
Comparison of IoT Data Protocol Overhead

Vasil Sarafov
Advisor: M.Sc. Jan Seeger

Seminar Future Internet SS2017
Chair of Network Architectures and Services

Departments of Informatics, Technical University of Munich
Email: sarafov@cs.tum.edu

ABSTRACT
The Internet of Things is expanding at fast pace and every
year constrained devices that rely on intercommunication
are being deployed. Knowing how much overhead a com-
munication mechanism adds to the system can be of huge
importance for its optimal utilization and prevent perfor-
mance degradation. In this paper we construct an abstract
theoretical model for deriving and comparing the overhead
of the WebSocket, CoAP and MQTT protocols when send-
ing upstream an arbitrary number of data packets. We
then validate the end results with an experiment and show
that CoAP with non-confirmable messages demonstrates the
least overhead when no datagrams are lost, followed by MQTT
with QoS 0, which outperforms the WebSocket protocol by
a tiny margin.

Keywords
Protocol overhead, Throughput, Performance Comparison,
CoAP, MQTT, WebSocket, IoT, Internet of Things, Data
Protocols

1. INTRODUCTION
For decades people have been involved in a technological
revolution, which has opened a new chapter in human his-
tory. Starting from science and education and continuing
with important industrial and medical applications, the In-
ternet has been accelerating the world’s progress for years.
Even more, it has now become one of the most important
communication media.

The tremendous advance in the fields of electronics, robotics
and artificial intelligence has led to the next stage of this rev-
olution - bringing the Internet to a new state where it can be
used for interconnecting Things and Machines that are not
operated by people and communicate autonomously with
one another. This phase was given the name The Internet
of Things (IoT).

One of the core concepts of IoT is exactly the communi-
cation between interconnected devices. In most cases the
connected nodes are operating in constrained environments
and have very limited resources such as CPU power, RAM
and available energy. Therefore an optimal communication
mechanism is a must. Calculating the application protocol
overhead is a step towards such optimization and in this pa-
per we compare the overhead of three data protocols that
are widely used in various IoT services - WebSocket, Con-
strained Application Protocol (CoAP) and MQTT.

The WebSocket Protocol was designed as a solution to the
problem which the Web was facing for many years - the
lack of full duplex asynchronous communication between a
client and a server. Since WebSocket allows that and is fairly
easy to integrate in existing HTTP infrastructure, many IoT
devices and platforms choose to implement it.

CoAP’s aim is to be for the IoT world what HTTP is for the
Web. It brings the well known REST model [8] to networks
with constrained nodes by relying on UDP and very small
protocol overhead.

MQTT is a protocol that follows the publish-subscribe com-
munication pattern and provides a very convenient decou-
pling of the peers in large distributed systems that can be
used to optimize complex business logic. It was designed to
be light, highly scalable and easy to adjust and implement
on the client side, which makes it a perfect fit for the IoT
domain.

The paper is structured as follows. In Chapter 2 we present a
very simple mathematical model that is used in Chapter 3 to
compare WebSocket, CoAP and MQTT, where the protocols
are described in a more detailed manner as well. We validate
our theoretical estimations with an experiment in Chapter 4
and make the overall conclusion in Chapter 6. In addition,
we explain how the proposed model can be extended so that
it can be utilized for estimating the protocol overhead in
more complex real-world applications.

Related Work
Existing work compares different lightweight internet proto-
cols mainly based on the provided feature set. Performance
evaluation is usually done only empirically and for a very
specific use case. In this paper we provide a general theoret-
ical overhead comparison that is in addition experimentally
validated. Its results can be applied for an arbitrary sce-
nario, independently of the physical connection.

In [20] Thangavel et al design and implement a middleware
for wireless sensor networks. By using the common middle-
ware they empirically evaluate the performance of CoAP and
MQTT. [12] compares CoAP’s and MQTT’s performance in
NBIoT networks, emphasizing the adaptation of both data
protocols in regard to the limitations of the NBIoT physical
properties. [7] provides a qualitative and quantitative com-
parison between MQTT and CoAP for smartphone-based
sensor systems. The quantitative analysis is executed in a

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

7 doi: 10.2313/NET-2018-03-1_02

WiFi-based network for a publish/subscribe use case and
therefore utilizes CoAP with its observe extension. Very
similarly, [2] discusses the feature differences between the
same two protocols and benchmarks them based on perfor-
mance criteria such as overhead and energy consumption.
In [21] Yokotami and Sasaki measure the performance differ-
ences between HTTP and MQTT in a publish/subscribe sce-
nario. Their comparison is based on bandwidth and server
resource allocation costs for up to 1000 connected IoT de-
vices.

A very detailed performance examination of CoAP, MQTT
and DDS (Data Distribution Service for real-time systems)
is presented in [5] by Chen and Kunz. They quantitatively
compare the protocols’ bandwidth consumption, experienced
latency, packet loss and operation in low quality wireless net-
works in terms of a medical IoT use case.

2. MATHEMATICAL MODEL
In this section we present a very short and simplified mathe-
matical model for deriving the overhead of an arbitrary data
communication protocol in an abstract form. Our goal is to
apply it directly to the protocols described in Chapter 3 and
compare the end results.

Considering the fact that our aim is to compare the overhead
of data communication protocols for the IoT application do-
main, we make the following observations and assumptions,
which will help us simplify our model:

• We are interested only in the size overhead of the
protocol (how much additional control information is
needed to send x amount of application data). This
is of huge importance for constrained devices, such as
IoT nodes, because every additional byte being pro-
cessed implies a higher energy consumption.

• Latency is not taken into consideration since it is strongly
dependent on the physical properties of the underlying
network. We focus on application data protocols which
can be utilized in networks with different physical at-
tributes.

• Following the OSI layering model [4], data protocols
have the same overhead for the Physical (L1), Data
Link (L2) and Network Layers (L3) when they are used
in the same environment. Therefore we are interested
in comparing the overhead differences starting with the
Transport Layer (L4).

• For the sake of simplicity we assume that no IP frag-
mentation is taking place which holds true in many
constrained networks [19, Section 4.6]. This assump-
tion implies a payload size of less than 1024 Bytes for
the data protocols that were chosen, which is further
justified in Chapter 3.2.

• Whether or not the application data is compressed is
completely irrelevant to the model. This is because the
payload is represented by its total size in the model
calculations.

• A typical IoT use case is when a device sends data (e.g.
sensor values) to a server or a gateway in a particular

Parameter Description Constraints
p Sum of the size of the head-

ers from Layer 1, 2 and 3
that are present in every
sent packet.

p ∈ N

b Indicates whether the data
protocol has an opening and
closing handshake (b = 1) or
not (b = 0).

b ∈ {0, 1}

Ho Size of the opening hand-
shake in Bytes (Layer 4 up-
wards).

Ho ∈ N0

Hc Size of the closing handshake
in Bytes (Layer 4 upwards).

Hc ∈ N0

n Number of the available
communication slots until
the connection is closed.

n ∈ N

xi Size of the application data
in Bytes that is to be sent in
communication slot i.

xi ∈ N0, ≤ 1024

hi Size of the data protocol
header in Bytes that is
needed to wrap xi.

hi ∈ N

Table 1: Description of the parameters used in the
mathematical model for evaluating the overhead of
an arbitrary data protocol.

time slot (also known as a communication slot) after
it has established connection. In the remaining time
it would normally process time critical tasks or simply
enter a deep sleep mode to save energy. For the sake
of simplicity but still evaluating a realistic use case, we
restrict ourselves only to upstream communication and
examine each protocol in a scenario where the client
(an IoT device) is the data source and the server is the
data collector.

In Table 1 are presented the parameters which describe our
abstract data protocol model.

An important observation is that for CoAP [19, Section 3]
and MQTT [1, Section 3.3] the headers that wrap the appli-
cation data have a constant size. Hence for both protocols
holds:

hi = hj ,∀i, j ∈ {1, 2...n}
For the WebSocket protocol the headers that wrap the ap-
plication data differ with at most 2 Bytes in size [13, Section
5.2]. Therefore for WebSocket holds:

|hi − hj | ≤ 2, ∀i, j ∈ {1, 2...n}

Considering the above observations and for simplification
reasons, with negligible error we assume a constant header
size:

h := hi = hj , ∀i, j ∈ {1, 2...n}

Furthermore, we define Dapp as the total amount of appli-

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

8 doi: 10.2313/NET-2018-03-1_02

cation data that will be sent in a single connection:

Dapp :=
n∑

i=1

xi = nx̃ (1)

where x̃ is the average of all xi.

Analogously we obtain the total amount of data (including
all L1-L7 overheads) that is sent when Dapp is dispatched
as Dtotal:

Dtotal := b(c1p+Ho)︸ ︷︷ ︸
Opening Handshake

+
n∑

i=1

(p+ hi + xi)

︸ ︷︷ ︸
Sending of Dapp

+ b(c2p+Hc)︸ ︷︷ ︸
Closing Handshake

= bp(c1 + c2) + np︸ ︷︷ ︸
L1−L3 overhead

+ bHo + bHc + nh︸ ︷︷ ︸
L4−L7 overhead

+ nx̃︸︷︷︸
Dapp

(2)
where c1 and c2 are the number of packets that are needed
to complete the opening and closing handshake respectively.

Hence the actual data protocol overhead for n communica-
tion slots is given by the overhead sum between Layer 4 and
Layer 7:

ω(n) := bHo + bHc + nh (3)

Furthermore, for the protocol’s throughput τ we obtain:

τ(n, x̃) =
Dapp

Dtotal

=
nx̃

ω(n) + nx̃+ bp(c1 + c2) + np

(4)

Obviously ∀n, x ∈ N.τ(n, x̃) < 1 and τ(n, x̃) is a strongly
monotone increasing function. We use this observation in
Chapter 4.

3. THEORETICAL PROTOCOL OVERHEAD
ESTIMATION

In this section we apply the mathematical model described
in Chapter 2 for the WebSocket, CoAP and MQTT proto-
cols respectively. We do this by giving the exact Layer 4
to Layer 7 costs and approximating where necessary. En-
cryption layering with Transport Layer Security (TLS) [15]
for WebSocket and MQTT and Datagram Transport Layer
Security (DTLS) [16] for CoAP is omitted for the sake of
simplicity.

Furthermore proxy and cache optimizations, which can in
many cases boost the performance of the communication
system, are also not taken into consideration. The reason
for this assumption is that proxy usage is very often tightly
coupled to the application’s logic and therefore is not suit-
able for our abstract evaluation framework.

3.1 The WebSocket Protocol
WebSocket is a data protocol that exposes TCP on a higher
abstraction level so that it can be used almost directly by
Web browser applications. It was standardized by the IETF
in 2011 with RFC 6455 [13].

The motivation behind its design was to solve the lack of
asynchronous communication from server to client in HTTP

and provide a long living full duplex connection that can be
integrated in existing HTTP infrastructure [18], making it
suitable for IoT use cases where a real time bidirectional
interaction with the device is desired. The compatibility in
terms of deployment between the two completely different
protocols is achieved via the HTTP upgrade header which
notifies the server to change the protocol from HTTP to
WebSocket.

A WebSocket-based communication stack is layered on top
of TCP. Therefore the client and server should not take care
of data fragmentation or packet acknowledgement. Simi-
larly to HTTP, a WebSocket connection can be secured with
TLS. In most cases the real application protocol (defined as
subprotocol in [13, Section 1.9]) is layered directly over the
WebSocket, which means that WebSocket is used only for
the connection and does not create any constraints to the
business logic of the system.

The life cycle of a non-TLS secured WebSocket connection
is shown on Figure 1. It consists of:

• A 3-way TCP opening handshake that costs approxi-
mately 60 Bytes1.

• A 2-way WebSocket opening handshake. Its size can
vary based on the connection meta information such as
the endpoint and server hostname [13, Section 1.3]. A
good approximation is ≈ 310 Bytes (Client side ≈ 170
Bytes, Server side ≈ 140 Bytes).

• A routine for sending the actual application data over
WebSocket. Each packet that is not buffered by the
sender (i.e it is sent directly) is wrapped in a frame
of total size 12 or 14 Bytes. Frames are used in-
stead of a direct streaming approach in order to pre-
vent mandatory buffering and to allow dynamically ad-
justable multiplexing of the duplex communication in
future versions of the protocol [13, Section 5.2]. Fur-
thermore, very often resource-constrained IoT devices
cannot support a buffering mechanism because of lack
of enough memory.

• A 2-way WebSocket closing handshake, which consists
of two empty frames, 14 Bytes each [13, Section 1.4].
Thus it has a total size of 28 Bytes.

• A 3-way TCP closing handshake that costs approxi-
mately 60 Bytes.

Hence we obtain together with the TCP message and ac-
knowledgement wrapping of the WebSocket messages the
approximated values for our overhead estimation model in
Table 2.

From that we directly derive the final representation of the
WebSocket data protocol overhead, using Equation 3:

ωWebSocket(n) ≈ 600 + 54n (5)

1We assume that the TCP header size is 20 Bytes (TCP
header options are not considered)

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

9 doi: 10.2313/NET-2018-03-1_02

Figure 1: Life cycle of a bidirectional WebSocket
connection

Parameter Value
b 1
Ho ≈ 430
Hc 168
h 54

Table 2: Model values for the WebSocket protocol

3.2 Constrained Application Protocol
The Constrained Application Protocol (CoAP) is a web trans-
fer protocol that follows the request-response communica-
tion pattern (Figure 2) and is intended for use with con-
strained nodes and networks in machine-to-machine (M2M)
applications. The protocol was officially standardized by the
IETF in June 2014 with RFC 7257 [19].

CoAP’s general purpose is to allow a subset of the convenient
REST architecture that HTTP provides for the Web [8] to be
utilized by applications running on microcontrollers. Typi-
cally, microcontrollers have limited hardware resources such
as memory, CPU power and energy and often communicate
through constrained networks such as 6LoWPAN [14]. This
makes the direct utilization of REST with the full HTTP
stack hard. Nevertheless, CoAP can be further extended
to support the observe communication pattern by executing
augmented GET requests [9].

To provide flexibility and address the constrained nature of
the nodes, CoAP is layered over UDP. Using TCP instead
of UDP is theoretically possible but not standardized. Ad-

Figure 2: The CoAP client requests resources from
the server by specifying a Request Verb and an end-
point. The server responds accordingly with the re-
quested resource.

Parameter Value Note
b 0 No handshake
Ho 0 No handshake
Hc 0 No handshake
h 38 non-confirmable request with

non-confirmable response
h 50 non-confirmable request with

confirmable response
h 38 confirmable request with pig-

gybacked response
h 50 confirmable request with sepa-

rate non-confirmable response
h 62 confirmable request, separate

confirmable response

Table 3: Model values for the CoAP protocol and
all request/response message types (upstream com-
munication only)

ditional layering over DTLS secures the connection [16].

CoAP deals with the lack of order and unreliable transmis-
sion of UDP datagrams by utilizing a very simple messaging
layer over the actual request/response. Thus important and
time-critical packets can be acknowledged which is a very
simple form of an adjustable quality of service (QoS) [19,
Section 4]. A CoAP request can be in either confirmable
or in non-confirmable message. In case of a confirmable re-
quest, the server must send an acknowledgement message.
This message can either contain the response (called pig-
gybacked response) or be empty (the response is sent sep-
arately). Following the same strategy, separate responses
can be wrapped inside either confirmable or non-confirmable
messages [19, Section 4.2].

CoAP is intended to be used without IP fragmentation.
Hence problems can occur when larger amounts of data need
to be transferred (example: Over-the-Air firmware updates).
Therefore RFC 7959 proposes a blockwise transfer technique
for CoAP messages [3]. However, a payload size of 1024
Bytes can be assumed to be transported without any frag-
mentation through a normal not constrained network [19,
Section 4.6].

The CoAP request/response header has a fixed size of 11
Bytes when cache is disabled. For our estimation we use a 4
Bytes long token to match requests with responses which is
the half of the allowed length [19, Section 3]. An acknowl-
edgement message costs exactly 4 Bytes and the underlying
UDP header is 8 Bytes long. With this information and the
assumption that the application data is transferred by the
client in an upstream manner (for example via POST re-
quests) and the server’s response does not contain any pay-
load but only control information such as status code, we
obtain the protocol overhead for all 5 different possibilities
of the request/response life cycle (Table 3).

Thus we can conclude:

38n ≤ ωCoAP (n) ≤ 62n (6)

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

10 doi: 10.2313/NET-2018-03-1_02

3.3 MQTT
The MQTT protocol is a client-server publish-subscribe mes-
saging transport protocol. It was created in 1999 because of
a use case where a protocol for minimal battery loss and min-
imal bandwidth connecting oil pipelines over satellite con-
nection was needed [10]. The current version is 3.1.1, which
as of 2014 is an OASIS and as of 2016 an ISO standard [1,
11].

MQTT is designed with simplicity in mind. It is lightweight
and similarly to CoAP is suitable for machine-to-machine
communication in constrained environments, where the code
footprint and network bandwidth are scarce. It is layered
over TCP and can be secured with TLS. In general, MQTT
can function over an arbitrary transport protocol that pro-
vides ordered, lossless bi-directional connections. Hence it
can be even layered on top of The WebSocket Protocol (Chap-
ter 3.1), which makes possible writing browser-based MQTT
clients.

Although the protocol is TCP based, it provides three dif-
ferent levels for Quality of Service (QoS) for the message
delivery [1, Section 4.3]:

• QoS 0 where messages are assured to arrive at most
once, hence can be lost when connection problems oc-
cur. In most cases QoS 0 is enough since MQTT can
take advantage of TCP’s connection reliability mecha-
nisms.

• QoS 1 where messages are assured to arrive but dupli-
cates can occur. This level requires a 2-way handshake
for each sent message.

• QoS 2 where messages are assured to arrive exactly
once. This level and QoS 1 are intended for systems
where TCP’s mechanisms are not enough - for exam-
ple transaction systems or services that are unreliably
interconnected on the physical level such as satellites.
QoS 2 requires a 4-way handshake for each sent mes-
sage.

QoS is important because it allows controlling the proto-
col overhead and thus the network can manage its quality
alone when bandwidth or connection problems occur. Fur-
thermore, QoS levels 1 and 2 imply a session which makes
MQTT stateful when needed.

An MQTT connection is exactly one of the following two
types:

1. Publishing Connection - A client connects to the server
(also known as message broker) to publish multiple
messages during the lifetime of the connection. (Figure
3).

2. Subscription Connection - A client connects to the bro-
ker and subscribes to message topics. During the life-
time of the connection it receives the publications of
other clients which are forwarded by the broker.

Generally speaking, the message broker acts as an inter-
mediary between the publishers and subscribers and makes

Figure 3: Connection life cycle of a client publishing
information to an MQTT broker

Figure 4: MQTT based publish-subscribe communi-
cation between peers

sure that the messages are delivered, based on the QoS (Fig-
ure 4). Without loss of generality, we evaluate the publishing
connection since the subscription connection is identical and
provides exactly the same overhead. Moreover, we are not
taking into consideration the in-built username/password
mechanism that MQTT provides because TLS layering is
omitted. From a security point of view sending the au-
thentication credentials in plain text makes no sense and
in Chapters 3.1 and 3.2 we have evaluated the WebSocket
and CoAP protocols respectively without any authentication
mechanism.

We take the TCP overhead into consideration as described
in Chapter 3.1. The MQTT fixed header is exactly 2 Bytes
long [1, Section 2.2] and considering the message exchange
algorithms described in [1, Section 3], we present in Ta-
ble 4 the values for our overhead estimation model. With
that said we conclude the lower (QoS 0) and upper (QoS 2)

Parameter Value Note
b 1 Handshake present
Ho ≈ 200 TCP and MQTT opening

handshake with Will message
Hc 102 TCP and MQTT closing hand-

shake
h 42 QoS 0, no authentication
h 86 QoS 1, no authentication
h 174 QoS 2, no authentication

Table 4: Model values for the MQTT protocol for
all QoS message types (publishing connection only)

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

11 doi: 10.2313/NET-2018-03-1_02

bounds for the overhead of an MQTT-based communication:

300 + 42n ≤ ωMQTT (n) ≤ 300 + 174n (7)

4. EXPERIMENTAL PROTOCOL OVERHEAD
COMPARISON

We now present an empirical validation of the protocol over-
head estimations that were made in Chapter 3.

4.1 Structure of the Experiment
The experiment was conducted in a local WiFi network with
IPv4-based addressing and the following hardware:

• Client - Raspberry PI model B (Quad Core 1.2GHz
Broadcom BCM283, 1GB RAM) running Ubuntu Core
Linux 16 with kernel version 4.4.0-72-generic.

• Server - Laptop with Quad Core CPU Intel i7-2620M
3.4GHz, 8GB RAM, running Fedora Linux with kernel
version 4.12.14-300.fc26.x86 64.

The total amount of bytes for each execution was measured
with Wireshark [6]. When needed, packet loss was simulated
on the client side using the Linux kernel module netem2.
Further information about the used software components
and the code for the clients and servers can be found in
Appendix A.

4.2 Experiment Results
We use the throughput equation (Equation 4) we derived in
Chapter 2 to compare the protocols. Moreover we also know
from the same equation that the following statement holds
for arbitrary protocols A and B:

ωA(n) < ωB(n)⇒ τA(n, x̃) > τB(n, x̃)

Thus from equations 5, 6 and 7 by comparing the estimated
constants, we expect that CoAP with non-confirmable re-
quests and responses will perform at best, then MQTT with
QoS 0 and the WebSocket protocol will share the second and
third place.

On Figure 5 we can see the experiment results for up to
100 communication slots, i.e. up to 100 data packets were
sent through the lifetime of a single connection, and aver-
age application data size of 128 Bytes with no packet loss.
For the MQTT and CoAP protocols we have used those
protocol configurations, which showed the lower and upper
overhead bounds respectively according to equations 6 and
7. Those are QoS 0 and QoS 2 for MQTT (Chapter 3.3)
and non-confirmable requests/responses and confirmable re-
quests with separate confirmable responses for CoAP (Chap-
ter 3.2).

On Figure 6 we can see the results for the same experiment
configuration but with a simulated 20% packet loss on the
client side. Important to note is that packet losses are in-
dependently distributed, i.e. networking burst was not con-
sidered. Furthermore, non-confirmable CoAP messages are
not retransmitted and thus completely lost when datagrams
are dropped. This explains the unusually higher throughput
values for the non-confirmable CoAP scenario.

Figure 5: τ(n, x̃) for x̃ = 128 and no packet loss

1 5 15 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

n - Number of communication slots

τ
(n
,1

2
8
)

WebSocket

MQTT QoS 0

MQTT QoS 2

CoAP non-con request/response

CoAP con request/(sep) response

Figure 6: τ(n, x̃) for x̃ = 128 with 20% packet loss

1 5 15 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

n - Number of communication slots

τ
(n
,1

2
8
),

2
0
%

lo
ss

WebSocket

MQTT QoS 0

MQTT QoS 2

CoAP non-con request/response

CoAP con request/(sep) response

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

12 doi: 10.2313/NET-2018-03-1_02

As expected, CoAP has a constant throughput when no
datagrams are lost since it lacks an opening/closing hand-
shakes. On the other hand, MQTT and WebSocket start
with a poor throughput because of the handshake costs but
outperform CoAP with confirmable requests and separate
confirmable responses after approximately 15 communica-
tion slots (Figure 5). However, this tendency does not hold
true when packets are lost. In that case CoAP with con-
firmable messages outperforms both TCP data protocols al-
though all three of them converge to the same throughput
rate for larger number of communication slots (Figure 6).
In the general case, MQTT with QoS 2 performs at worst
because of the large number of control messages that are
exchanged between the client and the server. As a second
result of that its overall throughput grows much slower than
the one of its QoS 0 companion but remains almost the same
when packets are lost.

The experiment was executed two more times with the same
amounts of communication slots and payload sizes of 64 and
512 Bytes respectively, without packet loss. An important
observation is that MQTT QoS 0 outperforms WebSocket
faster with bigger payloads and all protocols achieve a more
than two times better throughput when the average applica-
tion data size is increased from 64 to 512 Bytes. In the lat-
ter case CoAP’s best throughput jumps from 38% to 83%.
MQTT with QoS 0 improves its throughput from 29% to
77%.

As it can be observed in all cases of the experiment exe-
cution, our theoretical estimations in Chapter 3 are correct
and CoAP with non-confirmable requests/responses demon-
strates the best throughput, followed by WebSocket and
MQTT with QoS 0, which share the second place.

5. FURTHER WORK
Important assumptions were made in Chapter 3 in order
to simplify the theoretical overhead estimation model. Not
considering TLS securing for WebSocket and MQTT and
DTLS securing for CoAP is a huge drawback, although the
same results as in Chpater 4.2 are expected. Addition-
ally taking into account cache and proxy optimization best-
practices will surely complicate the model but also allow its
direct utilization in real-world applications.

An important application layer protocol for the IoT domain
which we did not discuss is the Extensible Messaging and
Presence Protocol (XMPP) [17]. Comparing the many dif-
ferent IoT extensions for XMPP to CoAP and MQTT will
be of a huge benefit, considering the fact that XMPP is
heavily used in IoT platforms and services.

6. CONCLUSION
Knowing how much overhead a data protocol generates is
of huge importance in cases where the networking nodes
and the network itself are resource-constrained. IoT devices
face many hardware limitations and as a result of that they
should implement suitable communication protocols.

We showed that the theoretical overhead of CoAP with non-
confirmable requests and responses is the least when com-

2https://wiki.linuxfoundation.org/networking/netem

pared to MQTT and WebSocket for the same amount of
requests and data sent upstream, using an identical physical
connection layer. Utilizing CoAP in this configuration, how-
ever, comes with the disadvantage of a higher probability of
loosing packets. Furthermore, CoAP provides a constant
throughput when no datagrams are lost, which does not al-
ways hold true in constrained networks.

MQTT with QoS 0 demonstrates the second best overhead.
Compared against CoAP, it relies on TCP and hence can
handle lost packets on the Transport Layer. Moreover, MQTT
QoS 0 has a better throughput than CoAP with confirmable
requests and separate confirmable responses, when no packet
loss occurs. Otherwise CoAP’s reliable configuration per-
forms better because of the lighter UDP overhead. Using
MQTT QoS 2 on the other hand generates too much over-
head and causes the protocol to perform at worst. This is
albeit understandable, considering the fact that MQTT QoS
2 was designed for satellite networks where TCP is unreli-
able.

WebSocket demonstrates almost the same throughput as
MQTT with QoS 0. What both of these protocols share
in common is the additional cost that the peers must pay
to open the connection. As the connection is kept alive and
data is being sent, the initialization costs start paying off
and the maximum achievable throughput is reached.

All three protocols increase their throughput when more ap-
plication data is sent in a single dispatch. Rising the average
data packet size from 64 to 512 Bytes improves the overall
throughput more than two times.

The above results compare the three protocols only based
on their overhead. This, however, is not applicable for use
cases where the application’s business logic is tightly cou-
pled to a very specific type of connection. CoAP provides
a request/response mechanism which makes it suitable for
general use cases that do not rely on a long living con-
nection. On the other hand achieving a full duplex asyn-
chronous communication between the client and the server
with CoAP is impossible. If this is desired, WebSocket is to
be considered. When an efficient mass distribution of data
to interested parties in the system is wanted, MQTT should
be chosen.

7. REFERENCES
[1] MQTT Version 3.1.1 Plus Errata 01, Dec. 2010.

[2] S. Bandyopadhyay and A. Bhattacharyya. Lightweight
internet protocols for web enablement of sensors using
constrained gateway devices. In Computing,
Networking and Communications (ICNC), 2013
International Conference on, pages 334–340. IEEE,
2013.

[3] C. Bormann and Z. Shelby. Block-Wise Transfers in
the Constrained Application Protocol (CoAP). RFC
7959, Aug. 2016.

[4] N. Briscoe. Understanding the OSI 7-layer model. PC
Network Advisor, 120(2), 2000.

[5] Y. Chen and T. Kunz. Performance evaluation of iot
protocols under a constrained wireless access network.
In Selected Topics in Mobile & Wireless Networking

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

13 doi: 10.2313/NET-2018-03-1_02

(MoWNeT), 2016 International Conference on, pages
1–7. IEEE, 2016.

[6] G. Combs et al. Wireshark. Web page: http://www.
wireshark. org/last modified, pages 12–02, 2007.

[7] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino,
and G. Reali. Comparison of two lightweight protocols
for smartphone-based sensing. In Communications and
Vehicular Technology in the Benelux (SCVT), 2013
IEEE 20th Symposium on, pages 1–6. IEEE, 2013.

[8] R. T. Fielding and R. N. Taylor. Architectural styles
and the design of network-based software architectures.
University of California, Irvine Doctoral dissertation,
2000.

[9] K. Hartke. Observing Resources in the Constrained
Application Protocol (CoAP). RFC 7641, Sept. 2015.

[10] E. B. HiveMQ. MQTT Essentials: Part 1 Introducing
MQTT. http://www.hivemq.com/blog/mqtt-
essentials-part-1-introducing-mqtt,
2015.

[11] Information technology – Message Queuing Telemetry
Transport (MQTT) v3.1.1. Standard, International
Organization for Standardization, Geneva, CH, June
2016.

[12] T. Maksymyuk, M. Brych, S. Dumych, and
H. Al-Zayadi. Comparison of the iot transport
protocols performance over narrowband-iot networks.
Internet of Things and Ubiquitous Communications,
1(1):25–28, 2017.

[13] A. Melnikov and I. Fette. The WebSocket Protocol.
RFC 6455, Dec. 2011.

[14] G. Montenegro, J. Hui, D. Culler, and
N. Kushalnagar. Transmission of IPv6 Packets over
IEEE 802.15.4 Networks. RFC 4944, Sept. 2007.

[15] E. Rescorla and T. Dierks. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246, Aug.
2008.

[16] E. Rescorla and N. Modadugu. Datagram Transport
Layer Security Version 1.2. RFC 6347, Jan. 2012.

[17] P. Saint-Andre. Extensible Messaging and Presence
Protocol (XMPP): Core. RFC 6120, Mar. 2011.

[18] P. Saint-Andre, S. Loreto, S. Salsano, and G. Wilkins.
Known Issues and Best Practices for the Use of Long
Polling and Streaming in Bidirectional HTTP. RFC
6202, Apr. 2011.

[19] Z. Shelby, K. Hartke, and C. Bormann. The
Constrained Application Protocol (CoAP). RFC 7252,
June 2014.

[20] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and
C. K.-Y. Tan. Performance evaluation of mqtt and
coap via a common middleware. In Intelligent Sensors,
Sensor Networks and Information Processing
(ISSNIP), 2014 IEEE Ninth International Conference
on, pages 1–6. IEEE, 2014.

[21] T. Yokotani and Y. Sasaki. Comparison with http and
mqtt on required network resources for iot. In Control,
Electronics, Renewable Energy and Communications
(ICCEREC), 2016 International Conference on, pages
1–6. IEEE, 2016.

APPENDIX
A. ADDITIONAL MATERIALS
The experiment discussed in Chapter 4 is fully reproducible.
All code used to perform it together with the latest version
of the paper itself are available at
https://gitlab.com/v45k0/iot-data-protocols.

Seminars FI / IITM WS 17/18,
Network Architectures and Services, March 2018

14 doi: 10.2313/NET-2018-03-1_02

