functions in their construction. They describe a
mapping from bitstrings of fixed size to other bitstrings of
another fixed size. For example, the S-Boxes within the
block cipher DES can be represented as a table of values
used for substitution, where the choice of columns and rows
is done by looking at the outer and inner bits of the bitstring
that needs to be substituted [6, p. 76-77].

2.3 Hash-Based Message Authentication Code
A hash-based message authentication code (HMAC) is a MAC
combining hash functions with a secret key in order to achieve
integrity between parties that share said key. RFC 2104 [22]
defines the way to compute an HMAC like so: Let H de-
note a cryptographic hash function with output length of
n and internal block size of B, K a secret key, M SG the
message to compute an HMAC for, || the concatenation of
byte-strings, € the exclusive-or (XOR) operation, ipad and
opad byte-strings consisting of 0x36 and 0x5C repeated B
times respectively. Then the HMAC is defined as:

H((K @ opad) | H(K @ ipad) || MSQ))
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It is easy to see that it is absolutely possible to switch
out H with any cryptographic hash function and that a
cryptographic hash function is needed in order for the HMAC
to be secure and that the computational speed of the algo-
rithm is heavily influenced by the speed of the underlying
hash function.

3. SURVEY

This section describes and compares suitable candidates for
our use-case. Surveying the finalists of the hash function
competition by the US National Institute of Standards and
Technology (NIST) is a good choice to find hash functions
for an HMAC construction since these functions have been
preselected due to their performance and security. As well
as the finalists of this competition more MAC schemes will
be taken into consideration, that have recently found usage
in real world applications.

Since performance is an important measure to go by it is
advantageous for a candidate to be usable as a standalone
MAC scheme. Otherwise an HMAC has to be created out
of the function in question, which uses two distinct calls to
the function thus slowing down the resulting MAC scheme.

3.1 Use-case

The use case is a per packet message authentication code.
Obviously this MAC needs to be secure, but has to have
a high performance in order to not slow down traffic too
much, since bandwidths of 10 Gbit/s can be achieved and
should not be bottlenecked by the CPU and hash computa-
tion. Initial tests with an HMAC using SHA-256 and SHA-
512 showed bad performance, which can be seen in figure 3
and 4. This performance was increased by switching to an
32-bit variant of SipHash (explained in Section 3.3.7).

3.2 Unsafe functions

Several functions will not be taken into consideration since
attacks against these functions have been demonstrated or
are theoretically possible. These functions are

o MDA [36] e GOST [11]
e MD5 [32] o HAVAL-128 [34]
o SHAI1 [30] e RIPEMD |[35]

3.3 Candidates

In this section possible candidates for the described use-case
are described and important features are highlighted.

3.3.1 SHA-2

The SHA-2 family uses the aforementioned Merkle-Damgard
construction described in section 2.2. The performance was
retested in the hash function competition which resulted in
~11-14 cycles per byte [15, p. 43-44] for SHA-512, the vari-
ant of SHA-2 with an output length of 512 bits that gener-
ally performs the best. The SHA-2 family was developed by
the NSA and standardized by NIST [16]. The family is well
known, widely used and extensively studied, thus providing
a popular choice for usage as an HMAC.
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3.3.2 Keccak

Keccak uses a sponge function combined with permutations
and 24 rounds. It is expected to perform well when imple-
mented in hardware [15, p. 6], which holds true when testing
the algorithm in an FPGA implementation [12]. One attack
found against this function had the complexity of 25115 on
a version of Keccak with 8 rounds [15, p. 30]. It won the
competition and is now known as the SHA-3 standard [17].

3.3.3 BLAKE

BLAKE is based on the ChaCha stream cipher and uses 14
rounds for 224 and 256 bits and 16 rounds for 358 and 512
bits of output [15, p. 17]. It was analyzed heavily during
the competition. On performance it was noted that BLAKE
performs well in software [15, p. 6]. A collision attack on a
version of BLAKE-512 with 2.5 rounds has the complexity
of 222* [15, p. 22].

334 JH

JH uses permutations in combination with XOR, operations
and S-Boxes with 42 rounds for all output lenghts [15, p.
26]. JH is considered slower than BLAKE, Skein and Keccak
[15, p. 6]. An attack was found with a time complexity of
2304 [15, p. 28].

3.3.5 Grstl

Grgstl is a combination of a Merkle-Damgard construction
combined with parts of the block cipher AES [15, p. 23].
It uses 10 rounds for an output length of up to 256 bits
and 14 rounds for an output length of up to 512 bits. It is
considered slower than BLAKE, Skein and Keccak [15, p.
6] and has drastically different performance for 224/256 and
384/512 bits output length [13, p. 23]. The only collision
attack on Grgstl with an output length of 512 bits had 3
rounds and a complexity of 2'%% [15, p. 26].

3.3.6 Skein

Skein uses the block cipher Threefish which uses 72 rounds
of a substitution-permutation network. Similar to BLAKE,
Skein is expected to perform well when implemented in soft-
ware[15, p. 6]. A lot of the cryptographic analysis went into
the block cipher. Almost all of the found attacks on ver-
sions of Skein with reduced rounds are impractical. One of
the collision attacks on Skein with the output length of 512
bits and 14 rounds has the complexity of 22°**[15, p. 33].
Another important feature of Skein is a special MAC mode
called Skein-MAC[25, p. 7-8].

3.3.7 SipHash

While not being a hash function SipHash is a keyed pseudo
random function (PRF), thus not necessarily having colli-
sion resistance but still making it infeasible to compute the
hash value if the key is not known. This function was specif-
ically designed to be used as a MAC for short input values
and was inspired by BLAKE, Skein and JH [20]. Its perfor-
mance is a key feature, since it was designed to be resistant
against denial of service attacks in schemes such as TCP
SYN cookies where the hash function can take up so much
computational time that the server is unable to handle other
workload. A cryptographic analysis of SipHash concluded
that finding a collision has the probability of 272353 [9].
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3.3.8 Polyl305-AES

Poly1305-AES is another MAC scheme that is not a hash
function. The author claims high performance, with lin-
early growing cycles per bytes, and guaranteed security if
AES is secure [7]. Another important feature is the out-
put size of 128 bits, which is quite small. It has since been
standardized in RFC 7539 [26], has found usage by Google
and was incorporated into TLS1.3. Also important to note
is that AES can be replaced by any other cipher such as
ChaCha20. There has been research on the security of this
specific Poly1305 variant [14].

3.3.9 BLAKE2

The successor to BLAKE has been standardized in RFC
7693 [29]. The internals are comparable to BLAKE. The
authors claim better performance than MD5, SHA2 and
SHA3 [19]. It features special versions for 64- and 32-bit
platforms and has a special prefix-MAC mode. It’s security
has been extensively studied, since most of the theoretical
work done on BLAKE is also applicable for its successor [19,

p. 4].

3.4 Comparison

In this section the aforementioned hash functions and MAC
schemes are compared with the already tested algorithms
and their suitability for the use case is rated. Performance,
output length and security are the key factors that will be
compared.

Performance Stand-

(approx. IO Utpllllt bi alone

cycles/byte) ength (bits) MAC
Keccak 6.7-19 224-512 No
BLAKE 84 224-512 No
JH 15-20 224-512 No
Grostl 13-92 / 18-126  224-512 No
Skein 6.1 Any Yes
Poly1305 4-15 128 Yes
BLAKE2 3-12 8-2048 Yes
SHA-2 11-14 224-512 No
SipHash  4-10 64 Yes

Table 1: Summary of candidates

3.4.1 Performance

There have been a lot of performance tests done for the NIST
hash function competition finalists and their performances
have been compared to SHA-256 and SHA-512. In order to
have a comprehensive comparison, the functions were tested
in three different processors. JH and Grgstl generally per-
form worse than functions of the SHA-2 family and the other
finalists [15, p. 43-44]. The performance of Keccak depends
greatly on the output length. For sizes of 224 or 256 bits
it is described as “reasonably fast” [15, p. 46], but for the
output size of 512 bits it is rather slow. Skein and BLAKE
are generally faster than SHA-2, while BLAKE seems to be
the fastest function. Skein is the only function that has the
same performance for all output lengths [15, p. 43-46]. The
performance of SipHash is comparable with SHA-512 (~10
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cycles/byte) [15, p. 43-44] and for a message length of 64
bytes it beats out BLAKE with 4 cycles/byte [20, p. 11].
A comparable performance is achieved by BLAKE2 [19, p.
14]. Poly1305 is claimed to have 3.1n 4 780 cycles for a n
byte message. For a 64 byte message this would result in
~15 cycles/byte and for a 1024 byte message this would re-
sult in ~4 cycles/byte. So its performance can be compared
to SipHash. The main difference is mainly that Poly1305
profits from long message lengths due to the constant over-
head.

3.4.2  Output lengths

All NIST hash function competition finalists have output
lengths of 224, 256, 384 and 512 bits. Skein is very flexi-
ble by having an arbitrary output length and three differ-
ent internal block sizes (256, 512 and 1024 bits) [25, p. 1].
BLAKE?2 features digest sizes from 1 to 256 bytes [19, p. 6].
SipHash computes a MAC of fixed length (64 bit) [20, p. 6].
Poly1305 doubles this length for its output of 128 bits [7, p.
1].

3.4.3  Security

None of the functions taken into consideration are consid-
ered broken and all attacks known against them are imprac-
tical. Still, it is important to note that some functions have
not been studied as rigorously as others. BLAKE, Skein
and Grgstl have had extensive analysis done on them in the
hash function competition, while Keccak and JH had less
work done on them [15, p. 33]. Also, in real world appli-
cations Skein, JH and Grgstl are not getting as much usage
as the other functions. BLAKE2 is implemented in many
cryptographic libraries such as libsodium [2] and has found
usage in the password hashing scheme Argon2 [8]. Poly1305
has been adopted by Google as an RC4 replacement and
Poly1305 in combination with the ChaCha20 block cipher
was incorporated into OpenSSH [5]. It is important to note
that this implementation of Poly1305 is susceptible to side
channel attacks [21]. SipHash is the hash function for the
hash table implementations within Python and Rust and is
the ”shorthash” function in libsodium [2].

3.4.4  Final Choice

The most suitable MACs should be generally better suited
than SHA-2 and SipHash. Looking at Table 1 one can see
that JH and Grgstl are generally to slow to be suitable
choices. Keccak and BLAKE are fast, but suffer from poor
flexibility in output lengths. Since all the algorithms can
be considered secure the three final candidates are Skein (as
Skein-MAC), BLAKE2 (with its MAC-mode) and Poly1305.
Not only do Skein and BLAKE2 have good performance, but
they also have designated MAC schemes, that are designed
to be faster than traditional HMACs. It is important to note
that hardware performance did not factor into the selection
process, because it cannot be tested in the used testenviron-
ment, which is why Keccak will not be tested even though
showing outstanding performance.

4. EVALUATION

This section describes the testing environment and testing
procedure. It then discusses the results from the testing.
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#include "blake2.h"
#include "skein.h"
#include "poly1305-donna.h"

static inline uint32_t stream2int(const uint8_t
— *stream) {
return (((uint32_t) stream[0]) << 24 |
((uint32_t) stream[1]) << 16 |
((uint32_t) stream[2]) << 8 |
((uint32_t) stream[3]) << 0);
}

uint32_t calculate_blake2b(const blake2b_state
— *kctx, const void *msg, uintl6_t length) {
uint8_t mac[4];
blake2b_update(ctx, msg, length);
blake2b_final (ctx, mac, 4);
return stream2int(mac);

}

uint32_t calculate_blake2s(const blake2s_state
— *ctx, const void *msg, uint16_t length) {
uint8_t mac[4];
blake2s_update(ctx, msg, length);
blake2s_final (ctx, mac, 4);
return stream2int(mac);

}

uint32_t calculate_skein(const Skein_256_Ctxt_t
— *kctx, const void *msg, uintl6_t length) {
uint8_t mac[4];
Skein_256_Update(ctx, msg, length);
Skein_256_Final(ctx, mac);
return stream2int(mac);

}

uint32_t calculate_poly1305(uint8_t *key, const
— void *msg, uintl6_t length) {
/* key must be 32 bytes and UNIQUE */
uint8_t mac[16];
poly1305_auth(mac, msg, length, key);
/% only using first 32 bit */
return stream2int(mac);

Figure 1: Implementation of the tested MACs

4.1 Setup

Skein, BLAKE2 and Poly1305 are tested in an artificial en-
vironment with a P4 switch. A load generator generates a
stream of Ethernet frames with increasing bandwidth. Both
the switch and load generator are equipped with a Xeon
E3-1230, 15.6 GB of memory and run the Linux 4.9.0-5 ker-
nel. For P4 compilation the environment uses t4p4s, a fork
of p4c[23]. A configuration for the compiler defines which
algorithm is used for which test case, even though the inter-
nal controller and remaining configuration stays the same
in order to keep testing neutral. The load generator uses
MoonGen [10] in order to create packets at high rates. The
switch is tasked with computing the MAC for each frame
and will respond with the finished packet. In order to keep
the workload realistic frames are sent in lengths from 64 to
1500 bytes with rates between 50 and 10000 Mbit/s.
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Poly1305  Skein BLAKE2s BLAKE2b
X
50 48.19  48.19 48.19 48.19
100 99.98  99.77 99.80 99.80
150 144.29 144.33 144.33 144.63
200 200.04 199.93 199.54 199.57
250 240.49 240.43 240.00 240.46
500 498.84 498.81 500.04 498.81
1000 961.49 529.52 961.64 963.24
2000 1977.02 561.63 1588.61 1849.23
3000 1774.09 529.58 1410.94 1662.78
4000 1973.52  561.35 1572.47 1849.95
5000 1768.91 529.56 1420.38 1657.34
7500 1974.78 562.86 1585.03 1850.57
10000 1783.94 529.47 1420.20 1666.51

(a) Bandwidths

for 64 bytes per packet (in Mbit/s)

Poly1305 Skein BLAKE2s BLAKE2b
X
50 50.03 50.03 50.03 49.94
100 96.55 96.55 96.36 96.39
150 150.04  149.77 150.04 150.04
200 192.90 19291 192.47 192.56
250 249.53  249.98 249.03 250.04
500 480.97  481.00 480.98 480.86
1000 999.62  997.67 999.63 997.86
2000 1923.14  1282.15 1926.51 1923.32
3000 3001.89 1333.83 2394.66 3001.83
4000 3852.96 1282.29 2298.26 3425.08
5000 4986.97 1334.10 2399.72 3578.64
7500 6025.09 1284.78 2312.45 3417.14
10000 6428.82 1334.35 2394.06 3579.34

(b) Bandwidths for 512 bytes per packet (in Mbit/s)

Poly1305 Skein BLAKE2s BLAKE2b
X
50 50.03 50.03 50.03 50.03
100 96.55 96.57 96.59 96.57
150 150.04  149.92 150.04 150.04
200 192.74  192.85 192.77 192.98
250 250.04  249.64 250.04 249.62
500 481.14  481.23 482.12 481.28
1000 997.96  997.59 999.73 1000.07
2000 1923.15 1499.35 1922.85 1923.34
3000 2999.31 1560.45 2622.18 2993.16
4000 3845.81  1502.14 2502.63 3846.05
5000 4996.43 1562.82 2615.59 4160.39
7500 7224.33 1500.01 2498.69 3963.35
10000 8527.97 1560.32 2616.91 4164.24

(c) Bandwidths for 1500 bytes per packet (in Mbit/s)

Figure 2: Bandwidth measurements
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Figure 3: Throughput comparison

4.2 Implementation

In order to keep testing neutral, there were no optimized li-
braries used since the test concerns the raw performance of
the algorithms, not their optimization. For Skein the refer-
ence implementation [4] is used as well as for BLAKE2 [1].
For the first the internal size is set to 256 bit and for the
later there are two testing candidates namely BLAKFE2b and
BLAKE2s the implementations meant for 64 bit systems
and 32 bit systems respectively. The Poly1305 implemen-
tation [3] is a portable implementation that is kept close
to the reference implementation. For every MAC the same
key is used, which should be avoided in real world usage of
Poly1305, since it needs a new key for every new message.
This test does not factor in the overhead that computing new
keys would create even though for every MAC the needed
initialization function is called every time. Figure 1 shows
the relevant source code for the tested functions. The con-
text for BLAKE2 and Skein are initialized beforehand.
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4.3 Results

The test results for packet sizes of 64 and 1500 bytes are
shown in Figure 3. Figure 3a shows similar performance for
Poly1305 and BLAKE2, while Skein is performing worse.
For increasing size, Poly1305s performance is rapidly in-
creasing which could be due to the performance of 3.1n+780
cycles per n bytes, trivially converging to 3.1 cycles per
byte for steadily increasing message sizes. The gap between
BLAKE2b and BLAKE2s is also increasing for larger packet
sizes, while Skein is hitting a bottleneck for a bandwidth of
around 1500 Mbit/s. BLAKE2b has a similar bottleneck at
4000 Mbit/s. For small packet sizes, Poly1305 is also hitting
a bottleneck, even though it occurs for higher bandwidths
as the other candidates as can be seen in the tables of Fig-
ure 2. Comparing the three candidates to HMACs built from
SHA-2 and SipHash reveals that all of them outperform the
HMACGs, but non of them outperform SipHash. The most
important finding is that Poly1305 increases in performance
for packet sizes bigger than 1000 bytes while all other per-
formances decrease as can be seen in Figure 4. This could
indicate that Poly1305 will eventually outperform SipHash
at a certain packet size, but further testing would need to
be done in order to prove this conjecture.

10000 4 P4 Program
No hash
Checksum
75001 —o— SipHash
g —e— Half-SipHash
g 5000 4 —o— Poly1305
; —o— BLAKE2b
i
—o— BLAKE2s
2500 W__/o—/"—" Skein
HMAC SHA256
0 HMAC SHA512

100 1000
Packet size (B) — log—scale

Figure 4: Throughput comparison by packet size

S. CONCLUSION

The paper has shown the motivation behind the usage of
hash functions in Ethernet frames and has explained the
theory behind hash functions. Multiple functions and MAC
schemes have been compared by their qualities for this use
case and the three candidates (Skein, BLAKEZ2 and Poly1305)
have been compared in a synthetic test environment.

The test indicates that Polyl1305 is a suitable candidate
when it comes to throughput due to its great performance
for bigger packet lengths. While throughput is important,
Poly1305’s implementation faces problems that cannot be
ignored. It needs a new key for every message that has to
be 32 bits large. This problem is fixed in an alternative
proposal called DPoly1305, which does not require a new
key for every message [33], but has not been standardized
or thoroughly analysed yet. Another problem that the im-
plementation faces is a fixed output length of 128 bit. The
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hardware performance of Poly1305 was not tested and for
implementation in hardware, an algorithm like Keccak could
be far more suitable, but further testing would need to be
done before a conclusive statement can be made.
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