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ABSTRACT
Artificial neural networks are a versatile type of computing
system that are capable of learning to compute functions
through observation, as opposed to explicitly declaring how
the function is meant to be calculated. When designing such
artificial neural networks, a great deal of effort goes into
choosing the parameters of such a network, with much trial
and error often involved due to the ever increasing complex-
ity of modern networks. This paper presents how genetic
algorithms, a class of biologically inspired optimisation al-
gorithms, can be used in combination with neural networks
to help with such choices, as well as the effectiveness and
the limitations of some of these combinations.
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1. INTRODUCTION
In the field of artificial intelligence, many concepts repeat-
edly go through popular and less popular periods. Neural
networks are a prime example of this: based upon a reason-
ably simple basic concept that has in the meantime existed
for over 70 years, they are once again receiving a heightened
amount of attention from the current researching commmu-
nity. This is, amongst other reasons, due to the success of
so called deep neural networks, which are typically highly
complex neural networks capable of solving equally complex
problems [11]. Because of this complexity, ever more effort
has to go into configuring these systems for them to perform
well. This is a problem, as the exact effect of modifications
to certain configuration parameters to the system’s perfor-
mance are often unknown, requiring much manual trial and
error before any sort of success can be declared [11].

One way of solving this problem is to automate the choice
of such parameters. Using genetic algorithms, a subclass of
the optimisation algorithm class of evolutionary algorithms,
is one method for which this can be done in a reasonably
efficient manner, at least for some of the parameters [11,
8]. In the field of neuroevolution, networks are trained us-
ing genetic algorithms, as opposed to the more traditional
method of gradient descent using backpropagation, while
some approaches additionally modify the structure during
the training process [13]. In the following, we shall intro-
duce how some such applications of genetic algorithms to
neural networks can be made, with the goal of giving the
reader a generic idea of the usefulness of such methods and

of their limitations.

2. NEURAL NETWORKS
As the name suggests, artificial neural networks (hereafter
referred to simply as neural networks) are based upon a
model of the large networks of neurons found in mammalian
brains (an adult human brain, for example, has approxi-
mately 86 billion neurons [1]). The fundamental idea was
first introduced in a paper by neurophysiologist Warren Mc-
Culloch and Mathematician Walter Pitts written in 1943 on
how neurons might work, modeling a simple neural network
with electrical circuits.

The main advantage of neural networks is that, much like a
human brain, they are able to adapt and learn with given
training data. Neural networks possess limitations, of course;
although popular media often depicts them differently, neu-
ral networks are neither capable of thinking in the same way
human brains can, nor are they some miracle of computing
that is capable of solving all of the world’s hardest com-
putational problems [3]. However, their adaptive learning
properties make them very useful for solving many types
of problems for which an algorithm, or at least an efficient
algorithm, doesn’t exist or can’t be found, but sufficiently
large sets of data are present with which a network can be
trained.

The author would like to note at this point that there is
much to be found on the topic of neural networks, and that
attempting to introduce all variations and their implemen-
tations in detail would go beyond the scope of this paper’s
topic. Consequently, this chapter shall attempt to give a ba-
sic introduction by focusing on the most commonly encoun-
tered variant, namely feedforward multilayer perceptrons.

2.1 Learning Process
One of the great advantages of neural networks is their abil-
ity to learn; in the field of machine learning, two different
kinds of learning are generally distinguished: supervised and
unsupervised learning [4].

Supervised learning is achieved with a set of training data
consisting of pairs (x, dx), with x being an input to a neural
network, and dx being the the desired output for the given
input x. The actual output y of the network is then com-
pared to the desired output dx, and, based upon that, the
network’s parameters are adjusted.
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Unsupervised learning works differently: the training data
lacks the desired results (also known as labels) dx. Instead
of learning to give a specific output for a given input, the
network instead forms internal representations of the input
data, encoding certain features of the input based upon the
learning rule used by the network.

2.2 Application Example Digit Classification
In order to give an idea of what kind of problems are well
suited to having neural networks applied to them, we shall
consider the problem of digit classification: presented with
a series of handwritten digits between 0 and 9, a human will
usually have no problem recognizing them, more or less in-
dependent of the actual handwriting. When attempting to
conceive an algorithm to perform this task, it doesn’t take
long to realise that it is hard to transform simple concepts
that humans use such as ”a 1 is more or less shaped like a
line”, ”a 0 has an ellipse shape” or ”a 9 looks like a circle
with a squiggly bit at the bottom” into code. Assuming one
has a 16 pixel by 16 pixel image, one would have to consider
256 pixels individually, their relationship to one another, al-
low for tolerances, and at the end still have a result that is
vastly complicated to debug and may well only work prop-
erly for certain sets of handwriting that are considered in
the algorithm’s implication.

When presented with the same problem, a simple neural net-
work requiring minimal implementation effort, on the other
hand, can, given enough training data, recognize digits with
an accuracy of around 95% [2], almost equally independent
from handwriting as a human (assuming sufficient different
sets of handwriting are present in the training data).

2.3 Artificial Neurons
Neural networks are composed of artificial neurons, with the
number and their exact structure in a network varying de-
pending on application and implementation. There are sev-
eral different types of neurons that can be used, the simplest
type being the perceptron. This artificial neuron was devel-
oped by Frank Rosenblatt in the 1950s and 1960s, and is
based upon the artificial neuron model introduced by Mc-
Culloch and Pitts in 1943[4].

For the neurons we shall be considering, a neuron can be
described as having a bias b ∈ Z, n ∈ N binary inputs x1,
x2, ..., xn, each with a corresponding weight wi ∈ Z, and
producing an output y. The output is determined through
summation of the inputs and the bias, and passing this sum
through an activation function φ. For perceptrons, the out-
put y is thus determined in the following manner:

y =





1, if b+
n∑
i=1

wixi > 0

0 otherwise
(1)

An interepretation of this is that the weights of the individ-
ual inputs indicate their relevance to this neuron’s output,
while the bias indicates the neuron’s tendency to ’fire’: given
the same set of weights, a less negative bias will result in a
higher likelihood to give an output of 1 than a more negative
bias.

Although this neuron is simple and reasonably straightfor-
ward to understand, it has disadvantages making it un-
favourable for usage in many applications [2], one of those
being the lack of continuity in it’s output. We shall there-
fore introduce a second type of neuron, the sigmoid neuron.
This neuron gets it’s name from the sigmoid function σ used
as an activation function:

σ(z) =
1

1 + e−cz
(2)

with c being a fixed constant. For a sigmoid neuron, the
output signal y is now computed in the following way:

y = σ(b+
n∑

i=1

wi × xi) (3)

While at a first glance this neuron doesn’t seem to have too
much in common with the perceptron, a closer look at the
sigmoid function shows limz→−∞ σ(z) = 0 and limz→∞ σ(z) =
1, with the function having a distinctive s-like shape (hence
the name). The effect of this is that instead of simply out-
putting either 0 or 1, a sigmoid neuron outputs values close
to 0 for large negative values for z, and values close to 1 for
large positive values for z; for such values for z, it mirrors
the output of a perceptron, while still allowing for inter-
mediate values. Put differently: while perceptrons are only
capable of outputting ’yes’ and ’no’, sigmoids are capable of
outputting different degrees of ’maybe’, or instead of only
differentiating between, say, a black and white pixel, differ-
entiating between different degrees of grey. This may not
always be ideal; in the previously used scenario, the waiter
won’t typically want to hear the phrase ’I think I might have
the steak with a tendency of 0.7’. In such a case, however,
it is reasonably simple to decide on an appropriate rule for
interpreting the output along the lines of ’anything above
0.5 shall be interpreted as a 1’.

2.4 Network Topology
So far, we have only considered individual neurons, which
on their own can model a simple decision making process.
We are, however, dealing with entire networks of neurons,
not just individual neurons; this means that the inputs of
a neuron and, consequently, it’s output, depend on the out-
puts of other neurons, which in turn also may depend on
the outputs of still other neurons and so on. This allows for
a higher complexity in decision making, giving the possibil-
ity to model more complex associations between the inputs
and outputs of a network, with neurons further from the
’original’ inputs being capable of making more complex and
decisions through abstract internal representation of infor-
mation [2].

The networks that we will consider will contain two restric-
tions:

• the neurons shall be arranged in layers, with each layer’s
outputs only being used as inputs for neurons in the
next layer
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Figure 1: An example neural network architecture

• all neurons in a layer shall receive all of the prior layer’s
neurons’ outputs as inputs

This means, among other things, that there are no connec-
tions between neurons within the same layer, and that there
are no cycles in our network, making the network a so-called
feedforward network; this means that information is only
ever passed forward through the network [2]. An example
network with these properties can be seen in figure 1.

In this depiction, a circle represents a neuron, while an ar-
row going from one neuron A to another neuron B is meant
to indicate that the output from A is used as an input for
neuron B; note that the neurons in the first layer, referred
to usually as the input layer, only have one input each, and
that these inputs are not outputs from other neurons. This
is meant to illustrate that the input layer neurons don’t ac-
tually do any ’decision making’ themselves, but instead have
their output values set to fixed values, as a way to encode the
inputs to a network. Similarly, the outputs of the neurons
in the last layer of neurons, referred to as the output layer,
aren’t used as inputs to other neurons as they themselves are
already the output of the entire network. All layers between
the input and output layer are referred to as hidden layers,
indicating that when interacting with a neural network, only
the input and output layers are ’visible’.

2.5 Gradient Descent
Although there are other methods of learning, in this pa-
per we shall initially focus on one of the most popular and
commonly used ones in neural networks that use supervised
learning: gradient descent using the backpropagation algo-
rithm.

Previously we have mentioned that the network’s param-
eters are adjusted while learning, based on how much the
actual output of the network differs from the expected out-
put. But how exactly should the network’s parameters be
adjusted?

Before making any adjustments to the network, we need to
know how wrong the current output actually is, meaning we
need to measure the error in the output. The individual

neuron’s error ek for the k-th neuron in the output layer can
herefore be defined as ek = yi − dx,i. Let the output layer
consist of m neurons; then, as the networks error function
E, we can use the mean squared error function:

E =
1

2

m∑

i=1

e2i (4)

The goal of learning is now to minimize the average output
of the error function E for all inputs; the approach used
in gradient descent is to reach this goal by using the er-
ror function’s gradient to modify the network’s parameters,
effectively ’descending’ to a local minimum of the error func-
tion [2].

Before going into how the gradient is defined, we shall con-
sider how we would like to make adjustments to the network
in order to reduce the error output: it is fairly intuitive that
making a small modification to a bias or weight in some
neuron in the network should ideally lead to a small, pre-
dictable change in the output. Here, a disadvantage of using
perceptrons in a multilayer network become evident: mak-
ing a small adjustment to a weight or a bias in a neuron can
potentially ’flip’ this neuron’s output, which can lead to a
knock-on effect on subsequent layers that overall has a pos-
sibly large and unpredictable effect on the ouptut. Sigmoid
neurons don’t have this disadvantage: it can be shown [2]
that when making a small change ∆wij to the j-th weight
of the i-th non-input neuron and ∆bi to the bias of the i-
th non-input neuron in the network, the change ∆E to the
error of the total network is well approximated by:

∆E ≈
n∑

i=1

δE

δbi
∆b+

mi∑

j=1

δE

δwij
∆wij (5)

With mi being the amount of weights for the i-th neuron
and δE/δwij and δE/δb being partial derivatives of the out-
put regarding the weight wij and the bias bi, respectively.
Expressed in less mathematical terms, this means that the
error will only change by a small amount depending upon
how ’sensitive’ the network’s output is to change in those
parameters.

The gradient of the error function is now defined as follows:

∇E = (
δE

δb1
, ...,

δE

δbn
,
δE

δw11
, ...,

δE

δwnmn

) (6)

If we now define the adjustments to network’s parameters as
a vector of all of the individual adjustements to the network’s
biases and weights ∆p = (∆b1, ...,∆bn,∆w11, ...,∆wnmn)T ,
then we can rewrite equation 5 as:

∆E ≈ ∇E∆p (7)

As we want to choose a change to the network ∆p in order

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

55 doi: 10.2313/NET-2018-03-1_08



to minimize the error, we choose ∆p in the following way:

∆p = −η∇ET (8)

We make this choice because, inserted in equation 7, this
results in:

∆E ≈ ∇E × (−η∇ET ) = −η||∇E||2 (9)

As ||∇E||2 > 0, this ensures that the error function will al-
ways decrease when applying the change ∆p to the network
as defined above, at least within the limits of the approxi-
mation used in equation 7.

There are now three approaches for making adjustments to
the network based on this method, referred to as batch learn-
ing, on-line learning and mini-batch learning.

With batch learning, we calculate the gradient ∇E for each
input-output pair in the training data set and, using this,
calculate the change ∆p that is to be made to the parameters
in the network. Then, we compute the average over all of
these adjustments and finally apply these changes.

With on-line learning, we calculate the gradient ∇E and
the adjustment ∆p for each input-output pair individually,
apply the change, and calculate the next gradient and ad-
justment based upon the modified network. An advantage of
this method in comparison to batch learning is that it isn’t
necessary to store all the ∆ps before calculating the average;
unlike with batch learning, however, it isn’t possible to pro-
cess the training examples in parallel, as each input-output
pair of the training data is processed by a modified network
based upon prior modifications.

Mini-batch learning is the compromise of the aforementioned
two methods: the training data is split into equal sized ’mini
batches’; for each of these mini-batches, we apply the same
method used for the batch learning method. As with on-line
learning, the adjustments to the network are made directly
after each mini batch, with subsequent mini batches being
processed by the modified network.

2.6 The Backpropagation Algorithm
So far, it has not been mentioned how the gradient ∇E
required to compute the changes made to the network in
the gradient descent algorithm is calculated; calculating the
gradient function analytically alone for several hundred pa-
rameters, which isn’t that much when compared to the di-
mensions found in some neural networks, isn’t an option.
The backpropagation algorithm presents an efficient alter-
native, which is why it is used for calculating the gradient
required for the gradient descent algorithm.

Before continuing with the algorithm itself, however, we
shall briefly introduce a new notation to make it easier to
refer to individual neurons and their parameters in the net-
work in an unambiguous way: let wlkj be the weight of the
k-th neuron in the l-th layer for the output of the j-th neu-
ron in the (l−1)-th layer, zlk the sum of the weighted inputs

and the bias for the k-th neuron in the l-th layer. Analo-
gously, blk and ylk are defined as the bias and the output of
the k-th neuron in the l-th layer.

Additionaly, we now define δlk as the error function’s local
gradient for the k-th neuron in the l-th row:

δlk =
δE

δzlk
(10)

In other words, a neuron’s local gradient δlk tells us how
a change in the sum zlk of the neuron’s inputs will affect
the total error. The gradient of the error function, it can
be shown, can be calculated with the help of these local
gradients [2]. Specifically:

δE

δwlik
= σ(zl−1

k )δlj (11)

and

δE

δblj
= δlj (12)

The algorithm now consists of two phases, or passes: the
forward pass and the backward pass. In the forward pass,
we simply pass an input through the network, storing the in-
termediary outputs ylj of all neurons in the process for later
use. In the second phase, we calculate the error function’s
local gradients δLk for all neurons in the output layer, and
propagate the local gradients backward throughout the net-
work, using the local gradient deltalk to calculate (hence the
algorithm’s name).

For the output layer L, the local gradients are given as:

δLj =
δE

δyLj
σ′(zLk ) (13)

Note that given our cost function E = 1
2

∑
(yLj − dx,j)2, the

partial derivative δE
δyLj

equals (yLj − dx,i). Additionally, the

sigma function has the practical property that σ′(zLk ) = a×
σ(zLk )×(1−σ(zLk )) = a×yLk×(yLk−1), which is also one of the
main reasons for it often being used as an activation function
in neural networks. This allows us to rephrase equation 13
as:

δLj = a× (yLj − dx,i)× yLj × (1− yLj ) (14)

As all of these components are given, we evidently have no
problem calculating the local gradients for the output layer.
As described above, we are now able to calculate the local
gradients in the previous layer using the local gradients of
the output layer. This is the formula used herefore [2]:
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δlj =
∑

k

wl+1
kj δ

l+1
k σ′(zlj) (15)

Once again, thanks to the aformentioned quality of the sig-
moid function, this can be simplified to only contain pre-
calculated values:

δlj =
∑

k

wl+1
kj δ

l+1
k ylk × (1− ylk) (16)

This process can now be repeated layer for layer until the
local gradients have been calculated for all neurons in the
network, allowing us to accurately calculate the gradient∇E
using equations 11 and 12.

3. GENETIC ALGORITHMS
Much as neural networks are based on a simplified model of
how mammalian brains work, genetic algorithms are loosely
based on concepts used in evolution. They are a type of
optimisation algorithm, meaning that they attempt to find
an optimal solution to a specific problem; this is done by
modifying numerical parameters of individual solutions.

The name and the terminology used for this type of algo-
rithm reflects it’s fundamental idea’s biological origin, with
the main components of virtually every genetic algorithm
being a way of encoding the candidate solutions as chromo-
somes, a fitness function for measuring the quality of such a
chromosome, a selection operator and a crossover operator.

3.1 Basic Procedure
We start out with a randomized set of candidate solutions;
each of these solutions is referred to as a chromosome, as
has been mentioned, and the entire set is referred to as the
population, with the initial population being referred to as
the first generation.

In each generation, members of the population are chosen
and combined in the attempt to ’breed’ chromosomes with
a higher fitness score; this process used to combine the chro-
mosomes is referred to as crossover, with it’s implementa-
tion varying depending on how the chromosome encodes the
candidate solution and on the application of the algorithm.
After a certain number of new chromosomes have been cre-
ated in this way, a subset of them (usually those scoring the
highest with the fitness function) replace an equal sized por-
tion of the current population (often those scoring low with
the fitness function).

This process is then repeated generation for generation, with
the population staying a constant size, until either a certain
number of generations have passed, or a chromosome scores
higher than a predefined value for the fitness function; the
algorithm then returns the fittest chromosome as the opti-
mal solution [5].

3.2 Chromosome Encoding
A central question when applying a genetic algorithm to a
problem is how to encode the candidate solution as a chro-

1 0 1 0 1 1 0 0 1 0

Figure 2: An example chromosome using binary
encoding

mosome, as this has a direct impact on the crossover oper-
ation. Principally, a chromosome hasn’t got any practical
restrictions on how it can be encoded: one approach, for
example, is to encode the candidate solution as an array of
strings, while another might be to store it as a series of inte-
ger values or bits. As with all aspects of genetic algorithms,
the exact implementation depends on the problem and the
space of candidate solutions.

A simple example would be encoding candidate solutions
for the well known knapsack problem: one is presented with
a selection of n ∈ N items, each with a weight wi and a
value vi, and at one’s disposal is a bag that can handle a
certain maximum weight wmax. The problem now is to find
a combination of items that maximize the value that one
can carry in the bag.

In this case, a candidate solution could be encoded as a
vector of bits c, with a 1 at the i-th position meaning that
the i-th item should be included in the bag, and a 0 meaning
it shouldn’t. A chromosome encoding the candidate solution
of including the 1st, 3rd, 5th, 6th and 9th item out of 10
items can be seen in figure 2.

An appropriate fitness function f could therefore be defined
as:

f(c) =

{
vT c if wT c ≤ wmax
0 otherwise

(17)

Note that we could remove the condition in the fitness func-
tion if we didn’t allow chromosomes representing items with
a total weight larger than wmax to exist in the first place;
as this is just meant to be an example, however, this way of
defining the fitness function is perfectly sufficient.

3.3 Crossover and Mutation
Crossover operations can be as varied as the different possi-
bilities for encoding the chromosomes, and their exact work-
ings will be closely linked to the chromosomes’ form. To
gain some insight into how such operators may work, we
shall consider two reasonably simple methods: single-point
and multi-point crossover.

For the single-point crossover operation, we select a single
point in the chromosome’s encoding, and generate the child
by using the parameters of the first parent chromosome until
that point, and using the parameters of the second parent
from that point onward. To return to our previously used
example of the binary encoding of the knapsack problem,
this can be seen in figure 3.

The mullti-point crossover operation is defined similarly, but
instead of using one point, we use several instead; once again
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Parent 1: 1 0 1 0 1 1 0 0 1 0
Parent 2: 1 1 0 0 1 0 0 1 1 1

⇓ Crossover ⇓
Child 1:: 1 0 1 0 1 0 0 1 1 1
Child 2: 1 1 0 0 1 1 0 0 1 0

Figure 3: An example of single-point crossover

Parent 1: 1 0 1 0 1 1 0 0 1 0
Parent 2: 1 1 0 0 1 0 0 1 1 1

⇓ Crossover ⇓
Child 1: 1 0 0 0 1 1 0 1 1 0
Child 2: 1 1 1 0 1 0 0 0 1 1

Figure 4: An example of multi-point crossover

using the knapsack example, a multi-point crossover with 4
points is visualized in figure 4.

Usually, after the child chromosome has been generated,
there is a chance of of the new chromosome ’mutating’ new
properties; this involves randomly changing one or more pa-
rameters of the chromosome, within the limits of the solution
space. For a bit-sequence chromosome like the one in our ex-
ample, this could mean randomly selecting one or more bits
and flipping them. This element of randomness is meant to
add ’genetic diversity’ to the population so that the algo-
rithm doesn’t get stuck in non-optimal local maxima of the
fitness function as easily [5].

3.4 Selection
In order to perform the crossover operation, we have to first
select two parents; for this, we have to define a selection op-
erator that selects two parents from our population. Ideally,
we would like to ’breed’ favourable qualities for our next
generation of chromosomes, which are usually contained in
the chromosomes with the best fitness scores. One way of
achieving this is to define a selection operator that selects
population members randomly, with the probability P (ci) of
each chromosome ci of a population of size n being picked
being defined as:

P (ci) =
f(ci)
n∑
j=1

f(cj)
(18)

Effectively, this means that chromosomes with higher fit-
ness score will be preferred during selection, ensuring that
favourable qualities are more likely to be contained in chil-
dren created by the crossover operation.

Towards the end of the algorithm’s run, however, the fitness
values will only vary slightly, meaning that all members of
a population have roughly equal chances of being selected;
also, it has the disadvantage is that it only works for fit-
ness functions for which higher outputs are defined as being
better.

An alternative approach that avoids these restrictions may

instead work by selecting chromosomes based upon the rank
of their fitness score among the population, instead of based
on their relative fitness score [6]. For a population of size n,
the chromosome ci with rank i ∈ [1;n] regarding it’s fitness
score, the probability P (ci) could then be defined in the
following way:

P (ci) =
2(n− i+ 1)

n(n+ 1)
(19)

4. EVOLVING NEURAL NETWORKS
Normally when designing a neural network, the implementer
has to make a series of design choices: these could include,
for example, the network’s topology, the backpropagation
algorithm’s learning rate and the activation function used by
the neurons in the network; these properties are sometimes
referred to as a network’s hyperparameters[2].

Although there are empirical results and heuristics that give
some general rules of thumb that aid in those decisions, their
exact effect on performance is generally not so well under-
stood; this means that finding hyperparameters that work
well usually involves some amount of trial and error. An al-
ternative approach to manual selection is to use some form
of optimisation algorithm to determine some of these param-
eters; thus, roughly since the 1980s, a good deal of effort has
gone into combining genetic algorithms with neural networks
for this purpose [6].

There are primarily three ways in which genetic algorithms
have successfully been combined with neural networks: evolv-
ing the weights of a network with fixed hyperparameters,
evolving a networks hyperparameters, and evolving a net-
work’s topology alongside it’s weights [10]. In this paper,
we shall consider the latter two.

4.1 Encoding Networks
Before getting to the actual ways in which we can use genetic
algorithms to evolve neural networks, it is relevant to bring
to the reader’s attention some problems that arise when at-
tempting to actually implement this.

As has been mentioned already, for genetic algorithms, a
candidate solution’s parameters have to be encoded in a
chromsome. One problem one encounters when encoding a
neural network is recurred to as the competing conventions
problem: in essence, several networks that are functionally
identical can be structurally different [7]. As a simple exam-
ple, assume we naively encode the parameters paramsi of n
of n individual neurons in a network sequentially:

params1 params2 ... paramsn

We shall assume for this example that the parameters in-
clude the weights, the biases and the layer of each neuron,
and that the neurons are sorted incrementally by their layer,
meaning that the input layer neurons are encoded at the
beginning and the output layer neurons are encoded at the
end. If we consider a simple network with only one hidden
layer with m neurons using this form of encoding, then there
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are m! possible permutations for the hidden layer and, con-
sequently, m! different representations for functionally the
same network.

This may not be seem to be an immediate problem, and
there is in fact research that suggests that it may not have a
significant impact on the genetic algorithm [6]. On the other
hand, crossovers of functionally similar, but structurally dif-
ferent parent networks tend to result in impaired children,
which needlessly cost the algorithm additional computation
time [7].

Another complication occurs with larger networks: the so-
lution space that the genetic algorithms have to search tend
to simply have too many dimensions in which optimisation
is possible [6]. When focusing merely on the hyperparame-
ters of the network, however, it has been shown that even
for more complex so-called deep neural networks, which use
many hidden layers in their topology, it is possible to au-
tonomously evolve state of the art hyperparameters using
genetic algorithms[11].

4.2 Hyperparameter Optimisation
One way of using a genetic algorithm to select hyperpa-
rameters for a neural network lies in encoding merely a
network’s hyperparameters as a chromosome, with the net-
works’ weights and biases not being encoded in the chro-
mosomes; this is referred to as Baldwin learning [6]. The
exact hyperparameters that are included may vary strongly
depending on the implementation: using feedforward neural
networks as described previously in this paper, this could
only involve encoding the number of hidden layers used and
the amount of neurons in each of these layers, with some
fixed maximum amount of hidden layers [10], or addition-
ally include the activation function, the learning rate η of
the backpropagation algorithm and even the learning algo-
rithm used [9].

As part of the evaluation by the fitness function, we first
initialize a network with the encoded hyperparameters, with
randomized starting weights and biases, and then train it.
After finishing it’s training, we test it’s performance on a
set of test data that wasn’t used during training, using, for
example, the mean square error of all outputs of the test
data as the output of the fitness function.

Unfortunately, the process of training just a single genera-
tion, which can have tens or even hundreds of chromosomes,
is very computationally expensive, as even training a sin-
gle network with backpropagation can potentially take days.
As a sufficiently well performing set of hyperparameters can
theoretically take many generations to evolve; this means
that even with a high degree of parallelization, e.g. training
all chromosomes of a generation simultaneously, this process
can take a large amount of time.

Interestingly, the choice of the amount of training that a
network undergoes before evaluation has been shown to have
a direct impact on the genetic algorithm’s evolution rate
[8], as well as how fast networks that are produced in this
manner tend to learn [11].

Overall it can be summarized that through applying ap-

propriate limitations to the search space of the genetic al-
gorithms, such methods should be a very effective alterna-
tive to manually selecting the hyperparameters of a network,
even if the computational cost may still often be significant.

4.3 Neuroevolution
Neuroevolution, as the name implies, is a description for
methods in which evolutionary algorithms, of which genetic
algorithms are a subtype, are used to train neural networks.
When considering such methods, we differentiate between
fixed topology systems, and so-called Topology and Weight
Evolving Artificial Neural Networks, or TWEANNS [13].
Evolving the network’s weights has the advantage that it
isn’t necessary to calculate the error function gradient to
make adjustments (as opposed to gradient descent); this
makes neuroevolution a good alternative to using gradient
descent when the gradient is either very expensive, or not
possible to calculate for a given problem [12]. On the other
hand, as was already mentioned, the fact that all of the net-
work’s parameters are encoded in the genetic algorithm’s
chromosome means that training networks this way isn’t re-
ally an option for larger networks [6].

When evolving the topology alongside the weights, an addi-
tional problem arises: when a chromosome evolves with an
adjusted structure, this adjustment will often initially have
a negative impact. As an example: by adding a neuron with
randomly initiated weights at a critical point in the net-
work, we could completely change the way the network func-
tions, potentially ’ruining’ a network that performed com-
paratively well beforehand. This will lead to a lower fitness
score, which may well in turn lead to the new network struc-
ture disappearing from the population’s ’gene pool’, even if
the new structure might perform far better than the old
structure after correctly evolving the appropriate weights.
This problem can usually be addressed by having networks
only compete with similarly-structured networks, referred
to as speciation [13]. This, on the other hand, means that
a computationally affordable way of categorizing two net-
works as having a ’similar structure’ in this context needs
to be provided [7].

As an example of a TWEANN, we can consider the Neu-
roEvolution of Augmenting Topologies algorithm, referred
to as NEAT [13]. The approach used attempts to keep the
dimensionality of the algorithm’s search space minimal by
starting with networks of minimal structural complexity (i.e.
only an input and output layer), and gradually incrementing
the structure; mutations, it is worth noting, are only capable
of adding structure, not removing it. Specifically, the first
generation of chromosomes only consists of networks with
an input and an output layer, and additional structure is
evolved by adding neurons and connections between neurons
through mutation; this technique is referred to as complex-
ification [13]. When compared to methods that involve ini-
tial populations of random structure, complexification tends
to result in neural networks with a comparatively minimal
structure. This is favourable as a smaller structure means
less computational effort to calculate the output for a given
input, and, depending on the network encoding scheme, less
storage space required for the network. Additionally, due to
the structure being kept minimal, the dimensionality of the
search space of the genetic algorithm is also relatively low.
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This benefits the performance of the algorithm [7]. Note
that due to the way that structure is added, depending on
the actual implementation, feedforward networks aren’t the
only type of network that can be evolved in this way as the
network can also include loops.

In addition to complexification, NEAT features an encoding
scheme that allows an efficient structural comparison be-
tween networks, enabling the protection of innovative struc-
ture through the aformentioned method of speciation. Chro-
mosomes consist of node genes and connection genes, each
of which is assigned a unique historical marker when evolved
through mutation, with genes passed on to offspring through
crossover using the same marker. Concerning the protection
of topological innovations through speciation, NEAT uses a
method referred to as explicit fitness sharing. By checking
which genes overlap in two different chromosomes i and j,
we can assign a distance δ(i, j) to these two networks, with
a higher distance meaning a greater structural difference.
After evaluating the fitness fi of a chromosome i in a pop-
ultion of n chromosomes, it is assigned it’s modified fitness
f ′i in the following way:

f ′i =
fi∑n

j=1 sh(δ(i, j))
(20)

With the share function sh being defined as a step function
that outputs 0 if the structural distance between i and j is
above some specified limit, and 1 otherwise. An output of 1
is thus to be interpreted as chromosome i and j belonging to
the same species; if there are many chromosomes in a species,
then they’re modified fitness f ′ will be comparatively lower,
while the reverse is true for species with few chromosomes.
This means that new species that emerge, whether through
mutation or crossover, will be assigned a higher fitness score
if they structurally differ from other species sufficiently. Us-
ing this modified fitness function, each species is implicitly
allocated a slot, or evolutionary niche, in the population
based upon their fitness, with the weakest members of each
species having high chances of being eliminated in every gen-
eration. [13].

Neuroevolutionary methods, as a whole, can be seen as a
good alternative to gradient descent for many problems for
which calculating the error function gradient isn’t an op-
tion; also, regardless of whether the topology is fixed or not,
due to the mutative qualities of genetic algorithms, it is less
likely that the optimisation process will stall in a suboptimal
local performance maximum [13]. Also, due to the nature of
genetic algorithms, much of the computationally most ex-
pensive phase, namely that of the fitness evaluation, can
be performed in parallel, enabling a great increase on per-
formance [7]. TWEANNS carry with them the additional
advantage that they relieve the programmer implementing
the algorithm of having to make exact choices concerning
the network’s topology. The main disadvantage of using
neuroevolution is the limit in the size of the networks: if
the networks become too complex, then evolutionary algo-
rithms will struggle to find fitting parameters due to the
high dimensionality of the search space [6].

5. CONCLUSION
We have seen that neural networks and genetic algorithms
are two concepts with biological backgrounds that synergize
well for many problems: as long as the dimensionality of
the search space isn’t too big, genetic algorithms are ca-
pable of finding good parameters for many applications of
neural networks, be it the hyperparameters of the network,
the parameters of the individual neurons, or both. Due to
the amount of attention that neural networks are receiving
of late, and with the diversity of methods in neuroevolution
and hyperparameter optimisation using genetic algorithms,
future advances in this field don’t seem unlikely, with new
methods possibly surpassing some of the limitations that are
present today.
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