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ABSTRACT

With security and privacy as key matters of evolving impor-
tance in the field of online content distribution, Over The
Top (OTT) providers of video streaming services shifted
their focus towards end-to-end encryption. At the same
time, the demand for online video content has been dra-
matically increasing, as a result of the ever-growing number
of users and the expanding popularity of video streaming
services. While end users benefit from the improvement in
privacy, the change to encrypted video traffic and the high
market demands raise new challenges for Internet Service
Providers in the quest of monitoring service performance
and maintaining a competitive level of quality.

This paper describes current research that addresses the
challenges of detecting streamed video and estimating the
Quality of Experience (QoE) in encrypted traffic. In ap-
proaching these challenges, various methodologies, relying
on network traffic analysis and machine learning-based QoE
classification models, are presented.
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1. INTRODUCTION

The need for improved online security increased substan-
tially side by side with the growth of the Internet. As
a result, the expansion of HT'TPS across the World Wide
Web has gained a strong momentum. Along this trend,
big players in the online video streaming industry switched
to encrypted traffic in delivering their video services. One
of the biggest OTT providers of video streaming services,
YouTube, began the process in 2011 and managed to roll out
encryption using HT'TPS to 97 percent of its total traffic by
2016 [18]. In a similar manner, Netflix’s Internet television
network switched to encrypted traffic in 2016 [16].
Furthermore, Cisco forecasts the global IP video traffic to
increase at a rapid pace in the next 4 years, to an expected
82 percent of all consumer Internet traffic by 2021 [2].
Consequently, the importance of good QoE estimations has
risen considerably, while the QoE management has become
an even bigger challenge for ISPs and mobile operators,
which rely their measurements mostly on deep packet in-
spection [16].

QoE is needed in order to allow ISPs and mobile operators
to assess and improve the quality of their services in order
to remain competitive.
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The end-user QoE is determined based on the evaluation of
certain Key Performance Indicators (KPIs), such as initial
start-up delay, stalling, average video quality in terms of
bitrate and resolution, as well as quality variations. While
these KPIs could be easily extracted from video traffic based
on HTTP, by performing passive network measurements, the
use of HT'TPS prevents the inspection of packet headers and
payload data. In attempt to address this challenge, research
presented in this paper proposes approaches based on Ma-
chine Learning algorithms to statistically relate network- to
application-level metrics, as a solution to detect QoE degra-
dation.

The rest of the paper folds into 3 main chapters. Chapter 2
presents current mechanisms for detecting streamed videos
and provides a brief analysis with regard to their perfor-
mance and accuracy, as well as their impact on the Net
Neutrality principles. Chapter 3 approaches the process of
QoE estimation, describing the KPIs’ classification and pro-
viding a comparison of several machine learning algorithms
used in the referenced research. Finally, Chapter 4 outlines
the state of the art and future trends of QoE estimation and
management development.

2. STREAMING VIDEO DETECTION

The first step in assessing the QoE is the detection of streamed
videos. This section describes approaches to detect YouTube
and Netflix traffic. These approaches rely on the DNS Lookup
method, as well as on fingerprinting the content based on the
video streaming protocol.

2.1 DNS Lookup

As the bitrate and content specific information from en-
crypted traffic cannot be obtained through classic deep packet
inspection techniques, the DNS Lookup method can be used
to at least identify video packets, in case specific server 1P
addresses are known in advance. Research from [14] focuses
exclusively on YouTube traffic and identifies video traffic by
checking the server IP address from either the DNS response
packets or TLS handshake messages. In [14], a video server
IP list is built and constantly updated by checking for a spe-
cific string pattern in the DNS response or SSL/TLS hand-
shake packets. These records are associated with a video
streaming and are removed from the list if they are not hit
within a week.

2.2 Fingerprinting
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Fingerprinting YouTube Traffic

The current implementation of the YouTube video service is
based on two adaptive streaming modes, Apple HTTP Live
Streaming (HLS) and MPEG Dynamic Adaptive Streaming
over HTTP (DASH), both of which adopted SSL/TLS en-
crypted transmission. As a first step, the streaming mode
has to be distinguished. In approaching this challenge, [14]
propose a solution, which relies on the fact that each mode
starts a video streaming session with the transfer of certain
video index files. On one hand, the index file, DASH uses the
“initsegment” file together with the related video files, which
are stored on the same server. On the other hand, for HLS,
the index file "manifest” and the associated video files are
stored on different servers [14]. A second difference between
the two streaming modes resides in the fact that, unlike
DASH, HLS ClientHello messages of the SSL/TLS hand-
shakes contain the specific string "manifest.googlevideo.co”.
Thirdly, the first segment after the TLS handshake differs in
size, depending on the mode. Hence, in HLS, a large video
block is sent right after the handshake, while in DASH, a
small 1.5KB segment is sent from the video server.

Fingerprinting Netflix Traffic

The technology used by Netflix for browser-based streaming,
relies on first encoding the videos as variable bitrate (VBR),
followed by streaming them using DASH via Microsoft Sil-
verlight [16]. According to [16], the combination of VBR
and DASH can produce unique fingerprints for each video.
Furthermore, this pattern is particularly observable for Net-
flix videos, as they have a higher amplitude of the bitrate
variation, compared to other streaming services. The im-
plementation proposed by [16], analyzes Netflix traffic, by
leveraging two tools: adudump and OpenWPM.

The former is a program that can infer the sizes of the appli-
cation data units (ADUs) transferred over each TCP connec-
tion, using the TCP sequence and acknowledgement num-
bers. Being able to distinguish successive video segments of
an HTTPS-protected Netflix stream, adudump provides the
input to the identification algorithm, as can be seen in Table
1.

OpenWPM is a framework used to conduct web measure-
ments, being basically an automated browser, based on Fire-
fox and Selenium, which takes a list of URLs as input and
visits them sequentially.

In the first step, the video database is created using the
two tools to gather the unique information for each Netflix
video, by extracting fingerprints from the first 20 seconds
of playback. In the second step, live traffic is logged from
the network by extracting ADUs larger than 200,000 bytes,
sent from a server on port 443. Finally, the live information
is compared to the existing entries in the database, by per-
forming a kd-Tree Search. Results of the success rate and
detection time, obtained by [16], can be seen in Figure 1,
respectively Figure 2.

2.3 Net Neutrality

While on the one hand, the goal of QoE in mobile traffic is
to optimize the end user’s perceived quality and increase the
level of satisfaction, on the other side, traffic management
measures impact other dimensions like neutrality and pri-
vacy. Not only the QoE monitoring and measurement are
challenging tasks, but also the QoE control and optimiza-
tion constitute a demanding duty. In order to fulfill clients’
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Figure 1: Cumulative probability of identifying a
video before a specified amount of time has elapsed.
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Figure 2: Netflix video overhead due to HTTP head-
ers and TLS (Home, 3830 kbps encoding).

expectations and maintain their market shares on a compet-
itive market, ISPs have to manage resources in a way that
the QoE is not negatively impacted, while achieving cost ef-
ficiency. In a heterogeneous environment with diverse usage
contexts, limited bandwidth and changing conditions, net
neutrality is often affected [8].

From the technical point of view, in order to address per-
formance issues and cope with congestions, ISPs use traffic
prioritization schemes. As a result, communication services
classified to be more valuable to the end user, like voice calls,
are routed with higher priority than other services [8]. How-
ever, congestion issues can be solved through infrastructure
updates to expand capacity.

Moreover, [10] describe also other prioritization schemes,
stronger related to economic and financial arguments, rather
than technical ones. Although wireless ISPs like AT&T and
Verizon justify these restrictions as being related only to
capacity issues, they offer monthly data plans that differen-
tiate between the applications that are allowed to access the
Internet. As a result, the tethering functionality of smart-
phones can be used only with a monthly data plan that
allows it.

According to [6], ISPs justify using borderline practices for
the traffic management for the following reasons: to ensure
security, to relieve congestions, to ensure adequate QoS for
selected traffic. The first reason is used when justifying
blocked traffic, the second one to justify shaping on file-
sharing traffic, while the third one to justify exclusive QoS
for the ISPs own Voice over IP (VoIP) traffic.

In conclusion, the net neutrality issue remains an open de-
bate point [7], as in absence of detailed regulatory policies,
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ISPs continue to use the same traffic management practices,
while research like [8] admittedly falls short in providing
feasible solutions.

3. QOE ESTIMATION

Estimating the QoE from encrypted traffic is based on sev-
eral KPIs, which constitute the ground input for the QoE
estimation models. The most important KPIs [17], as well as
the most common machine learning techniques are described
below.

3.1 Key Performance Indicators

Initial Delay

The initial delay or start-up delay refers to the time span be-
tween a user’s video request and the actual playback begin.
This delay comprises two components, the network delay
and the initial buffering delay. The first delay involves the
required time for sending the request to the server, as well as
receiving the first segments and is influenced by factors like
server response times, DNS lookups and CDN redirections
[3]. The second delay refers to the necessary time to fill the
initial buffer required to permit a seamless playback [4].

As stated in [11] and [19], the initial delay has a small impact
on the Mean Opinion Score (MOS), which is only marginally
influenced by the length of the video stream, as can be seen
in Figure 3.
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Figure 3: One stalling vs. initial delay for YouTube
QoE for videos of duration V = 30 s and V = 60 s,
respectively.

Stalls

A stall occurs when the content consumption rate exceeds
the average download rate due to a limited network through-
put. This forces the playback to freeze until the buffer is re-
filled with sufficient content segments. The severity of stalls
is influenced by their duration and frequency during a video
playback.

As reported by [12], the combination of the two factors
strongly influences the MOS, being the most relevant KPI,
with the highest impact on the QoE. Furthermore, as can
be seen in Figure 4, sector AB of the chart is mainly a dark
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color region, indicating a low MOS, while the light color
regions, indicating a high MOS, shown in sectors CA and
BC are the result of zero packet loss rate, respectively zero
packet delay.
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Figure 4: The radar chart mapping network QoS
with QoE.

Average Representation Quality

This metric represents the average quality of all streamed
video segments during a video session and is the result of
the overall media throughput, measured in bits per second.
However, this KPI is relevant only for video sessions based
on HTTP Adaptive Streaming (HAS).

According to [9], a high average representation quality is
correlated to superior user experience, as can be observed in
Figure 5.
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Figure 5: Bit rate switching for H.264 in WiFi.

Representation Quality Variation

Finally, the changes in the representation quality throughout
a video session can significantly affect the overall QoE. This
metric is based on two components, the frequency of quality
changes and their amplitude. The former counts the number
of quality switches during a video session and is influenced
by the changing network conditions. The latter defines the
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difference in quality between two consecutive video segments
in the attempt to avoid buffer depletions or to increase the
video quality when the network conditions allow it.

As presented in [5], studies performed in mobile networks
have shown that the representation quality variations have
a high impact on the overall QoE, as can be seen in Figure
6.
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Figure 6: Frequency and time on highest layer
changed simultaneously.

3.2 Machine Learning

Several studies propose machine learning, as a technique to
quantify the correlation between QoS and QoE. Machine
learning methods are used to predict the QoE based on in-
ference rules extracted from a set of measurements reflecting
the network state and the user’s perception [1].

In [14], the authors propose a Machine Learning-based bi-
trate estimation system, which parses the bitrate informa-
tion from IP packet level measurements. In order to assess
the QoE based on the bitrate of video segments, a deci-
sion tree classifier is used. In the first step, YouTube traffic
is identified based on the DNS Lookup method. After the
HTTPS adaptive streaming protocol has been identified, the
bitrate identifiers are extracted and the KPIs are computed
in order to assess the vide QoE, as can be seen in Figure 7.
The solution proposed by [13] focuses on mobile devices and
is based on a model built using encrypted network traffic
and information collected on a client device, as illustrated
in Figure 8. The process consists of three steps, data col-
lection, data processing, and model building. Data are first
collected by leveraging the YouTube Iframe API [13], which
is run on the client to monitor application-level data and
extract relevant KPIs. On the one hand, network traffic is
captured in order to calculate traffic features like the av-
erage throughput or inter-arrival time. On the other hand,
the collected application-level data, like the initial delay and
stalling duration, are stored into log files, which are uploaded
to the YouQ server. Based on the collected information, 33
traffic features for each video are derived to form a dataset
for training the model.

Finally, a high, medium or low quality level is assigned to
each video. In order to assess the quality levels, different
algorithms were run, using the Waikato Environment for
Knowledge Analysis (Weka), which is a suite of machine
learning software written in Java.

3.2.1 Common Machine Learning Algorithms
This section briefly describes the principles of the most com-
mon classification algorithms used in [13] and provides an
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Figure 7: Architecture of QoE assessment system.

overview of the classification results.

OneR

OneR is a simple learning algorithm that creates a rule for
each predictor in the data and then selects the rule with the
fewest prediction errors as its single rule.

Naive Bayes

Naive Bayes is a supervised learning algorithm that uses
every pair of features, as being equally relevant and statis-
tically independent.

J48

J48 is an algorithm used to generate a decision tree, based
on a top-down strategy to split the dataset on each attribute
depending on its value.

SMO

The sequential minimal optimization (SMO) algorithm is
based on finding a hyperplane that maximizes the minimum
distance to the training set.

Random Forest

The Random Forest is a classifier that operates by construct-
ing a multitude of decision trees and distribute instances in
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Figure 8: Approach for QoE classification based on

network features.

Table 1: adudump trace of Home (3830 kbps en-
coding). These are segments 171-180 from Figure

2.
Timestamp Local PC Dir. Netflix Server Size (B)
1471357732.77583 134.240.17.111.31177 > 198.45.63.167.443 756
1471357736.70148  134.240.17.111.31177 < 198.45.63.167.443 2817667
1471357736.77902  134.240.17.111.31177 > 198.45.63.167.443 756
1471357740.89304 134.240.17.111.31177 < 198.45.63.167.443 2816159
1471357740.97057  134.240.17.111.31177 > 198.45.63.167.443 756
1471357744.45695  134.240.17.111.31177 < 198.45.63.167.443 2822089
1471357744.53453  134.240.17.111.31177 > 198.45.63.167.443 756
1471357748.76052  134.240.17.111.31177 < 198.45.63.167.443 3117490
1471357748.83926  134.240.17.111.31177 > 198.45.63.167.443 756
1471357752.72718  134.240.17.111.31177 < 198.45.63.167.443 2548098
1471357752.80466  134.240.17.111.31177 > 198.45.63.167.443 756
1471357756.87447  134.240.17.111.31177 < 198.45.63.167.443 3014236
1471357756.95195 134.240.17.111.31177 > 198.45.63.167.443 756
1471357760.48768  134.240.17.111.31177 < 198.45.63.167.443 2263764
1471357760.56593  134.240.17.111.31177 > 198.45.63.167.443 756
1471357764.73616  134.240.17.111.31177 < 198.45.63.167.443 2782180
1471357764.81363  134.240.17.111.31177 > 198.45.63.167.443 755
1471357768.73659  134.240.17.111.31177 < 198.45.63.167.443 2577683
1471357768.81421  134.240.17.111.31177 > 198.45.63.167.443 756
1471357772.97218  134.240.17.111.31177 < 198.45.63.167.443 2770492

the class the most decision trees agree on.

3.2.2  Classification Results

As can be seen in Figure 9, the accuracy of the selected
algorithms ranges between 74.62% and 80.18% in classifying

the videos according to the 3 QoE classes.

Algorithm Selected features Accuracy

OneR throughputMedian 74.62%

Naive Bayes avgPacketSize, averagelnterarrivalTime, minimallnterarrivalTime, 77.35%
sizeThroughTimeMedian, push, interarrivalTimeThroughTimeMedian,
initialThroughput2

SMO maximalSizeThroughTime, minimallnterarrivalTime, 77.35%
sizeThroughTimeMedian, maxThroughputThroughTime,
dupack, effectiveThroguhput

148 minimallnterarrivalTime, avginterarrivalTimeThroughTime, 78.20%
sizeThroughTimeStdDev, interarrivalTimeThroughTimeMedian,
throughputMedian

Random Forest avgPacketSize, minimalSizeThroughTime. 80.18%

push, initial Throughput 10, minThroughputThroughTime,

interarrivalTimeThroughTimeMedian, dupack, effectiveThroughput

Figure 9: Classification results.

4. FUTURE TRENDS

While many studies rely on machine learning techniques to
estimate the QoE, most of them use only a limited number of
influence factors, while few approaches map simultaneously
the impact of multiple factors to obtain a multidimensional
QoE model [13].
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Future work also focuses on developing the existing plat-
forms in order to increase the degree of support for different
devices, operating systems, network types and other envi-
ronment variables [15] .

S. CONCLUSION

While the field of online content distribution has been con-
tinuously gaining momentum, the importance of good QoE
has significantly increased. In order to remain competitive,
ISPs need to adapt their QoE detection techniques for en-
crypted traffic, as the big OTT providers of video streaming
services already use end-to-end encryption to a big extent.
Existing studies approach this challenge relying on the cur-
rent video streaming protocols and ML techniques, but are
limited to specific platforms, devices, operating systems and
types of networks. While the presented ML methods show
promising results, there is still room for improvements in the
areas of performance and accuracy.

On the other side, current work shows that the legislation
lacks consistency in regulating the QoE and traffic manage-
ment to preserve principles of the net neutrality.
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