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ABSTRACT
Keywords are an important metric for categorizing or clus-
tering documents. If the number of documents in a collection
of documents exceeds a certain amount, it becomes unfeasi-
ble to manually assign these keywords. One of these is the
collection of mails in the IETF mailing lists.
For collections of that size, the only feasible way to assign
keywords to all documents, is to automatically extract them.
In this paper, we deal with this challenge in two different ap-
proaches. We implement both approaches to automatically
extract keywords from the mails in the IETF mailing lists
and compare their performance.
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1. INTRODUCTION
In the effort to standardize the Internet, the Internet Engi-
neering Task Force (IETF) organizes itself through mailing
lists [1]. Consisting of over 2 million mails, the amount of
data these mailing lists represent is huge. To be able to
bring order into these mails and to further analyze them,
finding keywords that best describe the contents of a mail
would be helpful. Since the number of mails is too vast to do
this manually, this paper analyses and compares approaches
for automatic keyword extraction.
For this purpose, we start with analyzing the problem in sec-
tion 2. We describe the IETF mailing lists and the database,
we were working on. Then, in section 3, we describe differ-
ent approaches for automatically extracting keywords from
text. We focus on RAKE, a ready to use Python library [9]
and on a more elaborate approach that utilizes the NLTK
[6] to compute TF-IDF values [12]. Afterwards, we describe
our implementation of these approaches in section 4. In sec-
tion 5, we compare the implemented approaches and analyze
how well they were suited for the task. We finish by men-
tioning related work in section 6 and we sum up this paper
with a conclusion in section 7.

2. PROBLEM ANALYSIS
In this section, we we will analyze the status quo and give
an overview of the data we are working on.

2.1 IETF Mailing Lists
The Internet Engineering task force is an organization, that
is tasked with creating documents standards and best cur-
rent practices for the Internet [1]. The IETF is mainly orga-
nized through open mailing lists, anyone can contribute to.
Since there are over 1000 lists [16], both active and inac-
tive that contain a total of more than 2.1 million mails,
organizing them or extracting scientific data from them is a
challenge.

Table 1: Frequency of Special Characters
column type constraint

file text
key integer not null

date timestamp w timezone
date local timestamp

sender addr text
receiver text
subject text

messageid text not null
inreply text

spam boolean default false
spamscore numeric

sender name text
person bigint

fast person bigint

2.2 The Database
To work with and analyze the data contained in the IETF
mailing lists, the Chair of Network Architectures and Ser-
vices at the Technical University of Munich [14] has a post-
greSQL database that contains the mails and the mailing
lists of the IETF. For this paper, the relevant part of that
database is the mails table (table 1). It contains a file and
a key column. With those, it is possible to uniquely identify
the file that contains the mail. Furthermore, we only made
use of the spam column, so we could ignore spam mails.

2.3 Goal
Our goal is to find keywords that best describe the contents
of the mails. Therefore, we need to find a metric to assign
a score to every word that occurs in a mail and then select
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the top scoring words.
We are not interested in key phrases, since single words ap-
pear to be more useful for further analyzing or processing
the mails. This way, one can for example cluster the mails
by these keywords.

3. APPROACHES
There are many different approaches to automatically ex-
tract useful keywords from text [2]. Since implementing and
comparing all of them would go beyond the intended scope
of this paper, we chose to go in depth for two promising
approaches.

3.1 RAKE
RAKE [9] is a Python implementation of the Rapid Au-
tomatic Keyword Extraction algorithm, proposed by Rose,
et al. [10]. The algorithm first identifies candidate keywords,
before scoring those keywords based on their frequency in
the document. This approach is completely corpus indepen-
dent, which makes it efficient for a dynamic corpus like our
database, that grows with every mail that is sent to one of
the mailing lists.
Even though RAKE is also capable of identifying key phrases,
as mentioned in section 2.3, we will focus on identifying sin-
gle keywords. This is possible, since there are multiple pa-
rameters, that can be used to configure RAKE. This way,
besides the maximum number of words in a key phrase, one
can configure a stop word list, the minimum number of chars
in a keyword and the minimum number of occurrences of
the key phrase in in the document. Furthermore, there are
some parameters that are only important for key phrases
with more than one word.
We chose RAKE as one of our candidates because in con-
trast to our second approach, which we will explain in the
next section, it is an out of the box approach, that is com-
pletely corpus independent.

3.2 TF-IDF with NLTK
Our second approach, is primarily based on the TF-IDF
metric. Leskovec, et al. call it a “measure of word impor-
tance”[4]. It is the product of the document frequency tf and
the inverse document frequency idf . Here, tf is the number
of times, a word occurs in the document under inspection,
whereas idf is the proportion between the number of doc-
uments in the corpus and how many of those documents
contain said word. In short, idf measures the importance
of a word in the corpus. An in depth explanation on the
TF-IDF metric is provided by Leskovec, et al. [4].
With this approach, we are more flexible to make modi-
fications to suit our goal. Thus, we can use the Natural
Language Toolkit (NLTK) to improve the keywords, we re-
ceive with TF-IDF [13]. The NLTK “is a leading platform
for building Python programs to work with human language
data” [6]. This way, we can use a tokenizer and a lemma-
tizer, provided with the NLTK. The lemmatizer makes sure,
words with the same stem can be treated as the same. For
example, words like write and writing will be seen as equal
and writing will be replaced by write. Also, using the NLTK
offers the possibility to further narrow down the selected
keywords to only use a certain type of words, like nouns, or
to remove some type of words, like human names.

We chose this approach, since it is a good contrast to RAKE
in some major points. While RAKE only works on a single
document, the TF-IDF is computed on the whole document
corpus. This way, the keywords promise to be more relevant
in context of the corpus. Also, since this approach is less
out of the box, it is possible to further refine it.

4. IMPLEMENTATION
We implemented the keyword extraction in Python, since
the libraries we used were written in Python. Also, the
scripts, the chair provided for working with the database,
were also written in this language.
For us, the most important of these scripts are in the mail
package. After getting the identifiers of the mails we want
to analyze from the postgreSQL database, we get the ac-
tual text from the mail with the mail.get message function.
Furthermore, we can use mail.strip html to remove HTML
tags from HTML mails.
To store the keywords we extract from the mails, we intro-
duce two new tables. The table keyword will contain each
keyword the script finds, exactly once. Furthermore, the
table mails to keyword (table 2) will contain relations be-
tween these keywords and the mails in the mails table. For
each one of these relations, we also store the algorithm, that
was used and the score the keyword reached. By storing the
keywords this way, instead of storing a comma separated list
in the mails table, processing the keywords will be easier.
For example, clustering the mails by keywords can easily be
done by grouping them with SQL.

After starting the Python command line tool, the user enters
a short configuration dialog. Here, the user can make deci-
sions like which approach (section 3) to use or if the script
should be run in debug mode. In debug mode, the keywords
will be printed to the command line instead of being written
to the database.
For the actual keyword extraction, the implementation of
the two approaches has some major differences, even though
we made them fit to the same structure. First, an
init analyzer function initializes an analyzer object. Then
a handle mail cursor function loops over the mails and ex-
tracts the keywords with the analyzer.
Next, we will describe how those functions work in the dif-
ferent approaches.

Table 2: mails to keyword
column type

messageid TEXT REFERENCES mails
keywordid INTEGER REFERENCES keyword

score INTEGER
algorithm VARCHAR(6)

4.1 RAKE
Since RAKE is an out of the box solution, in this case the
init analyzer function is fairly straightforward.

return rake . Rake ( ”Rake/ SmartStop l i s t . txt ” ,
3 , 1 , 2)

This creates a Rake object, that uses Rake/SmartStoplist.txt
as a stopword list. As candidate words, it considers all words
with at least three characters that occur at least twice in
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the document. The third argument can be used to define
the number of words in a keyphrase. In our case, we set it
to one, since we are only looking for keywords.

Thanks to the way RAKE works, handle mail cursor is
similarly simple. We only have to call the Rake object’s
run method, handing over the text we want to extract the
keywords from as the only argument.

tags = ana lyze r . run ( t ext )

This returns a list of tuples, containing each word in the
document and it’s score. The higher this score is, the better
the word is suited as a keyword.

4.2 TF-IDF with NLTK
This approach is more complicated. We use Python’s ma-
chine learning library sklearn [11] to compute the TF-IDF
values of the documents.
Therefore, in init analyzer we have to train the analyzer on
a dataset. We use a subset of the mails in the database (if
possible, all mails) as the training set.

v e c t o r i z e r=T f i d fVe c t o r i z e r ( t ok en i z e r=token ize ,
d e code e r ro r=’ i gnor e ’ )

v e c t o r i z e r . f i t t r a n s f o rm ( mai l s )
return v e c t o r i z e r

We initialize the tfidfVectorizer with a custom tokenizer, so
we can use the NLTKs stopword list and lemmatizer. Then,
we call vectorizer.fit transform() with our training set.
This method computes idf values for the vocabulary in the
training set.

Once the tfidfVectorizer is initialized, we can extract key-
words from each mail:

tags = ana lyze r . t rans form ( [ t ext ] )
f eature names = ana lyze r . g e t f ea ture names ( )
for i in va lues . nonzero ( ) [ 1 ] :

r e t u r n d i c t [ f eature names [ i ] ]= va lues [ 0 , i ]
return r e t u r n d i c t

analyzer.transform computes the TF-IDF values of all terms
in the mail. analyzer.get feature names returns a map-
ping from the terms’ ids to the actual terms, since the matrix
returned by analyzer.transform only contains ids and not
the actual terms. We then create a dictionary, that maps the
TF-IDF values to the terms. Finally, the best suited key-
words for each mail, are the ones with the highest TF-IDF
values.

5. EVALUATION
For Evaluation, we consider two different metrics. Under
runtime, we compare the time the approaches need for the
different parts of the algorithm. Under Results we compare
the keywords, the two algorithms extracted, by looking at
false positives and false negatives.

5.1 Runtime
When analyzing the runtime of the two approaches, we have
to differentiate between the init analyzer and the
handle mail cursor phases, we described in section 4. In
this section, we will evaluate those two phases separately
and then give a short combined verdict.

5.1.1 initAnalyzer
As we already described in section 4, the two approaches
differ greatly in this part of the algorithm. While in case of
RAKE the initialization phase only consists of setting a few
configuration values, for TF-IDF we have to do a lot more.
The initialization phase of TF-IDF is a training phase, where
the analyzer has to analyze all mails in the training set. This
factor has a huge effect on the runtimes of the initialization
phase.
In table 3, we show the runtime for different sizes of training
sets.

Table 3: runtime initAnalyzer in seconds
Algorithm 10 entries 100 entries 1000 entries

total entry total entry total entry
RAKE 0.001 0 0.001 0 0.001 0

TF-IDF 2.834 0.283 8.250 0.082 33.096 0.033

For RAKE, the runtime of the initialization phase is negli-
gible. It takes under one millisecond and does not depend
on the size of the training set. This is exactly the result one
would expect, since RAKE only does a few configurations in
this phase.
Also as expected, TF-IDF is much slower in this phase, since
it has to train its model and compute all the IDF values for
the vocabulary of the training set. As one can see in ta-
ble 3, the time the initialization phase takes for one entry
decreases, the more mails we have in the training set. This
shows, that even though the TF-IDF implementation takes
a lot of time, especially compared to RAKE, it scales really
well for a bigger training set.

5.1.2 handleMailCursor
In the main phase of the algorithm, the actual keyword ex-
traction, we expect the timings to behave similarly in both
algorithms. In table 4, we see that this is roughly the case.

Table 4: runtime handleMailCursor in seconds
Algorithm 10 entries 100 entries 1000 entries

total entry total entry total entry
RAKE 0.065 0.007 0.876 0.009 6.194 0.006

TF-IDF 0.354 0.035 7.556 0.076 82.790 0.083

Both algorithms do not have big changes in the amount of
time it takes to extract keywords from one mail. TF-IDF
get’s slightly slower, the more mails we process. We assume
that this is due to the fact, that more mails lead to a bigger
vocabulary. This seems to slightly slow down the process of
calculating TF-IDF scores.
The general difference in performance between the two ap-
proaches is in a big part because of the tokenizer, that uses
the NLTK. Here, lemmatizing the documents takes up a no-
ticeable amount of time.

5.1.3 Verdict
It is pretty obvious, that RAKE is much faster than our TF-
IDF implementation, due to it scoring words independently
of other documents. But the TF-IDF approach also does
not explode with a bigger data set. In this approach, we can
win a lot of time, if we save the analyzer (for example with
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Python’s Pickle module [8]) after it has been initialized, so
we can reuse it in the next run.

5.2 Results
Both approaches are able to yield reasonably good results.
In appendix A, we attached an arbitrarily selected example
mail from the database. This mail is a more or less typical
example for many of the mails we find in the database.

Table 5: 10 best scoring Keywords for appendix A
RAKE TF-IDF

sip 1.25 presence 0.476
refresh 1.0 sip 0.431
upload 1.0 upload 0.259

proposed 1.0 document 0.203
expiration 1.0 register 0.199

method 0.161
expiration 0.137

generalization 0.137
refresh 0.130

use 0.127

As one can see in table 5, both approaches yield a useful
selection of keywords. In the next sections, we will go a
bit more into detail, by looking at false positives and false
negatives the algorithms produce. We will also delve into a
few further observations.

5.2.1 False Positives
In this case, RAKE yields really good results. The only key-
word that subjectively seems like a false positive, is “pro-
posed”. On the other hand, TF-IDF produced a few key-
words that seem like bad choices (i.e. “refresh” or “use”) ,
but those do have low scores.

5.2.2 False Negatives
Here, RAKE fails to produce the top scoring keyword of the
TF-IDF approach. This is most likely due to the fact, that
RAKE only returns keywords that reach a certain threshold.

5.2.3 Further observations
We made a few observations with other documents, that are
not visible in our example document. Since RAKE does not
lemmatize the documents or use some other kind of natural
language processing like the NLTK, we sometimes receive
useless keywords like parts of URIs or email addresses.
Also, the lack of lemmatizing leads to RAKE sometimes re-
turning the same keyword twice, with only slight differences
like one being the plural of the other one.
One phenomenon we observe in both approaches is that of-
ten, human names are extracted as keywords. This is some-
thing that could be prevented in the TF-IDF approach, by
optimizing the tokenizer.

5.3 Overall verdict
In general, we see RAKE yields a reasonably good ratio
between false positives and false negatives and also outper-
forms the TF-IDF approach by far, when it comes to run-
time. But, as we explained in section 5.2.3, RAKE also
produces a lot of useless keywords. This is a big trade off,

considering the fact that TF-IDF produces comparably good
or even better results, especially when it comes to not miss-
ing any important keywords.
RAKE’s big trade off could be fixed by modifying the RAKE
implementation [9] and adding the option to use a custom
tokenizer.

6. RELATED WORK
As we already mentioned in section 3, there are a lot of dif-
ferent approaches to extracting keywords from text. One
famous approach is the textRank algorithm [5] by Rada Mi-
halcea and Paul Tarau. This is a graph based algorithm,
that has similarities to Google’s pageRank algorithm [7].
TextRank is also able to extract the most important sen-
tences from a document, which can be used for automatic
summary generation.
Another noteworthy approach is the KEA algorithm [15].
For this algorithm, a Java library is available. What makes
this approach different to the ones we implemented, is that it
requires a training set, that contains documents with man-
ually assigned keywords.
Finally, we want to have a short look at another RAKE im-
plementation by Sujit Pal [3]. He used the NLTK to stream-
line the standard RAKE implementation. For example, he
used the NLTK tokenizer instead of RAKE tokenizing the
text by itself.

7. CONCLUSION
In this paper, we did not introduce new approaches to key-
word extraction. Instead, the aim was to find a good way
of extracting keywords from the mails in the IETF mailing
lists, by utilizing some of the existing approaches for key-
word extraction. Therefore, we selected the two approaches
we deemed most suitable for this task: The Rapid Auto-
matic Keyword Extraction algorithm (RAKE) [10] and an
approach, that computes TF-IDF scores [12] and optimizes
this by employing the Natural Language Toolkit [6] for lem-
matizing, tokenizing and stop word removal.
We described an implementation of these approaches and
compared the results of both approaches based on those
implementations. This comparison shows, that in the best
case, RAKE would be the better choice, most of all due to
its much shorter runtime. But, since in some cases RAKE
produces unusable results, we reach the conclusion that in
the current implementation, the TF-IDF approach is to be
preferred.
In section 6, we mentioned an approach that modifies RAKE,
by using the NLTK for tokenizing [3]. This approach can
serve as an example for how to modify RAKE to better suit
our needs.
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APPENDIX
A. EXAMPLE EMAIL
he l l o , my name i s ∗∗∗∗ ,
i s ent t h i s mail in the s imple wg . . .

which i s your op in ion ?

> i th ink that t h i s ques t i on : ”upload presence document ” i s a
> c r i t i c a l i s s u e .
>
> the re i sn ’ t a standard procedure to upload and to modify the
> presence document , but i t i s the source o f the presence s t a tu s . . .
> i f the UA. . . i f the PUA change i t s media capab i l i t y , or
> change i t s s tatus , i t MUST r e f r e s h the presence document .
>
>
> the upload must be made through the p ro to co l s i p ! ! !
> and not push the presence doc v ia another protoco l , such as HTTP POST.
>
>
> I agree with ∗∗∗∗∗∗∗ when he says in the d r a f t
> ”Requirement f o r Pubb l i cat ion o f SIP r e l a t e d s e r v i c e data ”
> : ” . . . i t i s f e l t that the SIP REGISTER reques t i s NOT the
> appropr ia te mechanisme f o r handing t h i s l oad ing od SIP
> s e r v i c e in fo rmat ion . . . ” but i ’m not sure that a
> g e n e r a l i z a t i o n o f the REGISTER funct ion , as proposed in the
> dra f t , i s a good idea
>
>
> The use o f the method REGISTER, f o r the upload , i n t roduce s one
> s e r i e s o f problems , j u s t one example : the exp i r a t i on o f the
> Presence document and the exp i r a t i on o f the cur rent
> communication addre s s e s ( i . e . Contact Addres ) are d i f f e r e n t . . .
>
> I have in s t ead a proposed other :
> the use o f method NOTIFY . . .
> t h i s method i s a l r eady used f o r send the presence s t a t e to
> a p a r t i c u l a r s ub s c r i b e r . . .
> the i t s g e n e r a l i z a t i o n f o r the upload or r e f r e s h o f Presence
> Document i s very s imple and has the advantage o f not
> modify/ g e n e r a l i z a t i o n a very important message f o r s i p as REGISTER . . .
>
>

Sipping mai l ing l i s t http ://www1. i e t f . org /mailman/ l i s t i n f o / s ipp ing
This l i s t i s f o r NEW development o f the app l i c a t i on o f SIP
Use s ip−implementors@cs . columbia . edu f o r que s t i on s on cur rent s i p
Use s i p@ i e t f . org f o r new developments o f core SIP
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