
WeSee: dynamic visualization of Web Service use

Sergey Podanev
Advisor: Miguel L. Pardal

Seminar Future Internet WS2017/2018
Chair of Network Architectures and Services

Departments of Informatics, Technical University of Munich
Email: sergey.podanev@tum.de

ABSTRACT
The software applications that we use in our daily lives
are typically not isolated when running in our phone or
computer. In fact, they may connect to remote resources
through REST or SOAP Web Services. Many times, pro-
grammers are not aware of this network activity, as the ac-
tivity is done by libraries used by the application. The end-
users are even more unaware of this reality. Usually these
remote invocations are benign, but there is still a problem of
transparency. To address this concern, we present WeSee,
a tool designed to intercept network connections, display
them in a graphical manner and, through this data visu-
alization, make visible what is hidden. The goal is to raise
the awareness of developers and end-users about the network
interactions of the applications that they use.

This paper describes the technical details of the WeSee tool
implementation, available as open-source [1]. The prototype
is functional and can be used to capture and display network
traffic in a single device. The architecture is extensible and,
in the future, the system can be used for intercepting differ-
ent types of network payloads and for monitoring multiple
devices at the same time.

Keywords
Data visualization, Network Monitoring, Packet Intercep-
tion, Privacy-awareness.

1. INTRODUCTION
Today, we cannot imagine our life without using modern in-
formation technologies. In the origins of computer science,
programs ran on a single device and were relatively sim-
ple, as the machines did not have much computing resources
and the code base was moderate in size. All variables were
traceable and the program behavior could be verified by the
programmer.

Since those early days, software has grown significantly in
size, and in complexity [2] [3]. Modern programs use many
layers of code, and programmers are divided into special
fields. The full program algorithm is no longer transparent,
even for experienced programmers. Debuggers and other
tools can be used to follow the flow of execution, but this
task is too complex and time-consuming.

Programs are composed of many libraries that are combined
to produce the desired functionality. The use of third-party
libraries is essential to save time and benefit from external

expertise. But such use poses risks [4].

The issue is not just the use of libraries. These libraries can
access the Internet and communicate with remote servers.
Programmers are potentially unaware of the data being trans-
mitted. Consider the following example: to display a map
in the application, the developer is using a well-known maps
library. To retrieve a map, location coordinates are shared
with the service. Additionally, other data can be sent to
other remote servers. For the developer, conceptually, the
program is “just” showing a map, but, in reality, it is also
sending usage data to a third party. This is a significant
privacy concern.

1.1 Application monitoring
The first approach to monitor applications is to monitor
network connections and select suspicious ones. There are
“sniffing” tools such as Network Inventory and TcpDump in
the operating system. Network inventory is a tool, with
a GUI interface used to collect all network data from con-
nected devices and get all operating system and device statis-
tics [10]. TcpDump is a TCP/IP packet analyzer that runs
from the command line [11]. Wireshark can be a good al-
ternative for monitoring connections. It shows standardized
values of packet fields with particular values (given in text
and byte form). However, Wireshark cannot be adapted for
other graphical representations (e.g. graphs) and cannot be
directly used for “sniffing” particular parts of the code [9].

The other possible solution of handling suspicious code is
to “jail” applications. There are several projects which iso-
late applications, for example Firejail [6] or Linux contain-
ers [7]. In addition, firewalls [8] can also be used to contain
network traffic. Unfortunately, people cannot manually su-
pervise all of connections, therefore it is difficult to manually
set all necessary filters into the firewall without proper anal-
ysis. All applications can be “jailed”. But, in this case,
the restriction policy for each of the applications should be
applied accurately. Sometimes, it is required to create con-
nections with new destinations, but these new destinations
might have been banned by a user previously. The content
of the connections can be encrypted and not properly de-
scribed by the general solution. The observed tools have
a general approach for each technology and do not allow
centralized monitoring of a network at different OSI model1

levels from different devices.

1Open system Interconnection

1

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

45 doi: 10.2313/NET-2018-03-1_07

Table 1: Requirements list
Requirement
R1 Capture network payloads
R2 Store the payloads persistently

R3
Display the payloads in a graph inspired notation,
where nodes are devices,
and edges are messages between devices

R4 Allow the filtering and selection of data to display
R5 Allow inspection of captured message details

R6
Allow diverse types of payloads to be captured,
at different levels in the OSI model
(link, network, transport, application)

R7
Provide a user interface aimed primarily at software
developers, but that can also be used by end-users.

If any of these tools lead to suspicion that something is
wrong, then it is time to reconfigure and use firewalls and
other security tools, such as an anti-virus, malware detec-
tors, intrusion detection systems, etc.

1.2 Network visualization
The main idea of our approach is to use visualization of data
from passive monitoring of selected parts of the network, to
capture messages, and to present these messages in a way
that can be understood by humans. The goal is to show net-
work activity and, through this means, to raise the aware-
ness of the users about the communication dependencies of
the applications.

In this paper we present WeSee, a tool designed to meet
the requirements stated in Table 1. The system designed is
presented in detail in the next section.

2. SOLUTION
Intercepting communications with a universal interface al-
lows collecting useful data from different sources with central
node. Based on this data, statistics of network nodes and
connections can be calculated. And finally, a graph is used
to illustrate processed information. The listed functional-
ity was reached by designing the next general deployment
structure.

The WeSee tool performs the following next tasks:

• Intercept communications with a universal interface;

• Gather and calculate overall simple statistics;

• Display connections with a coherent graph.

2.1 Design
The design of WeSee is shown in Figure 1.

The intercepted device is concerned with the data inter-
ception and capture near the target application. To inter-
cept new connections, an interceptor module is integrated
inside the application to log it.

The role of the Visualization server is to collect and pro-
cess data, collected from interceptors. It is implemented as

Figure 1: WeSee deployment diagram

a web server. A web server is most suitable for that pur-
pose as it can serve multiple clients and provide a universal
graphical interface as a web page, which is accessible from
most modern devices.

The database server helps the web server to collect and
process data with concurrent access.

A browser can be used to visualize the data, as it is sup-
ported by almost all computer platforms. Thereby, a user
can monitor remotely and from multiple devices. When a
user loads a web page, the browser downloads all requested
data from the web and then draws a suitable graph.

The general algorithm is illustrated in Figure 2. Data is
stored into a database and can be later collected, filtered
and converted for presentation with statistics.

2.2 Implementation
The implementation of the WeSee tool consisted of several
steps. At first, it was necessary to select suitable technolo-
gies to implement it, define program functional possibilities
and therefore to narrow possible architecture solutions. As
the tool consists of the several deployment parts, on the sec-
ond step it is important to define the general architecture
to connect these parts into the tool. Lastly, every program
module can be implemented separately according to the gen-
eral architecture.

2.2.1 Selected technologies
WeSee was implemented in Java, a high level programming
language, which speeds up development, is platform inde-

2

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

46 doi: 10.2313/NET-2018-03-1_07

Figure 2: WeSee general sequence diagram

pendent, reliable, sufficiently optimized for the project task
and maintainable due to its high popularity and longtime
presence [12].

The connection interception is done by each monitored ap-
plication individually. For instance, it can be implemented
directly into the code of the target application.

To send the data, REST services are used. REST ser-
vices use uniform stateless interfaces to register new con-
nections [13]. Also, the REST service is used for requesting
all occurrences for the selected connection in a given time
range.

The alternative is SOAP services, however, currently SOAP
has a downward popularity trend, because it is more com-
plex to configurate [14].

To develop the web server, the Spring Boot framework was
selected. It is a framework that provides much functional-
ity, including REST services, and database connections sup-
port [15]. To connect to the database, Hibernate technology
was used. Hibernate maps database tables to Java objects
automatically, simplifing the database usage [16]. The un-
derlying database was MySQL. It is a database with a long
history, which obtained a rich support of connection tech-
nologies, including Hibernate. It provides a multiple thread
access mode, has sufficient performance and is supplied with
a community edition. As already mentioned the database
can be replaced with any other as the result of using the
Hibernate technology [17].

To represent the data in a visual way, the D3 library was
used [18]. D3 (data-driven documents) has a rich interface
for creating graphs on the SVG HTML element. This library
provides powerful components to create dynamic graphs with
a force simulation, which makes the visualization interactive.
To draw the network graph, a force-directed graph is in-
cluded in the D3 library. A force-directed graph is the most
common way to draw a network topology. It is a weighted
graph with sets of vertices connected by edges. The edges as
well as vertices can have their own number(weight). These
weights are used to illustrate the number of messages that
were transmitted over a connection or a network node.

This idea to use this graph was inspired by the Gource
project, where an animation of contributions to a Git repos-
itory can be generated [20]. The other good example is
vizceral project [21]. It builds an orientated graph of net-
work traffic volume.

2.2.2 Persistence
The data layer is shown in Figure 3.

Figure 3: Database schema (relational model)

The database stores the general information about occurred
connections. But connections can be received from different
interception sources and at the same time they are described
for the same network hosts. To represent connections on the
graph, the collected information should be merged from the
selection of the multiple data sources.

2.2.3 Interception
In order to intercept the data, a universal interface should
be provided for each intercepted application. This interface
sends the data on a REST service, which can then store the
data on the server. This interface is represented in Figure 4.
It contains an abstract interface with its concrete implemen-

Figure 4: Interception module structure

tation and a set of data definitions to describe intercepted
connections.

3

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

47 doi: 10.2313/NET-2018-03-1_07

2.2.4 Pcap interception
In order to have a rich functional test and present a tool use
case, a pcapInterceptor was developed as implementation
of the interception module.

To intercept a connection, it uses the pcap library. Pcap
is distributed for multiple operation systems platforms in-
cluding Windows and Linux under different names [19]. The
library“sniffs”all selected interfaces and finds network pack-
ets with a configured filter.

We had to decide at which level to capture network activity.
Different levels have different advantages and disadvantages.
The lower network levels provide more information, but usu-
ally there is more encoded data, which is not easily under-
standable. The higher network levels have more concise data
but do not have identification of hosts and other details.
The network layer contains necessary information for creat-
ing a network graph, which includes especially IP addresses,
and even information from higher levels, for example, of the
transport or application layer. Therefore, network layer is
the most suitable for recording connection metadata. If the
higher network packets can be extracted by the pcap library,
then pcapInterceptor the packet payload from these levels
is recorded as a sent message. As a result, the pcap library
provides a rich data set for visualization even for one com-
puter. The structure of the pcapInterceptor application is
illustrated in Figure 5.

Figure 5: PcapInterceptor application class diagram

The main function is used to start the application, which re-
peatedly catches packets from sniffed interfaces in different
threads. The Pcap4JNewConnectionInterfaceListener in-
terface allows to refer one to a computer listener as a united
object of combination of individual interface listeners. In
case the volume of the packets is too large to report to the
server, they are skipped. As the application works in an
infinite loop, it refreshes interfaces periodically as shown in
Figure 6.

2.2.5 Visualization server
The visualization server is the central node of the tool
as it implements the functionality of gathering, analyzing
and representing the data. Similarly to the logical division,

Figure 6: PcapInterceptor behaviour

WeSee data definitions were separated into a layered archi-
tecture according to Figure 7).

Figure 7: Visualization server layering

Intercepted applications send the data in a JSON format,
which is different from the format stored in the database.
Both data structures contain information about the hosts
participating in the communication and the message pay-
load. Applications which send the JSON data do not exces-
sively put with information about themselves and send plain
information about connections. In the database all received
data is stored with data sources (application identifications)
and indexed.

Graph layer data structures are a representation of the statis-
tics, since the information about nodes from different data

4

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

48 doi: 10.2313/NET-2018-03-1_07

sources should be merged to present the composite picture
of the network. The server back-end consists of 3 modules:
srv.rest, graph and repository, depicted in Figure 8.

Figure 8: Visualization server class diagram

The srv.rest module consists of Spring REST service im-
plementations. They interact with a browser to provide the
data with asynchronous requests (for example, in case of fil-
tering by the date/time and data sources) and collect the
data from intercepted applications.

Graph and repository modules work with the graph and
database data definitions respectively and convert the data
to the proper form for controllers. The database mod-
ule is based on the Hibernate technology. The applica-
tion database connector enables to use Hibernate and con-
tains configuration to connect the database. In addition to
the connector, the database with a user account was cre-
ated. That database user is delegated to the visualiza-

tion server application. The information about database
is placed in the Hibernate configuration file of the visual-

ization server.

2.2.6 Presentation
To present the data, HTML was used. When the page is
loaded the client makes requests to the server. Generally,

the web page plays the role of a single-page application due
to the narrow specialization use.

To configure a node spacing on the graph several forces were
created to push unconnected nodes or magnify nodes keeping
the link distance. The width of the links and the radius of
the nodes scales with the power function. This limits the
maximum size, but shows an object which can be scaled,
depending on the object activity. The client-side application
is written in JS (JavaScript) and consist of several parts
represented in Figure 9.

Figure 9: Web application structure main objects

The dataLoader is a JS object and is responsible for down-
loading data from the web server with requests to the server.
Downloaded data can then be filtered with local search pa-
rameters and reorganized to fulfill the D3 library data struc-
ture requirement. The D3 library defines the special format
of nodes and links for the force-directed graph. Graph con-
trol uses the SVG HTML element to draw vector graphic
elements. The InputControl object generates possible fil-
tering ranges and acts on entering new filter parameters for
the data selection. It controls the limits of the possible data
range for selected data sources and refreshes the graph on
update. MessagesPopUpControl shows a pop up window
with detailed connection occurrences. The user can list par-
ticular messages transmitted over a given time from selected
data sources. To provide an opportunity of filtering and or-
dering data, the datatable JS library was used [22]. It allows
a user to search by a plain string search or reorder rows by
the columns: time, data source or message text.

3. WESEE IN ACTION
This section presents an example of the WeSee tool using
the pcapInterceptor.

Figure 10 shows the start page. A user is able to examine
the start page with the full selected data range by default.
Then, it is possible to narrow the search results by select-
ing the names of data sources or pick the time range. The
graph consist of nodes that represent network interfaces of
the devices; and links show connections between them. On
hovering, a pop-over message shows brief information about
the host: IP, usage statistics, DNS and link information such
as the number of messages host sent and received, last mes-
sage, end-point addresses. The next steps show one way of

5

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

49 doi: 10.2313/NET-2018-03-1_07

Figure 10: WeSee network graph screenshot

using the tool and demonstrates the functionality, stated in
the requirements.

With the selected time range from the source “DESKTOP-
6UC8LH1” it was discovered that a computer sent two mes-
sages to the DNS “fritz.nas”, which actually is the name of
a router (Figure 10). This information can be used for node
identification and for exploring its activity.

On double clicking the link, a pop up window appears where
all intercepted messages are listed with information of the
date/time occurrence, name of interceptor, brief and full
text of the sent message, as shown in Figure 11. It was

Figure 11: Detailed information about connection

discovered, that there is a link to the multicast IP address
239.255.255.250 and it primarily contains SSDP (Simple Ser-
vice Discovery Protocol) messages. SSDP is used for search-
ing UPnP devices in the home network [23]. The Google
Chrome browser performed this action automatically after
opening. Although this connection was initiated by an au-
thorized application with a standardized protocol, the We-
See tool also can detect other hidden connections and de-
pict it on the graph. Observing this graph, the awareness is
raised, as it shows the entire network with elementary statis-
tics, to which the computer is connected and sent messages
within the given period of time.

Table 2: Requirements assessment.
X/x Comments

R1 X Network payloads are captured in
pcapInterceptor for network level and higher.

R2 X Information is stored in a database

R3 X
Implemented orientated graph with D3
library with nodes as hosts and edges as
connections.

R4 X
Filtering by data sources and time range.
For selected connection: reordering messages,
search by plain text.

R5 X Provided message details: occurrence time,
data source, short and full message text.

R6 X
pcapInterceptor captures payloads of
network level and higher. The API allows to
collect information of any layer, but should
be converted to the defined data structures.

R7 X Provides user interface as a web page.

4. CONCLUSION
After creating a working prototype of the WeSee tool, it is
necessary to check fulfilled requirements from the Table 1.
As it can be seen from the Table 2, all requirements were
reached as discussed in the comments column.

The WeSee example demonstrated, that even a single device
can participate in a large number of network connections. As
more interceptor implementations become available, for dif-
ferent network levels and protocols, and for different devices,
the tool has potential to make visible even more interesting
pictures of application activity.

The project is open-source and can be used by any program-
mer, who is concerned about network security and wants to
reveal the “secret life” of his/her own devices [1].

In the author’s opinion, with the trend of increasing het-
erogeneity in programming environment, WeSee will only
become more relevant.

4.1 Future deployments
The following scenarios show how WeSee can be used in dif-
ferent deployments, to provide visibility of network activity.

4.1.1 SOAP web service
This is a specific example of a different kind of payload,
in this case, at the application level. SOAP messages can
be used for web services [14]. However, it is also necessary
to track SOAP communication, as the information can be
sent to the unknown web server or content of the message
can be suspicious. The SOAP messages are more high-level
then the packets, and, as a result, are easier to analyze.
To integrate, a SOAP message listener can connect to the
“interceptor” module, fill “interceptor” data structures and
send collected data with this interface. It is also possible to
create a specialized interceptor, that can be connected by
adding a few lines to the standardized server configuration
file.

In this deployment also, multiple service invocations can be
captured and sent to the same visualization server, to pro-

6

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

50 doi: 10.2313/NET-2018-03-1_07

vide an overview of the interactions between a set of user
services.

4.1.2 IoT gateway
The lack of visibility of network activity can be further ag-
gravated in the Internet of Things (IoT). These devices show
a great potential with their ability to exchange information
about environment and use it for interaction [26].

In the IoT, the programs are running on devices not usually
considered as computers, like light bulbs or door bells. There
is also no visibility on the network activities of all these
devices. They can share their information not only with
an authorized server, but with someone else too. Although,
mostly these information is not security critical (for example,
the temperature in home), but can indirectly harm too.

IoT software can be modified, but not if it is embedded in
devices. The approach is redirecting the traffic from the
used gateway. Typically, private networks, which usually
used for IoT, have gateways to the external network. Mod-
ern routers support a traffic redirection feature. After that,
a redirected traffic can be analyzed by an interceptor appli-
cation on other computer and the result can be collected by
a central WeSee server. However, this method can be prob-
lematically deployed for the network with many gateways.
In this instance, it is required to configure multiple gateways
and keep their configuration up-to-date.

4.2 Future improvements
The current state of the tool fulfills its main requirements.
However, the project can be extended to improve the user
experience and provide more functionality. Currently, the
content of network packets is not decrypted, but unencrypted
information is avaliable. It is done due to the wide special-
ization of the current interceptor in order to demonstrate
tool possibilities. It can be fixed by implementing a de-
crypting module on the interceptor side or including build-in
decryption into the server.

The other way is to use specialized interceptors, for example,
which intercept REST service messages for the selected path.

Additionally, a node’s geolocation identification can be added
into the tool. The geolocation identification potentially raises
the user’s awareness about a host location as an object con-
nected with “real” world places, not abstract IP addresses.

With the inclusion of extra search parameters, the web appli-
cation can be built using one of the single-page frameworks,
like AngularJs or OpenUI5 [24][25]. The WebSee web appli-
cation already works as a single-page application. Currently,
the amount of JS code is small, but on future releases the
structure can be better organized with use of existing re-
liable frameworks. They can improve responsiveness and
maintainability of the front-end side of the application.

We hope that, in the future, more use of WeSee is made,
and that a gallery of interceptors and visualizations can be
built.

WeSee also has potential as a learning tool, for example, as
part of advanced and interactive teaching methods [27].

5. REFERENCES
[1] Github repository: WeSee: dynamic visualization of

Web Service use, last access: 21.01.2018,
https://github.com/inesc-id/WeSee

[2] Amit Deshpande, Dirk Riehle: The Total Growth of
Open Source, Open Source Development,
Communities and Quality. OSS 2008. IFIP –
International Federation for Information Processing,
vol 275. Springer, Boston, MA, 2008

[3] Barry Boehm: A View of 20th and 21st Century
Software Engineering, Proceedings of the 28th
International Conference on Software Engineering,
Shanghai, China, May 20-28, 2006

[4] Steven Raemaekers, Arie van Deursen, Joost Visser:
Exploring Risks in the Usage of Third-Party Libraries,
Software Improvement Group, Delft University of
Technology, Amsterdam, The Netherlands, 2015

[5] Global Internet Report 2016, Internet society, pages
31-34, 2016, last access: 21.01.2018,
https://www.internetsociety.org/

globalinternetreport/2016/wp-

content/uploads/2016/11/ISOC_GIR_2016-v1.pdf

[6] Firejail security sandbox, last access: 21.01.2018,
https://firejail.wordpress.com

[7] Linux containers, last access: 21.01.2018,
https://linuxcontainers.org

[8] Internet Firewalls: Frequently Asked Questions, last
access: 21.01.2018,
http://www.faqs.org/faqs/firewalls-faq/

[9] Wireshark, last access: 21.01.2018,
https://www.wireshark.org

[10] Network inventory advisor, last access: 21.01.2018,
https://www.network-inventory-advisor.com

[11] TCP dump, last access: 21.01.2018,
https://www.tcpdump.org/

[12] Java compared with other languages, last access:
21.01.2018,
https://www.safaribooksonline.com/library

/view/learning-java-

4th/9781449372477/ch01s03.html

[13] REST (representational state transfer), last access:
21.01.2018,
http://searchmicroservices.techtarget.com/

definition/REST-representational-state-

transfer

[14] Pavan Kumar: On the Design of Web Services: SOAP
vs REST. UNF Theses and Dissertations.138, pages
58-61, University of North Florida, USA, 2011

[15] Spring framework, last access: 21.01.2018,
https://spring.io

[16] Hibernate, last access: 21.01.2018,
http://hibernate.org

[17] MySql open source database, last access: 21.01.2018,
https://www.mysql.com

[18] Data-driven documents library, last access:
21.01.2018, https://d3js.org

[19] Pcap - Java library for capturing, crafting, and
sending packets, last access: 21.01.2018,
https://www.pcap4j.org

[20] Gource, software version control visualization, last
access: 21.01.2018, http://gource.io

7

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

51 doi: 10.2313/NET-2018-03-1_07

[21] Vizceral, WebGL visualization for displaying animated
traffic graphs, last access: 2.02.2018,
https://github.com/Netflix/vizceral

[22] DataTables, Table plug-in for jQuery, last
access: 2.02.2018, https://datatables.net/

[23] Simple Service Discovery Protocol/1.0, last access:
21.01.2018, https://tools.ietf.org/html/draft-
cai-ssdp-v1-03

[24] Angular js framework, last access: 21.01.2018,
https://angular.io

[25] OpenUI5 - open source js UI library, last access:
21.01.2018, http://openui5.org/

[26] Dieter Uckelmann, Mark Harrison, Florian
Michahelles Florian: An architectural approach
towards the future Internet of Things, Architecting the
Internet of Things, pages 1-24, Springer, 2011|

[27] Marc-Oliver Pahl: The iLab Concept: Making
Teaching Better, at Scale, IEEE Communications
Magazine, vol. 55, no. 11, pp. 178-185, November 2017

8

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

52 doi: 10.2313/NET-2018-03-1_07

