
Key Performance Indicators of TCP Flows

Patryk Brzoza
Advisor: M.Sc. Simon Bauer

Seminar Future Internet SS2018
Chair of Network Architectures and Services

Departments of Informatics, Technical University of Munich
Email: brzoza@in.tum.de

ABSTRACT
As most of today’s Internet traffic is provided by TCP, this
also means that the overall performance is heavily depen-
dent on the quality of these TCP flows. To make it possible
to evaluate the state of connections or networks for further
potential problem assessment, it is necessary to introduce
metrics that act as key performance indicators. This paper
introduces multiple of these performance metrics and clas-
sifies them into latency, packet loss, throughput and other
indicators. As a next step, various methods to conduct mea-
surements and data processing approaches to extract valu-
able information are presented and discussed. Finally, this
allows to draw conclusions about a flow’s or network’s qual-
ity and state.

Keywords
TCP Flows, Performance Metrics, KPIs, Network Monitor-
ing, Intrusion Detection

1. INTRODUCTION
Due to its broad range of features and its numerous advan-
tages, such as providing reliable and ordered communica-
tion, TCP has become one of the most important backbones
of today’s Internet. As most commonly used protocols (in-
cluding HTTP, SMTP or FTP) are relying on it, even up to
95% of the total traffic volume is provided by TCP [1, 2].
Corresponding to this development, this also implies that
the performance of TCP flows is playing a crucial role for
the overall performance of applications that depend on the
Internet. This implies that ISPs and network administrators
should be interested in analyzing and optimizing it, which
can be achieved through making use of various numerous
network monitoring tools. By collecting and processing flow
information, it is then possible to extract certain metrics
that are essential for evaluation of the overall quality and
performance of a network and its flows. This paper’s goal is
thus to find such suitable metrics to assess the performance
of TCP connections and to determine how to obtain them
effectively.

After discussing related work in Section 2 and revising the
backgrounds of the TCP protocol in Section 3, this paper
presents and categorizes multiple of these key performance
indicators (KPIs) in Section 4. To acquire different KPIs
for performance evaluation, it is however necessary to con-
clude certain measurement techniques first, which is further
discussed in Section 5. As a next step, the collected raw
data must then be - depending on its size - processed to

reduce it to a necessary amount of information and to ex-
tract various KPIs from it. A range of different approaches
from various tools is evaluated in Section 6. Finally, Section
7 shows which assumptions and conclusions about different
network states and events can be made by inspecting the
priorly collected information.

2. RELATED WORK
While this paper’s focus is set on defining and evaluating
KPIs of TCP flows, the performance of TCP has long been
subject of previous research. A thorough analysis of the
role of TCP/IP in high performance networks has been con-
cluded by Hassan and Jain in [3]. Based on the fundamen-
tals of the protocol, it defines how to measure the efficiency
and create simulations and suitable models for wired and
wireless networks.

Additionally, the passive extraction of valuable information
like the round trip time has been thematized by Shakkottai
et al. in [4] and forms a base for parts of this paper.

Finally, there is a broad range of tools that rely on moni-
toring network performance to conclude events like intrusion
attacks. Examples for this research topic are the tool FlowS-
can by Plonka in [5] and FIRE by Dickerson in [6].

3. PROTOCOL BACKGROUND
As this paper evaluates the performance metrics of TCP
flows, it is necessary to take a closer look at this protocol
first. In 1974 the Transport Control Protocol (TCP) was
first introduced by Cerf and Kahn in [7] and since then
has been gradually improved. Compared to other packet-
oriented protocols like UDP, which may deliver packets out
of order or even lose them during the transmission, TCP
allows for a reliable, connection-oriented and ordered com-
munication between two nodes. The three terms imply that
upon establishing a transport layer connection between two
exchange partners, the transmitted data segments are guar-
anteed to arrive at their right destination in the correct order
until the connection is terminated [8]. In [4], Shakkottai et
al. describe a flow as a ”transfer of packets between two
ports of a source-destination pair using a particular proto-
col”. For this reason, such a bidirectional TCP connection
consists of two flows in each direction [4].

Apart from addressing the partners by their respective IP
addresses, the TCP header - visible in Figure 1 - also in-
cludes a port number for each flow respectively to allow

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

1 doi: 10.2313/NET-2018-11-1_01



0 1516 31

Source port Destination port

Sequence number

Acknowledgement number

Offset Reserved

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
IN Window size

Checksum Urgent pointer

Options (optional, variable length)

Data (optional, variable length)

Figure 1: TCP Header [9]

inter-process communication. Additionally there are sev-
eral other important fields, for instance sequence and ac-
knowledgement numbers to keep the segments in order and
retransmit lost packets, or flag bits to exchange control in-
formation that is necessary to conclude a three way hand-
shake. This process is necessary to establish a new TCP
connection between nodes and will be presented in Section
4. Finally, the congestion window defines how much data a
node may send out to its partner before waiting for an ac-
knowledgement. Sophisticated flow and congestion control
algorithms are used to avoid congesting the network or the
recipient, which may be caused because of sending out too
many segments at the same time [9, 8].

4. KPI OVERVIEW
By further inspecting the features which were presented in
the last section, it can be noted that many of these properties
may constrain the performance of TCP flows. For instance,
while retransmissions allow for a reliable communication,
they also generate an additional overhead which impacts the
ongoing communication by causing delays. This knowledge
allows to derive certain metrics which act as key performance
indicators and can be subdivided among latency, packet loss,
throughput or other indicators, which is done in this section
[10].

4.1 Latency Indicators
A major subclass of KPIs used to evaluate the connection
quality and responsiveness of a TCP flow consists of tempo-
ral metrics measuring its latency, as high values can indicate
severe delays and thus heavily affect the connection’s per-
formance.

Round Trip Time
TCP flows can be modeled in terms of rounds, which start
with the sender beginning to transmit a window of segments
and eventually finish upon receiving back acknowledgements
for one or more of these segments from the recipient [11].
Using this assumption, the arguably most common metric
in use is the Round Trip Time (RTT ), which is defined as
the time interval between a sender transmitting a segment
and the reception of its corresponding acknowledgement seg-
ment. This interval may be influenced by several factors
including propagation times, the processing and queuing
times, which are dependent on the TCP stack implemen-
tations, or routing impacts [4]. Obviously it is necessary to
keep this value low, as higher latencies would impact the
flow performance significantly. An example illustration can

be seen in Figure 2, further information about how to calcu-
late the RTT from the monitor node and other measurement
techniques are discussed in Section 6.

Initiator Monitor Receiver

SYN

SYN, ACK

ACK

RTT

CST

Figure 2: Initiator RTT and CST during a Three
Way Handshake [10]

Connection Setup Time
Apart from the RTT, another metric to measure latency in
networks is the Connection Setup Time (CST ), which de-
scribes the time interval that is necessary to establish a new
TCP connection by performing a three way handshake. To
gain the CST of a successful connection, it is necessary to
inspect the time interval between the segments that are in-
volved in the handshake process, i.e. the first SYN and the
last ACK segment sent out by the initiator. The process of
a full three way handshake can be seen in Figure 2, together
with an illustration of the CST. Obviously this additionally
implies, that this metric does include the RTT and can be
influenced by different factors, for example due to retrans-
missions that were caused by lost acknowledgements [11].
A difference to the RTT metric measured in ongoing flows
is that some implementations may prioritize handshake seg-
ments [10].

4.2 Packet Loss
As mentioned in the protocol background section, an im-
portant trait of TCP is its reliability, which is provided by
detecting and retransmitting unacknowledged segments that
may have been lost during their transmission. A common
reason for this may be a congestion in the network. For this
reason, packet loss is another key performance indicator, as
every retransmission causes an additional delay and thus an
increase in latency. [12]

A flow’s packet loss rate can be visualized by comparing the
amount of retransmitted segments r to the overall number
of transmitted segments t during the inspected connection
interval. Therefore, the retransmission rate (RR) can be
calculated with the following formula:

RR =
r

t

While retransmissions are a natural behavior in TCP, this
value should nevertheless be kept low and sudden increases
further investigated. [10, 13]

4.3 Throughput
A third category for evaluating flow performance is the anal-
ysis of its data throughput, which influences the responsive-

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

2 doi: 10.2313/NET-2018-11-1_01



ness of a connection. This can once again be achieved by
introducing analytical throughput metrics.

The throughput rate describes the current amount of data
that is delivered between the connection nodes and may be
dependent on several factors. For instance, TCP’s flow con-
trol algorithms may throttle the throughput of a flow to
avoid congesting the partner node [8]. As this rate is pre-
defined by the congestion window, which additionally is in-
versely proportional to the RTT [4], this value is correlated
to other performance metrics. Thus, given the current win-
dow size cnwd and RTT , the current throughput rate T can
be estimated using this formula [9]:

T =
cnwd

RTT

Provided that no new congestions are created, a higher through-
put rate allows for better performance, while suspicious spikes
should be examined in time.

Alternatively, another metric suitable for measuring through-
put based on temporal units is the data transfer time, which
is defined as the time interval beginning with the first and
ending with the last data segment arriving at the client, thus
describing the time to answer a request [11, 10].

4.4 Other Indicators
Apart from the aforementioned metrics, there are also sev-
eral KPIs that do not fit into those categories, but may still
impact a flow heavily and for this reason are presented in
this subsection.

Response Time
For instance, the response time is an factor that is given by
higher-layer server applications which are consuming ser-
vices from the transport layer. The term describes the pro-
cessing time between the last packet of a request and the first
packet of a response (excluding acknowledgement segments)
and gives information about the health of an application [10,
13].

Reset Rate
Finally, a way to measure a server’s health is to keep track of
the amount of sent RST segments over a long term. While
TCP connections are torn down with FIN segments usually,
RST packets can be used to immediately abort a connection
instead and may indicate an error [8, 13].

Apart from the KPIs that were mentioned in this overview,
a list including further metrics can be found in [10] and [13].

5. MEASUREMENT METHODS
To acquire the presented metrics for performance evalua-
tion or problem assessment in networks, it is necessary to
conduct measuring methods first. This can be achieved by
applying two different approaches: active and passive moni-
toring. The idea of the active approach is to generate special
probe segments that are then evaluated, while in passive
measurement dedicated measurement devices are attached
to network links in order to capture and process flow data
from them passively. The concept of passive flow monitoring

was also already introduced briefly in Section 4 for calculat-
ing the CST value.

While conducting active measurements gives us full control
on the specific data we are currently interested in, it unfor-
tunately also generates interferences to the original flows,
as they are loaded with additional measurement data. For
this reason, we choose the passive approach to be the more
appropriate method to be applied on ongoing TCP flows,
as we can apply it without constraining the performance
unnecessarily. Apart from this, it first has to be decided,
at which place in the network the monitoring points should
be placed. An important task is then to adjust the loca-
tions and the amount of those measuring devices, so that
the percentage of the monitored traffic is maximized, as un-
fortunate positioning of monitors could deliver poor results.
A description of such optimization algorithms has been pre-
sented by Chaudet et al. in [14]. In [15] an environment
for conducting passive measurements anywhere between the
sending and receiving node is described, which is also similar
to the description defined in [4]. Here, two unidirectional op-
tical fibers - marked with 0 and 1 in each direction - connect
the networks X and Y. These two networks contain nodes
that communicate with each other. We tap both fibers - one
fiber for each flow in the bidirectional connection - to siphon
a part of the signal to the monitoring device, allowing it to
collect segments from the connection that may be processed
later on. This setup can is illustrated in Figure 3.

0

1

Monitor

X Y

Figure 3: Example of a passive measurement setup
used in [4]

Depending on the applicability, it makes sense to choose be-
tween acquiring data from one or both flows. Additionally, it
is also necessary to detect which connections between which
hosts and ports have been established to further concentrate
on a concrete flow. Both of these measuring approaches to-
gether with possible solutions for the connectivity problem
will be discussed in the following two subsections.

5.1 Bidirectional Approach
The bidirectional approach assumes, that the monitor has
access to segments traversing both direction 0 and 1, mean-
ing that it may access segments going from network X to
Y and vice versa. This means that first of all, it has to be
determined which hosts are communicating with each other
on which ports to focus on a particular connection. One
example on how to achieve this is to introduce and make
use of a specialized metric that makes it possible to detect
connectivity between two hosts [16].

A implementation of such a metric has been presented by
Mahdavi and Paxson in [16] and is based on the Framework
for IP Performance Metrics (IPPM) specified in [17]: we dif-
ferentiate between a instantaneous connection, which took

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

3 doi: 10.2313/NET-2018-11-1_01



place at one certain moment in time, and between a tempo-
ral connectivity, which notes that a connection took place
over a specified time interval. As a next step we can then
define our metrics, i.e. either an instantaneous or tempo-
ral two-way connectivity consisting of two separate one-way
connectivities in each flow direction. When we detect an
SYN/ACK segment that acknowledges a handshake process
in a flow, we may immediately return true. Another indica-
tor for a temporal connectivity may be a RST segment with
correct port numbers.

The KPIs presented in the overview can then be calculated
easily by correlating relevant segments from a connection’s
flows with each other. For instance, the general approach for
estimating the round trip time RTT , which is an essential
performance metric, is capturing segments from one node to
another together with its corresponding acknowledgement
at the measurement point (Figure 2). By subtracting the
timestamp values of the two segments, one can calculate an
estimation of this value [15]. This value however depends on
the location of the monitor and can easily become underes-
timated, which is why an alternative method is presented in
Section 6 about data processing.

5.2 Unidirectional Approach
Unfortunately, it is not always possible to conduct bidirec-
tional measurements. There are many reasons for this, for
example the route between the two connection nodes could
have different paths due to being asymmetric or we could
not have access to such a measuring point, meaning that we
can only capture a flow in one direction [18, 4]. For this
reason, unidirectional approaches have become a new trend
in monitoring research.

The first step is to decide, which flow we have access to and
to identify which role the transmitting nodes are playing.
By looking at the segments that are transmitted, it is pos-
sible to subdivide TCP flows into three categories, that are
visualized in Figure 4 [4]:

• Download Flows: These flows carry large amounts
of data. Capturing a SYN/ACK segment at the fiber
going in direction 0, which is followed by data pack-
ets, may indicate that the receiver node is located in
network X.

• Feedback Flows: Observing an initiating SYN seg-
ment that is followed by an ACK segment as an answer
to the receiver may indicate that the initiator node is
located in network X and the receiver node in network
Y .

• Unknown Flows: Flows which have begun outside
of the interval cannot be classified as their initiating
segments were never captured.

To detect connectivity in unidirectional flows, we can then
once again apply the metrics presented in the subsection
before [16].

6. DATA PROCESSING

X
Receiver

Y
Initiator

SYN

SYN, ACK

ACK

Data

Download

X
Initiator

Y
Receiver

SYN

SYN, ACK

ACK

Data

Feedback

Figure 4: Examples of two possible unidirectional
flow types [4]

After having collected enough measurement data, the next
step usually is to process it in such a way, so that valuable
information can be extracted efficiently and accurately. To
achieve this, this section introduces various data processing
approaches and evaluate their applicability.

6.1 Data Reduction
Unfortunately, monitoring and capturing packets from heav-
ily loaded flows can easily generate vast amounts of raw data
that are hard to process and manage. On the other side, due
to collecting too little data one may lose valuable informa-
tion, which is why it is important to find a good compromise
between those two extremes [5]. For this reason, it makes
sense to reduce the quantity of input to such a level, so
that only necessary information is available. Such reduction
techniques can be classified in three different categories [14]:

• Filtering: Only packets, that match certain network-
ing criteria (e.g. port numbers or control flags) are
captured, otherwise they are excluded.

• Classification: Instead of evaluating the whole data
set, it is possible to subdivide it into multiple classes
and then apply our processing techniques only on nec-
essary classes.

• Sampling: Only capture packets randomly. This can
be done by either capturing a packet every predefined
time interval, every n packets, with a probability of
1/n or by combining the aforementioned criteria.

Which technique to use depends on the output we are in-
terested in. For instance, sampling only requires a small
amount of calculation and can be set up easily, but does not
deliver as specific results as the other two techniques do [14].

Recently newer data mining approaches, which are defined
as ”the process of looking for features and relationships in
data” [6], have gained in popularity. One example of such
an approach is the implementation of the intrusion detection
system FIRE presented in [6], which first extracts multiple
fields from the TCP header and then creates an aggregate
key defined as sdp consisting of the packet’s source IP s,

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

4 doi: 10.2313/NET-2018-11-1_01



destination IP d and destination port number p. Using this
key represents a flow’s existence and is necessary for the data
mining phase: a network data processor (NDP) maintains a
table of selected sdp’s and can be used to prepare statistics
for them.

6.2 KPI Extraction
Eventually, after having processed the measurement data in
an appropriate way, it is now possible to extract valuable
KPIs from it. As a main example we have chosen to show
how to derive and accurately estimate a flow’s round trip
time RTT , as it is probably one of the most important KPIs
listed above, nevertheless other KPIs can be extracted in a
similar way. Which approach to choose heavily depends on
the measurement method we chose before.

For example, for bidirectional measurement data, this esti-
mation depends on the location of the monitoring node and
can so easily become underestimated. This can be seen in
Figure 5, where the original RTT estimation d1 captured
at the monitor turns out to be smaller than the expected
value. One example on how to prevent this behavior is in-
troduced with the RTT estimation method presented in [15],
where the inferred estimation was split up into two parts, d1,
which is the initiator RTT value we calculated before, and
d2, where we calculate another receiver RTT value based on
the previous acknowledgement segment coming from the re-
ceiver and a data segment coming from the initiator that was
triggered by this acknowledgement. This process can also be
seen in Figure 5. By inspecting the value d = d1 + d2. we
see that we now finally derived a value that matches the real
RTT as observed from the initiator more accurately.

Initiator Monitor Receiver

Data

SYN, ACK

Data

Real RTT d1

d2

d

Figure 5: Passive RTT estimation method presented
in [15]

This procedure is similar for the other KPIs, for which either
the time intervals between segment samples can be calcu-
lated using the descriptions from the KPI overview in Sec-
tion 4 or counted using a counter which increments itself
upon e.g. the detection of RST segments to calculate the
reset rate or a retransmission to calculate the retransmis-
sion rate. A more detailed graphic for this process that
includes multiple TCP connection types has been described
by Rogier in [10].

On the other side, using unidirectional measurement data for
performance metric extraction turns out to be more compli-
cated than the method described before, as we now have to
take different flow types into consideration from which infor-

mation may not instantly be obvious. In [4], three methods
that can be used to calculate RTT are introduced:

• SYN-based Method: Both download and feedback
flows are detected in direction XY . For download
flows, this means that we are interested in the RTT
for the path XYX, which can be done by calculating
the time interval between the SYN/ACK and the data
segment. Vice versa, for a feedback flow the path of
interest is Y XY , meaning that we are interested in
the time interval between the initiating SYN and the
following ACK segment. Both calculations may differ
due to serialization delays.

• Flight Method: Due to TCP’s congestion control,
flows have a specific structure defined as flight behav-
ior, whereas flights are defined as ”consecutive packets
with nearly identical inter-arrival times” [4]. This be-
havior implies that a flow may consist of groups of
flights that are separated by gaps. It is then possible
to derive an estimation of RTT by calculating and av-
eraging the intervals between the first packet of each
of those flight groups.

• Rate Change Method: For this method it is nec-
essary to look back at the flow and congestion con-
trol algorithms implemented in TCP and described in
the protocol background section. This leads to TCP
having two different operation modes: the slow start
mode, in which the congestion window increases by one
maximum segment size (MSS) for every acknowledge-
ment received, and the congestion avoidance phase,
in which the MSS is incremented every RTT , while
the congestion window size is halved for every segment
that is lost. This special property can be exploited to
determine an estimation for the RTT : assuming that
x is the number of bits transferred in the time interval
[t0, t], the instantaneous rate is defined as dx

dt
and that

the interval [t0, t] is placed in the congestion avoidance
phase, does not include packet drops and has a persis-
tent RTT , then the overall RTT can be then calculated
using this generic formula:

RTT =

√
MTU
d2x
dt2

A detailed proof for this formula with more background
information can be found in [4].

Out of the three methods, the SYN-based approach seems to
be the most useful one as it delivers estimates for more sets
of data than the other two methods do [4]. Its complexity
is also significantly lower than for the other methods as it
does not require as many calculations. Additionally, this
approach can also be readapted to extract other KPIs in a
similar way as before.

7. NETWORK EVENT DERIVATION
Now that we have successfully derived several key perfor-
mance metrics from our monitored TCP flows, we may now
use them to gain further information about the state of con-
nections or networks. To keep track of sudden changes or

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

5 doi: 10.2313/NET-2018-11-1_01



suspicious anomalies in those extracted KPIs, various net-
work visualization tools that create graphical statistics can
be used. One example for such a tool is FlowScan, which
was specified by Plonka in [5] and provides a powerful option
to generate such visualizations even for longer measurement
intervals. The following subsections will thematize KPI ap-
plications in two different fields, from which assumptions by
inspecting certain metrics can be made.

7.1 Intrusion Detection
Due to the persistent danger of becoming a victim of a cy-
ber attack, one of the most important tasks of a network
administrator is to keep the network safe from possible at-
tacks from the outside and to detect them in time before it
becomes compromised. The process of identifying this kind
of activity in a network is defined as network intrusion de-
tection [6]. For example, a first step of conducting an attack
that exploits certain TCP functionalities may be a port scan,
that iteratively sends SYN segments from the attacker node
to a list of ports on the target to detect whether they are
open. If that is not the case, a closed port would normally
send back a RST segment to abort the connection process.
Thus, a significantly higher reset rate may already be an
indicator of such an attack type. Another type of network
abuse attacks that heavily affects the performance of net-
works are denial-of-service (DoS) floods, which aim to make
a target unavailable. A common method to accomplish this
is to flood the victim with a mass of ACK segments, which
have to be processed and may receive RST segments as a re-
sponse. As before, this would bring a sudden increase of the
reset rate, but other KPIs including the current throughput,
latency or response time may also be affected by the mass
of requests the server has to process [5]. An example visu-
alization of a DoS flood captured in the tool FlowScan can
be seen in Figure 6.

Figure 6: Example of a DoS flood attack visualized
using FlowScan [5]

7.2 Network Health
Finally, a significant part of the overall performance is in-
fluenced by the network itself. A survey on speed limiting

factors of TCP flows was conducted by Timmer et al. in
[19] revealed and that approximately a quarter of the flow
performance depends on the network itself. This can mean,
that e.g. a persistently low throughput can be a sign of
a bottleneck located in the network and should be investi-
gated. An additional impact are the applications in use: a
slow sender, that is using multiple applications that rely on
TCP at once or that is running out of resources, can for
instance have a high response time.

8. CONCLUSION
In this paper, we gave a brief summary of the TCP pro-
tocol together with its numerous features and the defini-
tion of the flow term. Due to the implementation of these
features, the performance of TCP flows is constrained by
multiple factors. We introduce metrics acting as key perfor-
mance indicators for connections between end points. These
KPIs were subdivided into four categories: latency, packet
loss, throughput and other indicators. To be able to de-
termine these values, it is necessary to conduct means of
measurement first. We have differentiated between active
and passive measurement methods and chose the latter op-
tion to be the more appropriate approach for ongoing flows.
Depending on the accessibility and other factors, it makes
sense to either monitor data from only one or both flows
of a connection. Bidirectional approaches can easily detect
ongoing connections using specialized metrics, while unidi-
rectional approaches have to determine the flow type be-
fore proceeding. To extract specific information from these
measurements, it is often necessary to reduce the amount
of collected data first. We presented three data reduction
methods together with newer data mining approaches to ac-
complish this task. We evaluated different KPI extraction
methods by using round trip time estimation as an exam-
ple: as for bidirectional data, it can be derived fairly easy
by correlating associated segments with each other, while
for unidirectional data the SYN-based method delivered the
most reliable outputs. Finally, we showed the applicability
of KPIs by applying it on intrusion detection and network
error assessment.

9. REFERENCES
[1] M. Mellia and H. Zhang. Tcp model for short lived

flows. IEEE Communications Letters, 6(2):85–87, Feb
2002.

[2] Anja Feldmann, Jennifer Rexford, and Ramón
Cáceres. Efficient policies for carrying web traffic over
flow-switched networks. IEEE/ACM transactions on
Networking, 6(6):673–685, 1998.

[3] Mahbub Hassan and Raj Jain. High Performance
TCP/IP Networking. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2003.

[4] S. Shakkottai, N. Brownlee, A. Broido, and k. claffy.
The RTT distribution of TCP flows on the Internet
and its impact on TCP based flow control. Technical
report, Cooperative Association for Internet Data
Analysis (CAIDA), Mar 2004.

[5] Dave Plonka. Flowscan: A network traffic flow
reporting and visualization tool. In Proceedings of the
14th USENIX Conference on System Administration,
LISA ’00, pages 305–318, Berkeley, CA, USA, 2000.
USENIX Association.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

6 doi: 10.2313/NET-2018-11-1_01



[6] J. E. Dickerson and J. A. Dickerson. Fuzzy network
profiling for intrusion detection. In PeachFuzz 2000.
19th International Conference of the North American
Fuzzy Information Processing Society - NAFIPS (Cat.
No.00TH8500), pages 301–306, 2000.

[7] V. Cerf and R. Kahn. A protocol for packet network
intercommunication. IEEE Transactions on
Communications, 22(5):637–648, May 1974.

[8] W. Richard Stevens. TCP/IP Illustrated (Vol. 1): The
Protocols. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1993.

[9] Transmission Control Protocol Specification. RFC 793,
September 1981.

[10] B. Rogier. How to measure network performance
through passive traffic analysis.
http://blog.performancevision.com/eng/earl/how-
to-measure-network-performance-through-

passive-traffic-analysis. Last accessed on
2018/03/23.

[11] N. Cardwell, S. Savage, and T. Anderson. Modeling
tcp latency. In Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth
Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064),
volume 3, pages 1742–1751 vol.3, Mar 2000.

[12] P. Benko and A. Veres. A passive method for
estimating end-to-end tcp packet loss. In Global
Telecommunications Conference, 2002. GLOBECOM
’02. IEEE, volume 3, pages 2609–2613 vol.3, Nov 2002.

[13] D. Shanahan. 5 Key TCP Metrics for Performance
Monitoring. https:
//www.linkedin.com/pulse/5-key-tcp-metrics-
performance-monitoring-daniel-shanahan. Last
accessed on 2018/03/23.

[14] Claude Chaudet, Eric Fleury, Isabelle Guérin Lassous,
Hervé Rivano, and Marie-Emilie Voge. Optimal
positioning of active and passive monitoring devices.
In Proceedings of the 2005 ACM Conference on
Emerging Network Experiment and Technology,
CoNEXT ’05, pages 71–82, New York, NY, USA,
2005. ACM.

[15] Sharad Jaiswal, G Iannaccone, C Diot, J Kurose, and
D Towsley. Inferring tcp connection characteristics
through passive measurements, 04 2004.

[16] IPPM Metrics for Measuring Connectivity. RFC 2498,
January 1999.

[17] Framework for IP Performance Metrics. RFC 2330,
May 1998.

[18] Hao Jiang and Constantinos Dovrolis. Passive
estimation of tcp round-trip times. SIGCOMM
Comput. Commun. Rev., 32(3):75–88, July 2002.

[19] M. Timmer, P. T. de Boer, and A. Pras. How to
identify the speed limiting factor of a tcp flow. In 2006
4th IEEE/IFIP Workshop on End-to-End Monitoring
Techniques and Services, pages 17–24, April 2006.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

7 doi: 10.2313/NET-2018-11-1_01


