
Practical Assessment of
Secure Multiparty Computation Frameworks

Jakub Wójcik
Advisor: Marcel von Maltitz

Seminar Future Internet WS2017/2018
Chair of Network Architectures and Services

Departments of Informatics, Technical University of Munich
Email: jakub.wojcik@tum.de

ABSTRACT
This paper describes, assesses and compares the secure multi-
party computation frameworks FRESCO and Bristol SPDZ
in terms of infrastructural differences, practicality and per-
formance. It provides a step by step guide to performing
computations with the frameworks. The measurement were
performed in a virtual environment.

Bristol SPDZ is faster and uses less memory. It provides an
easy way to define computations by writing simple Python
scripts. FRESCO is more suited for rapid development by
integrating into a Java development process. Its modular
design makes it equipped for the future.

1. INTRODUCTION
Secure multi-party Computation is a cryptographic method
to perform joint calculations of arithmetical functions by
multiple parties without them getting to know each other’s
input values. Multiple names and abbreviations have been
used, such as secure computation (SC) or multi-party com-
putation (MPC), but in the paper the term used will be
secure multi-party computation (SMPC).

What makes SMPC different than other forms of cryptog-
raphy is the fact that it treats the participating parties as
adversaries. The mathematical groundwork has been laid
in the 90s, but SMPC was just considered theoretically for
a long time. An important step was Shamir’s secret shar-
ing[16], which is a method to share a secret between multiple
parties, so that together they can reconstruct it, while on
their own they have only useless information. Equally im-
portant were proofs that secure protocols exist, such as in
the paper by Ben-Or, Goldwasser and Wigderson[11], which
is based on Shamir’s secret sharing and is still in use nowa-
days. Only in recent years, due to better computation power
and advancements in SMPC protocols, such as the develop-
ment of the SPDZ protocol[13], practical implementations
have become feasible.

A few actively developed and maintained frameworks have
been created. Among them are e.g. Sharemind, FRESCO
and Bristol SPDZ. Sharemind[6] is a company selling solu-
tions based on Shamir’s secret sharing to businesses wanting
to compare themselves to others without releasing their pri-
vate data. Because this is a typical application of SMPC,
this paper will also use statistical functions to assess the
frameworks.

This paper looks at two of the frameworks in detail: FRESCO
and Bristol SPDZ. In section 2 each framework is described
on it’s own, while in section 3 they are compared to each
other in respect to infrastructural differences, practicality
and performance. The frameworks are considered produc-
tion ready, if it is possible to perform thousands of compu-
tations in a negligible timespan, while also hiding the im-
plementation details from the end user. This requirement
makes the frameworks ready to use in stock exchanges or
social media applications where results have to be provided
instantly. Finally section 4 lists some ideas of future work to
be done and section 5 offers a conclusion to the comparison
of the frameworks.

2. CONSIDERED SMPC FRAMEWORKS
The considered frameworks FRESCO and Bristol SPDZ are
both active open-source SMPC solutions. They are cur-
rently being developed on GitHub with the latest contribu-
tions on both being from November 2017.

The points listed above are all the similarities off the frame-
works, virtually everything else about them is different. The
frameworks use different tool-sets, follow different paradigms,
and have been developed for different reasons.

2.1 FRESCO
The name FRESCO is an abbreviation of ”A FRamework
for Efficient Secure COmputation”[1]. The framework is an
abstraction from the different specific SMPC protocols, that
are called protocol suites in the context of FRESCO. Instead
it is meant as a foundation which allows for any protocol
suite to be used to compute the same functions.

FRESCO implements multiple protocol suites, such as BenOr-
Goldwasser-Wigderson (BGW) that is secure for an honest
majority. That means that if the majority of the parties
doesn’t deviate from the protocol, it is guaranteed that no
one will obtain any additional information[11], only the com-
puted function value.

Other suites are also implemented, e.g. SPDZ, but in this
paper only the BGW suite will be taken into account because
SPDZ is currently under active development[2]. For more
information see section 4.

FRESCO is developed in Java 8. It is packaged with all re-
quired dependencies by Maven in a JAR which can be down-

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

15 doi: 10.2313/NET-2018-03-1_03

loaded from its website[5]. Computations are also meant to
be written in Java by extending the Application class and
implementing the sequence of computation steps to be per-
formed. It can be embedded anywhere in a Java program,
but the documentation provides a sensible default applica-
tion that can be used to start FRESCO from the command
line. Providing necessary configuration from the command
line arguments, the application is run in one line.

The developer using FRESCO is able to build their own
Java programs that call into FRESCO when SMPC is to be
performed. They can bundle FRESCO with their program
and deploy it as a single Java executable.

2.2 Bristol SPDZ
The SPDZ (pronounced ”speedz”[10]) protocol has been in-
troduced in 2011 and it uses different mathematical con-
cepts than BGW, namely somewhat homomorphic encryp-
tion[13][7]. In has been improved twice. The first time in
2012 solving open problems of the original paper[12]. The
second time in 2016 when MASCOT, a new protocol for the
preprocessing phase, was introduced[15].

The special thing about SPDZ is that it is divided into two
phases. The first one is called the offline phase, or rather
the preprocessing phase as a connection between the parties
is required. This phase generates triples, which are used to
perform multiplications, and Message Authentication Codes
(MACs), which use asymmetric cryptography to ensure that
the values provided by the parties are correct. Both triples
and MACs are used later during the online phase. In the
online phase the actual computation is performed.

The online phase is designed to be fast, hence the name of
the protocol. The computationally heavy stuff is performed
during the preprocessing phase which can take place e.g. at
night or on weekends, when no computations need to be
performed. During the online phase MACs are needed for
every step of the computation, while for every multiplication
three previously generated triples are consumed. A lot of
both has to be prepared beforehand.[15]

Bristol SPDZ is developed in C++ and Python 2. It has
to be compiled from source and it depends on a few other
libraries that have to be installed manually.[4]

The implementation of the SPDZ protocol is first and fore-
most a showcasing of the improved preprocessing phase MAS-
COT which has been proposed by the same people that de-
velop the implementation.[7] As such it does not hide its
internals and instead exposes every step as a separate exe-
cutable or script that can be run.

3. ASSESSMENT OF THE FRAMEWORKS
The frameworks are compared and assessed in respect to
practicality and performance.

As they have been developed with different use cases in
mind, often no direct comparison is possible. Instead the
execution of the chosen solutions is assessed.

3.1 Setup and methodology

In order to assess all relevant differences between the frame-
works in a realistic setting, a fresh OS was set up in a vir-
tual environment and all steps needed to achieve the goal of
computing some statistical functions were counted towards
practicality.

Used statistical functions. As performing statistics with
SCMP is a common use case, in this paper statistical func-
tions were used during the practicality and performance
tests. The functions were chosen to include all of the ba-
sic arithmetical operations as it is possible to compute them
using SMPC: addition, subtraction, multiplication and divi-
sion.

The first one is the average function:

µ =
1

n

n∑

i=1

xi

The second one is variance:

Var(X) =
1

n

n∑

i=1

(xi − µ)2

Having the variance, it is easy to calculate the standard
deviation by taking the square root. It is not yet possible to
compute the square root with SMPC.

σ =
√

Var(X)

Both frameworks were setup to calculate the functions in
the same scenario. There were four parties configured, each
of them having a single integer xi as its secret input value.
This section describes the effort it takes to configure the
setup and measures the performance of the computations.

Virtual environment. The frameworks were tested in a vir-
tual environment. The virtual environment was created us-
ing Vagrant and VirtualBox.

The chosen OS was ubuntu/trusty64[8] with 1024 MB of
RAM. The VMs were running on a relatively modern pro-
cessor with eight virtual cores and a clock speed of 1.2 GHz.

The performance of the framework was measured on the
VMs with the Linux time command. The memory con-
sumption was measured with valgrind. Although the val-
ues might not represent real conditions, they certainly are
adequate to use them in comparisons with each other.

3.2 Key (infrastructural) differences
This section looks at the frameworks from an infrastructural
point of view. Considered are the installation process, the
dependencies, and the way the computations of the arith-
metic functions have to be defined and performed. It also
looks into the paradigm behind the frameworks.

The section also provides a step by step guide to performing
computations with the frameworks.

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

16 doi: 10.2313/NET-2018-03-1_03

Installation and dependencies. Installing FRESCO is very
straightforward. An prepackaged jar with all required de-
pendencies can be downloaded from the FRESCO website[5].

Alternatively the framework can be compiled from source
using Maven, which is only mildly more complicated. The
only necessary dependencies system wise are the Java De-
velopment Kit version 1.8 and Maven in order to compile
from source. Both of these are available out of the box on
modern Linux distributions.

To be able to install Bristol SPDZ, first the C++ compiler
g++, Python 2 and m4 have to be installed. They are avail-
able in the repositories of most modern Linux distributions.
Additionally the Multiple Precision Integers and Rationals
Library (MPIR) has to be installed. The instructions are
available in the manual[14]. Simply run configure with the
-enable-cxx flag to enable C++ compatibility.

To compile and install Bristol SPDZ the source code has
to be downloaded from the repository[4]. The git submod-
ule SimpleOT, which is necessary for MASCOT to work,
has to be downloaded, too. In the CONFIG file, the flag
USE_GF2N_LONG1 has to be set to 1. Afterwards compilation
is as simple as running make.

Defining computations. In order to define computations
in FRESCO the Application class has to be extended and
the prepareApplication method overridden. In the method
body all of the steps required to compute the arithmetic
function have to be defined using ProtocolProducers. These
steps form the protocol that will be performed with the spec-
ified protocol suite when running the application. Inserting
the values into the computation and getting the output of
the function has to be dealt with. There is a difference be-
tween secret and open values represented by types prefixed
with an S or O. For example SInt and OInt are secret and
open integer values, respectively. The secret numbers are
effectively shared secrets. No party has enough information
to know the values. Only together they can reconstruct it
to create an open integer.

The order in which the steps will be computed has to be
defined as well. Which operations will be performed se-
quentially and which ones in parallel. The developer of the
are responsible for the optimization of the computation. It is
possible to define one application as an extension of another.

Additionally the application must be run by calling the method
SCE.runApplication. This can happen anywhere in the
code. To compile the Java program the compiler has to
know where it can find the packages of FRESCO. This is
typically done by setting the classpath argument:
javac -cp .:fresco-0.2-jar-with-dependencies.jar

To define computations in Bristol SPDZ, a file with the ex-
tension .mpc inside of the subdirectory Programs/Source/

has to be created. Inside the file the computation is defined
by writing a Python script that operates on values of custom

1Enables the use of a 128 bit GF(2n) field that is needed by
MASCOT.

data types.

As with FRESCO in Bristol SPDZ there is a difference be-
tween secret and open data types. For example there are
sint and oint representing secret and open integers, respec-
tively. Inserting the private values into the computation and
revealing the result has to be dealt with, but other than that
the standard arithmetical operators can be used.

The definition of every computation has to be compiled by
calling compile.py from the SPDZ directory with the file-
name of the program, but without the subdirectory. For the
program to work with MASCOT, the flags -p 128 -g 128

have to be passed. The flags set the sizes of the internally
used data types. They are necessary because the compiler
and MASCOT use different sizes by default. The compila-
tion will generate multiple files inside of Programs/.

Paradigm. FRESCO clearly follows the paradigm of allow-
ing to define computations independently of the protocol
suite that will be used to perform the actual computation.
Being developed purely in Java, it also can be neatly tied
into existing Java applications. It is designed to be used by
developers as a Java library to perform SMPC[3].

The paradigm behind Bristol SPDZ seems to be to create a
working implementation of the newest improvement to the
SPDZ protocol. It is meant as an showcasing of the MAS-
COT protocol. As such it does not focus on usability and
instead gives the user full control over each internal step.

Performing computations. In order to perform a compu-
tation with FRESCO, the location of FRESCO has to be
specified to the JVM in the classpath argument, again.
When using the provided default program, which reads the
parameters from the command line, additionally the proto-
col suite and the addresses of all the participating parties
have to be specified. The number of the current party has
to be specified, as well. Then all of the parties run the pro-
gram having access only to their own private inputs. Party
number one of two would run the following to use the BGW
protocol suite:
java -cp .:fresco-0.2-jar-with-dependencies.jar App

-s bgw -Dbgw.threshold=1

-p 1:192.168.33.10:9001 -p 2:192.168.33.11:9002

-i 1

The program automatically connects to the other parties
and performs the computation.

In order to perform an computation with Bristol SPDZ, mul-
tiple steps have to executed:

• Prepare the data for the online mode by running
Scripts/setup-online.sh 4 128 128.
The 4 in this context is the number of participating
parties, while the 128 are the sizes of the used data
types. They have to match the values provided to the
compiler.

• Distribute the compiled program and the prepared data
among the participating parties.

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

17 doi: 10.2313/NET-2018-03-1_03

• Prepare a file HOSTS with the addresses of the parties.
It is needed for MASCOT to work.

• Perform the MASCOT preprocessing phase by every
party running ot-offline.x -N 4 -p 0. The flag -N

defines the number of participating parties, while the
flag -p defines which party one is. With the flag -n

the number of generated triples can be set.
• Prepare the private input values in a separate file by

running gen_input_f2n.x or gen_input_fp.x on each
party. These tools encode the provided input values
into a binary format.

• Start a server which will coordinate the communication
between the parties by running Server.x. The server
is only needed to establish a connection between the
parties, the communication itself is peer to peer. The
players have to be reachable by hostname.

• Run the online phase on every party.
Player-Online.x -lg2 128 -pn <server port>

-h <server host> <player id>.

3.3 Practicality
Practicality in this context means how well the framework
can be used. This applies to its paradigm, how easy it is
to write computations and how well the framework is docu-
mented.

3.3.1 FRESCO
FRESCO is designed for rapid development and it mostly
fulfills this promise. One major drawback is the lack of up
to date documentation.

The framework is undergoing some structural changes, so
the documentation does not always line up with the actual
implementation. This might change in the near future (cf.
section 4). In the meantime it is probably better to learn
using the framework by looking at working examples. The
developers include a few demos with FRESCO.[1]

Defining computations. From an infrastructural point of
view, defining computations in FRESCO works very well.
Because of its nature as a Java library, defining new compu-
tations can be tied into an existing development process. It
is possible to use FRESCO with IDEs such as Eclipse.

On the other hand, FRESCO forces the developer to define
all the steps to perform the computation. They have to
decide which steps have to be performed sequentially and
which ones in parallel. This requires a deeper understanding
of underling mechanisms and can get quite verbose. For
example in the applications used in this paper the definition
of the average computation has 15 lines, while the definition
of variance has 30 line of code. This is just to define the
steps of the computation. Any other code was not counted.

Additionally any optimization has to be performed manu-
ally. A handy feature showcased in the demos is that already
defined computations can be reused to build more compli-
cated ones by inheriting from another Application class.

Performing computations. This is where FRESCO shines.

real user system

0

20

40

T
im

e
[s

]

Average Variance

Figure 1: The duration of 1000 computations using
FRESCO BGW.

0 2 4 6 8

·108

0

2

4

·106

Executed instructions

M
em

o
ry

co
n
su

m
p
ti

o
n

[B
] Average

Variance

Figure 2: Memory consumption of one computation
using FRESCO BGW.

Performing a computation is very straight forward. There is
one executable, which takes all its configuration from com-
mand line parameters in one place. Only the protocol suite
to use has to be chosen, but this offers a lot of flexibility. In
the future, it should be even possible to use new protocols
that are not implemented yet.[3]

3.3.2 Bristol SPDZ
Bristol SPDZ has been developed to showcase MASCOT. It
has great features, but at the same time it is quite cumber-
some to use.

Defining computations. This is where Bristol SPDZ shines.

Defining computations is very easy because it is just writing
a Python script. The sequence in which the operations are
computed and the optimization are inferred automatically.

The only drawback is a lack of a documentation about the
custom data types. One can either look into the source code
to learn which ones to use, or look at working examples or
demos which are included in Bristol SPDZ.[4]

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

18 doi: 10.2313/NET-2018-03-1_03

Performing computations. Performing computations with
Bristol SPDZ is very cumbersome. Every step and phase has
to be run manually and a lot of files are generated in the pro-
cess. Of course a the process can be simplified by using a
shell script, when the desired configuration has been identi-
fied. In the repository there is even the script Scripts/run-
common.sh[4] that can be used for this purpose, but it is not
compatible with every setup.

The most annoying thing is that the same options have dif-
ferent names for the tools on different steps. The commands
of each step also have their own unique formats. For example
MASCOT uses a hosts file to communicate with the other
parties while the online phase uses a server.

In order to be reachable by the hostnames, the file /etc/hosts
has to be edited on every party. There should be a better
way of getting a connection.

3.4 Performance
The performance of the frameworks was measured using the
Linux time command. It returns three values: real, user
and system. The value real stands for the actual duration
the program was running. The other values show how much
the time the processor spent in user and system mode, re-
spectively.

It can be said that in general in user mode the arithmeti-
cal operations are performed. In system mode on the other
hand it’s mostly read and write operations and network com-
munication. The sum of the times spent in both modes is
not necessarily equal to the real time because the processor
might spend some time on other calculations, such as run-
ning different processes. This is especially important con-
sidering that the tests were run in a virtual machine.

To get a better picture of the time the computation actually
takes, and not to measure the startup time of the program,
each computation is performed 1000 times.

In order to measure the amount of memory the programs
consumed, the profiler valgrind massif[9] was used:
valgrind -tool=massif -heap=yes -stacks=yes

This command returns the size of the allocated heap and
stack space during the runtime of the program. In the
graphs the x-axis shows the number of instructions executed
by the processor. This offers a overview over the memory
consumption in different stages of the program, although the
executed instructions are not necessarily proportional to the
runtime of the process.

3.4.1 FRESCO
The performance of FRESCO is quite stable. As can be seen
in figure 1 the time it takes to perform a 1000 simple com-
putations is over 10 seconds. One thousand computations
of average took 13.36 s, while the computations of variance
took 41.57 s. The slightly more complicated computation
of variance which has twice as many lines as average took
nearly three times as long.

This does not feel like much when performed on its own, but
it certainly means that performing a lot of computations in

100 500 1000 5000

0

500

1,000

1,500

2,000

2,500

T
im

e
[m

s]

MASCOT

Figure 3: Real duration of the MASCOT prepro-
cessing phase generating n triples.

0 0.5 1 1.5

·109

0

200

400

·106

Executed instructions

M
em

o
ry

co
n
su

m
p
ti

o
n

[B
]

MASCOT

Figure 4: Memory consumption of MASCOT gen-
erating 5000 triples.

batch could take hours. It also means that FRESCO is not
suitable for application in social media or stock exchanges
where rapid response times are very important.

An interesting thing to note is that the computation time
reported by FRESCO by enclosing the call to the runAp-

plication method and the running time measured by the
system are consistently about one second off. This probably
means that one second is the startup time of the program
and the Java Virtual Machine.

Memory consumption of FRESCO is reasonable. It con-
stantly increased during the computations and reached about
4.0 MiB at the end. The progression can be seen in figure 2.

3.4.2 Bristol SPDZ
In Bristol SPDZ the performance measurement are divided
between the preprocessing and online phase because they
can be performed independently. The first one might be per-
formed at night and the latter during the day when SMPC
in needed.

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

19 doi: 10.2313/NET-2018-03-1_03

real user system

0

100

200

300
T

im
e

[m
s]

Average Variance

Figure 5: The duration of 1000 online SPDZ com-
putations.

1 computation 1000 computations

0

100

200

300

T
im

e
[m

s]

Average Variance

Figure 6: Real duration of one and 1000 online
SPDZ computations.

Preprocessing phase. To measure the performance of MAS-
COT a different number of triples were generated. With
more triples the running time rises significantly (see fig-
ure 3). It took 2.42 s to generate 5000 triples.

The memory consumption of MASCOT is very stable. While
generating 5000 triple the memory usage was about 470 MB
which is nearly half of the available RAM on the virtual
machine (see figure 4).

Online phase. Compared to MASCOT, the online phase is
very fast. One thousand computations of average took 253
ms, while the computations of variance took 298 ms (see
figure 5).

Such speeds make it certainly possible to be used in applica-
tion where speed is important, such as social media or stock
exchanges. One has to keep in mind that this speeds are
only possible if there are previously generated triples and
MACs. When the parties run out of those, further com-
putations become impossible. The generation of additional
tripes is much slower (cf. figure 3).

0 1 2 3 4

·106

0

0.5

1

1.5

·106

Executed instructions

M
em

o
ry

co
n
su

m
p
ti

o
n

[B
] Average

Variance

Figure 7: Memory consumption of one online SPDZ
computation.

An interesting thing to note is that the duration time of one
computation and 1000 computations are nearly identical (see
figure 6).

The memory consumption of never exceeds 1.3 MiB (see fig-
ure 7). It is nearly zero for a long time, which according to
the massif documentation[9] is a normal behavior of short
running programs because most of the time they spend load-
ing external libraries. This also explains the little difference
between one and 1000 computations.

4. FUTURE WORK
Both of the frameworks are in active development with the
latest contributions made in November 2017. This means
that the information in this paper will not stay up to date
for a long time. It is necessary to follow the development
closely.

FRESCO. The current version of the framework FRESCO,
version 0.2, is currently undergoing some structural changes.
Because of this a lot of the features and protocol suites are
not correctly documented.

Additionally a SPDZ protocol suite with the MASCOT pre-
processing phase[2] that is used in Bristol SPDZ is currently
being implemented by the FRESCO team. As it is not yet
ready to be used, the SPDZ protocol suite has not been
taken into account in this paper. Having two completely
different implementations of the same protocol, it would cer-
tainly be interesting to measure the performance differences
of both. Once the implementation is done, it will surely
be worth to compare it to Bristol SPDZ and assess other
differences, such as ease of use.

Actual network. All of the measurements in this paper
were performed in a virtual environment. In order to under-
stand how the frameworks perform in real circumstances, it
would be a good additional analysis to perform the compu-
tations on an actual network.

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

20 doi: 10.2313/NET-2018-03-1_03

Other parameters that can be varied are the number of par-
ticipating parties and the connection speed. It would also be
interesting to see how the frameworks work over the Internet
with the machines of the different parties being in different
physical locations. This would probably be the closest sce-
nario to a computation in real circumstances.

5. CONCLUSION
The frameworks are have been designed with different goals
in mind. It is therefore impossible to deem one better then
the other. Which one is better suited for a task depends
heavily on which paradigm is better aligned with the goal of
the task.

In terms of performance Bristol SPDZ clearly wins. It is
faster and uses less memory. Even considering the sum of
both phases it still is faster than FRESCO. Another place
where Bristol SPDZ is strong, is defining the computations,
which basically is the straightforward task of writing a Python
script. Where it certainly lags behind is its lacks of a cohe-
sive structure to the different execution steps.

FRESCO on the other hand wins when it comes to rapid
development. It is easier to integrate into a development
process and easier to run the implemented computations. Its
modular design with different suites makes it better equipped
for the future.

Application developed with both frameworks can be made
production ready as defined in the introduction. The de-
veloper using FRESCO will have to make sure the number
operations does not make their program slow, while the de-
veloper using Bristol SPDZ will have to put more effort into
making SMPC work seamlessly in the background. Depend-
ing on the context both can be adequate compromises.

6. REFERENCES
[1] A framework for efficient secure computation. On

GitHub https://github.com/aicis/fresco.
Accessed: 2017-11-16.

[2] Implement proper spdz preprocessing.
https://github.com/aicis/fresco/issues/112.
Accessed: 2017-11-18.

[3] Introduction - fresco 0.2.0 documentation. http:
//fresco.readthedocs.io/en/latest/intro.html.
Accessed: 2017-10-01.

[4] Multiparty computation with spdz online phase and
mascot offline phase. On GitHub
https://github.com/bristolcrypto/SPDZ-2.
Accessed: 2017-11-16.

[5] Releases - fresco 0.2.0 documentation. http://
fresco.readthedocs.io/en/latest/releases.html.
Accessed: 2017-09-05.

[6] Sharemind | privacy enhancing technology for
data-driven business. https://sharemind.cyber.ee/.
Accessed: 2017-10-01.

[7] Spdz software | bristol university | department of
computer science. https://www.cs.bris.ac.uk/
Research/CryptographySecurity/SPDZ/. Accessed:
2017-11-18.

[8] Vagrant box ubuntu/trusty64. https:
//app.vagrantup.com/ubuntu/boxes/trusty64.

Accessed: 2017-09-04.

[9] Valgrind user manual - massif: a heap profiler.
http://valgrind.org/docs/manual/ms-manual.html.
Accessed: 2017-09-30.

[10] What is spdz? part 1: Mpc circuit evaluation
overview. https://bristolcrypto.blogspot.de/
2016/10/what-is-spdz-part-1-mpc-circuit.html.
Accessed: 2017-11-18.

[11] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness Theorems for Non-Cryptographic Fault
Tolerant Distributed Computation. Proceedings of the
20th Annual ACM Symposium on the Theory of
Computing (STOC), pages 1–10, 1988.

[12] I. Damgard, M. Keller, E. Larraia, V. Pastro,
P. Scholl, and N. P. Smart. Practical covertly secure
mpc for dishonest majority – or: Breaking the spdz
limits. Cryptology ePrint Archive, Report 2012/642,
2012. http://eprint.iacr.org/2012/642.

[13] I. Damgard, V. Pastro, N. Smart, and S. Zakarias.
Multiparty computation from somewhat homomorphic
encryption. Cryptology ePrint Archive, Report
2011/535, 2011. http://eprint.iacr.org/2011/535.

[14] T. Granlund and W. Hart. The multiple precision
integers and rationals library.
http://mpir.org/mpir-2.7.2.pdf, 19 November
2015. Accessed: 2017-09-30.

[15] M. Keller, E. Orsini, and P. Scholl. Mascot: Faster
malicious arithmetic secure computation with
oblivious transfer. Cryptology ePrint Archive, Report
2016/505, 2016. http://eprint.iacr.org/2016/505.

[16] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, Nov. 1979.

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

21 doi: 10.2313/NET-2018-03-1_03

