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ABSTRACT
This paper presents the state-of-the-art in malware detec-
tion and what properties of malware they depend on. Un-
derstanding the connection between different malware and
detection methods is required for further research and design
of tomorrow’s malware detection. The value of information
is big today considering trade secrets and the amount of
personal data available on our computer systems.

Three analysis methods are covered. Static analysis detects
simple malware well, but has known flaws that can be used
to circumvent detection. Dynamic analysis with its focus on
recognizing behavior has robustness and generalization, but
raises questions regarding the future complexity of the anal-
ysis. Automating malware detection with machine learning
shows potential although the current techniques suffer from
a high false positive rate.

The kernel is a source of trust in malware detection, which
testaments the importance of its integrity. Preventing mal-
ware from hijacking the kernel can be done with signed
drivers or protection of function pointers.
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1. INTRODUCTION
Malicious software (malware) is software designed to cause
unwanted behavior on a computer. Incentives to write and
deploy malware can be economic, cultural, social, or politic [20],
which can affect vital parts of society such as healthcare,
finance and trust. The United Kingdom government esti-
mated in 2011 that the overall cost of cyber crime to its
economy amounts to £27 billion [12].

A malware infected computer can be used as a resource to
spread the malware further or provide services such as spam.
A specific network of infected computers, Cutwail, was re-
ported by Symantec [34] to be responsible for 46.5% of spam
on the Internet and estimated by [43] to have made profits
from $1.7 million to $4.2 million in the time period 2009-
2011.

Malware can also be used to gain unauthorized access to in-
formation. Trade secrets are an important economic asset to
companies. Hiding information instead of making it gener-
ally known can give an advantage to businesses, but a trade

secret has no exclusive rights compared to a patent, which
makes them a valuable target for cyber espionage. [38]

This paper reviews malware detection techniques and what
aspects of malware they depend on. Background to the re-
quirement of sophisticated detection methods is covered in
Section 2. Two system penetration techniques are listed in
Section 3 and followed by detection methods in Section 4.
Various ways to protect kernel integrity is found in Section 5.
Finally the methods are assessed and concluded in Section 6
and 7 respectively.

2. BACKGROUND
Advanced Persistent Threats (APT) are malware designed
to target a specific organization with often custom written
malware not yet recognized by anti-malware detection [7].
Thomson [47] addresses the risk of APTs and the difficulty
of detecting them due to their specialized nature. An APT
has long term goals and propagates slowly and carefully to
get to its objective, which is greatly contrasted by most tra-
ditional malware that operates on a hit-and-run basis [8].
Anti-malware software has been developed to focus on the
common malware that tries to spread and act as fast as
possible to infect the widest possible target group before be-
ing analyzed and protected against. The meticulous nature
of APT in addition to its narrow target group reduces the
chance of it being discovered and analyzed by commodity
anti-malware. More advanced detection methods are there-
fore needed to combat the APTs.

An important part of APTs lies in the preparation for the
attack. The target group and system must be studied closely
to enable system penetration and avoiding detection. Sys-
tem penetration methods are discussed further in Section 3
and is the first real contact between the target and the mal-
ware. The exploit can be launched using a small infection
file, that after compromising the system and stealing valid
system credentials, downloads the real malware modules and
then erases itself to hide the intrusion [7]. The APT is then
on the system with valid user access and no direct connec-
tion with the original infection point.

The custom written nature of the APT means that anti-
malware has no record of it and therefore no immediate
reason to suspect its files. Analyzing the behavior is also
a challenge as it attempts to mirror user behavior to pre-
vent its valid access from getting revoked. While covert on
the system, the APT tries to get access to the desired data,
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which is to be exported outside the system for collection.

3. SYSTEM PENETRATION
The first step of malware propagation is to infect a host
with the malware. There exists a wide variety of methods
to distribute malware, but the two that will be covered here
are social engineering and quantum insert. Both have in
common that they can be used for malware attacks against
specific targets, a desirable trait for APTs.

3.1 Social Engineering
Social engineering is a mix of psychology, human nature and
manipulation. It is used to manipulate people to do some-
thing desirable for you even though it might be undesirable
for them. Social engineering is comparable to a magician,
which with subtle cues masterfully diverts your attention to
whatever they want while they perform the magic.

Technical countermeasures to malware are useless if a user
can be made to bypass them. People are often called the
weakest link in the security system and it is their naivety
and trust that social engineering methods try to exploit. A
simple trust in a friend sending you a link via social media
can be enough to compromise a system. The botnet Koob-
face [46] has reportedly access to over 1800 compromised
hosts, access which was gained by spamming enticing links
on Twitter and Facebook. Infected accounts become part
of the spreading as they are used by the botnet to further
reach out to their friends with links.

Emotions are an important part of social engineering. In-
stilling feelings such as fear, greed, sympathy or anger can
make us do things we otherwise would not do and have been
abused since the beginning of time. Abraham et al. [1] sum-
marizes social engineering malware principles and draws the
conclusion that to combat social engineering - purely tech-
nical solutions are not enough. They suggest improvements
by raising awareness, further monitoring, security policies
and motivating users to follow secure practices.

Phishing is a social engineering technique where the user is
tricked into giving away sensitive information, often through
e-mails or social media, by disguising itself as a legitimate
source [45]. According to the Anti-Phishing Working Group,
the number of phishing attempts increased by 65% from
2015 to 2016 yielding a total of 1,220,523 attempts in 2016 [3].

3.2 Quantum Insert
Quantum insert is a technical approach to implant mal-
ware on a targeted set of users by utilizing an inherent flaw
in TCP. The Intercept has reported usage of Quantum In-
sert by the governmental intelligence bureaus NSA [19] and
GCHQ [18] to facilitate unauthorized surveillance and mon-
itoring of traffic.

When a desired target opens up a connection with a web-
site, the attacker snoops on the TCP packet containing the
HTTP request and quickly spoofs an answer packet that
would redirect the target to an infected website instead [22].
All required information to create a valid answer packet ex-
ists in the outgoing packet, so the target’s system will accept
the first one that reaches it. This puts requirements on the

attack, since the attacker’s server must be in close vicinity
to the target to get a minimal latency.

Performing an attack like this requires processing of huge
amounts of data in real-time to find interesting users and
a nearby server infrastructure that can send the spoofed
packet and serve a malicious website. An infection similar
to Quantum Insert is China’s Great Cannon [29], which in-
tercepts and injects malicious Javascript code into packets
with a set of target addresses.

Detecting Quantum Insert is not straightforward, but [22]
suggests multiple symptoms, which can indicate an ongoing
attack: (1) duplicate TCP packets with different payloads,
(2) anomalies in Time-To-Live values due to different hop
counts in the routes and (3) other inconsistent values in
the TCP header. Although duplicate TCP packets could
indicate Quantum Insert, being too considerate with dupli-
cates might make the system significantly weaker to denial-
of-service attacks using flooding [33].

4. DETECTION METHODS
The following sections will reason about detection methods
used by anti-malware and various countermeasures by the
malware to avoid them. An aspect of the malware that can
be used for identifying it as such is called a feature. The
detection methods focus on different parts of the malware
to extract features from.

There are two ways in general to analyze malware. Dynamic
analysis, which is described in Section 4.2, and static anal-
ysis described below.

4.1 Static Analysis
Static analysis is done without running any of the malware’s
code. The malware therefore will not be executed by the
computer unless deemed safe by the analysis. A common
technique used in static analysis is syntactic signature detec-
tion, but alternative detection methods with semantic sig-
natures and heuristics have been proposed.

A first step before the malware code can be deconstructed
and analyzed, is unpacking and/or decryption [35]. Mal-
ware uses compression to reduce the size of their executable,
which causes a lower impact transfer of the malware to the
to be infected system. Unpacking a file requires knowledge
of the packing method, which means that anti-malware soft-
ware can not always unpack them. Denying packed files al-
together is not a feasible solution, since legitimate software
also utilizes packing.

The simplest version of malware utilizing packing would con-
sist of a malign binary, which is the payload, and decryption
code that can unpack the malign code and run it. Since in
such malware, the decryption code is constant, anti-malware
can analyze the decryptor and recognize malware if it has
been detected before [57]. Another option to combat pack-
ing is to let the malware unpack itself and analyze its code
in memory using dynamic analysis, which is covered in Sec-
tion 4.2.

4.1.1 Syntactic Signature Detection
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This technique utilizes that malicious instructions or code
sequences of a known malware can be used to detect the
same malware again. Mapping an arbitrary length of data
to a fixed size can be done using a hash function. Important
aspects of the hash function is that it is deterministic to
always produce the same output for the same input, and
that it evenly distributes the input data over the output to
reduce the risk of collisions. By calculating a hash over the
malign code, you get a syntactic signature. Anti-malware
software collects known malware’s syntactic signatures in a
database, which allows them to be detected in the future.
A syntactic signature detector is dependent on the database
to detect malware, which makes it prone to new or changed
malware.

Malware can then be detected by using regular expressions
or pattern matching to compare a file’s content to the signa-
ture database. A matching signature means that malicious
code has been spotted in the scanned file. Finding malicious
behavior like this is highly dependent on a consistent syntax
of the code, since different, misplaced or additional instruc-
tions will change the hash output. Robustness against syn-
tax changes can be improved by analyzing the file’s content
in chunks to generate a series of signatures [41]. A per-
centage of matching signatures can be enough to recognize
malware.

Syntactic signature detection in static analysis has two ma-
jor malware types that it has problems detecting: metamor-
phic malware and polymorphic malware. Their common de-
nominator is their ability to constantly transform their syn-
tactic signature to avoid being categorized by a syntactic
signature database.

Polymorphic malware consists of an encryptor, decryptor
and a constant payload that it tries to hide from the signa-
ture detector. The weakness of the earlier mentioned pack-
ing is that it is constant, so once it is part of the signature
database, it can be detected again. Polymorphic malware
gets rid of that weakness by mutating its static payload and
decryptor. For every propagation, the polymorphic mal-
ware generates a new encryption key, which the encryptor
uses to pack the static binary. Using a different key every
encryption together with a different decryptor ensures that
all copies of the malware have a different syntactic signa-
ture. [15]

The decryptor is generated by a polymorphic engine using
various code obfuscation techniques to make it harder to
analyze and different from previous versions. Different tech-
niques include[9, 57]:

• Nop-insertion, the addition of no operation instruc-
tions.

• Code transposition, switching the order of independent
instructions.

• Register reassignment, changing the used registers for
instructions.

• Code substitution, exchanging instructions with se-
mantically equivalent ones.

Creating an polymorphic engine that consistently produces
distinct copies without being recognizable is usually more
sophisticated than the malware itself, which can manifest in
flaws that aid in its detection[15, 26].

Polymorphic malware does not mutate its behavior and in-
stead hides it with encryption. A malware type heavily in-
volved in obfuscation rather than encryption is the metamor-
phic malware, which does not need encryption to stay hid-
den. Instead, it fundamentally changes its code every propa-
gation to always have different syntactic signatures [15]. The
metamorphic malware is transformed using the same code
obfuscation techniques as the polymorphic malware, but the
scope is increased to the whole malware.

The process of metamorphic malware’s mutation can include
up to five steps [37, 35].

Firstly, the malware must decode its instructions into an
intermediate form that describes its functionality. Combi-
nations of different instructions can be functionally equiv-
alent when combining certain arguments, which makes the
extraction a complex task.

Secondly, the metamorphic engine shrinks the intermediate
form by removing instructions that does not do anything and
was included by the previous mutation. Without this step,
metamorphic malware could gain size every mutation and
therefore increasing its workload every iteration. Keeping
the final code a similar size is important to avoid giving
anti-malware features that can be tracked.

Thirdly, the intermediate form’s control flow is changed by
reordering instructions and submodules, which are linked
together with jump instructions. The metamorphic engine
must analyze which instructions are independent from each
other to retain the functionality while transforming as much
as possible.

Fourthly, no-operation instructions and other functionally
irrelevant instructions are added to expand the malware once
more. This addition makes sure that syntactic signature de-
tection of code sections with low permutability is improba-
ble.

Finally, the metamorphic engine reassembles the malware’s
intermediate form back into instructions for the infected sys-
tem.

The metamorphic engine tries to make the code as hard
as possible to analyze, which further makes the transfor-
mation of itself more complicated. Because of an increased
amount of instructions from the imperfect obfuscation, the
CPU workload is also increased. Anti malware software can
monitor CPU idle time and set benchmarks, which can lead
to detection of a malware’s workload signature [35].

4.1.2 Semantic Signature Detection
Malware detection methods focused on analyzing the syn-
tactic nature of the malware have weaknesses toward code
obfuscation. Semantic signature detection avoids those flaws
by focusing on the behavior of the program. Variants of the
malware, that would possibly require different syntactic sig-
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natures, all have a similar functional flow [24]. Multiple
variants of the same malware can therefore be detected us-
ing just one semantic signature.

Semantic signature detection is being explored as a valid
alternative to syntactic signature detection for static detec-
tion. Christodorescu et al. [11] introduces formal semantics
to classify malicious behavior.

Formal semantics acts as a specification language with which
you can define behavior using a template. Templates consist
of a sequence of instructions, variables and symbolic con-
stants. Specific registers and values in the malware’s code
are abstracted away in the template, but their dependencies
are preserved. The templates are therefore not affected by
common code obfuscation techniques such as register reas-
signment and no-operation instructions. Malicious behavior
is specified in templates and compared to the dubious binary
to determine if it is malicious or not.

A similar semantic approach has been explored in [24], where
Kinder et al. uses model checking to verify malware speci-
fications. Model checking is a way to verify the correctness
of a finite-state system against a specification (e.g. only one
process allowed in a critical section). In this case, the system
is verified against unwanted behavior, which is defined as a
set of states, transitions and labels. The malware binary
is disassembled into machine instructions that are used to
build a model of the program, which is verified with model
checking against specified malware behavior.

Both of these semantic analyses try to construct a control
flow of the target binary to determine whether it is ma-
lign or benign. By making the static analysis harder using
binary obfuscation, malware could avoid detection. Moser
et al. [32] point out that a vital part of semantic analysis
lies in establishing relationships between constants. Con-
stants in the binary could be used for arithmetic operations
or as jump destinations. Obfuscating jump destinations can
make control flow analyses miss the malicious set of oper-
ations that would otherwise be uncovered. Obfuscating bi-
nary constants using the known hard to solve 3-satisfiability
problem can make the derivation of the constants in static
analysis an NP-hard problem [32].

4.2 Dynamic Analysis
In contrast to static analysis, dynamic analysis actually ex-
ecutes the malware and from that tries to deduce if its ma-
lign or not. There are primarily two ways to dynamically
analyze malware that are used by anti-malware software.
Either of them uses emulation to execute the malware in
a safe environment to hopefully reveal its intent or moni-
tor a program’s behavior in real time to detect and prevent
suspicious actions before executed [2]. The most common
analysis method used for dynamic analysis is with behav-
ioral traits on the basis that malware is classified by what it
does instead of what it looks like. As system calls are the in-
terface to the operating system, monitoring those can reveal
a program’s resources and actions [16]. Lots of papers can
be found that utilizes system call monitoring in a dynamic
analysis fashion, including but not limited to [21, 30, 10,
36, 25, 27]. Network traffic can also be used to characterize
malware [21].

Dynamic analysis is inherently resistant to the code obfus-
cations mentioned in Section 4.1 that tries to hinder static
analysis. As the actually executed instructions are consid-
ered in dynamic analysis, obfuscated code can be identified
after its decryption to valid instructions. For example, ob-
fuscated constants [32] that hide jump addresses or data de-
pendencies behind complex calculations will unwind them-
selves into proper instructions when executed, which makes
them easy to analyze with dynamic analysis. Polymorphic
malware is also easier to analyze with dynamic methods,
since its decryptor will unpack its static payload into mem-
ory to let it run. Static payload is easily identified by syn-
tactic signature detection.

A flaw of dynamic analysis is that only one execution path of
the monitored program is revealed. Malware can exploit this
by detecting that they are being monitored and hide mali-
cious functionality or immediately exit. To do this, malware
can either look for clues of specific analysis tools in files, reg-
istry or processes, or by analyzing imperfections that occur
during emulation such as timing properties or variations of
instructions [5].

Malware can not be analyzed forever, which means that logic
bombs, malware that triggers on an event, can go undetected
by dynamic analyzers. Logic bombs could trigger on a date,
a user input or remote control via network [14]. The event
that triggers the malware is often external, so tracking ev-
erything that the malware reads together with its control
flow decisions can be used to simulate different inputs to
the malware and reveal its multiple execution paths [31].

Ether [13] is a malware analyzer that uses hardware virtu-
alization extensions to allow it to reside entirely outside the
target operating system environment. Thereby no trace of
the analyzer can be found in the emulation. Another ana-
lyzer trying to stay transparent to malware is Cobra [48].
Cobra disassembles and executes malware code in blocks
that are scanned for instructions that might give away the
environment. Such instructions are replaced with safe ver-
sions that will not give away the analysis tool. Both of these
tools incur a significant performance overhead, which can
be undesirable. Another technique developed for analysis-
aware malware introduced in [5] compares the execution of
malware in an analysis environment with execution in a ref-
erence environment. If the execution differs, the malware
should be analyzed more thorough.

4.2.1 Semantic Signature Detection
Semantic signature detection tries classify malware by cre-
ating malicious behavior signatures. The state of the art in
semantic signature detection is using a behavior graph, with
which malware detection is an NP-complete problem [17].
Behavior graphs are composed out of nodes, which repre-
sent actions (e.g. system calls), and edges that represent
data dependencies between nodes. Behavior graphs can be
used as a detection method by monitoring an unknown pro-
gram’s system calls with their dependencies, and match that
behavior with nodes in the graph. An enough matched graph
indicates malicious behavior [25].

On an end-system, the semantic signature would be detected
after the malicious activity has been performed, which puts
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a clock on the anti-malware to prevent the malware from
doing further damage and repair what was done. A too slow
detection system might give the malware enough time to
complete its objective. The complexity of behavior graphs
has lead to the development of a lightweight alternative to
behavioral graphs. Lu et al. [27] suggest a solution that
generalizes system calls by classifying them based on the
resource used (e.g. file, socket) and a classification of those
resources based on similar functionality. The abstraction
level is higher than a behavior graph, which makes it robust
against code-obfuscation.

The current state of the art behavior graphs focus their anal-
ysis on a single process to reduce the complexity and compu-
tation power required. Ma et al. have shown [28] that multi
process malware can automatically be generated from a mal-
ware’s source code and successfully avoid semantic detection
in single process based malware detector. The technique to
generate multi process malware is shown in figure 1. The
process P0’s two system calls are split up between two pro-
cesses P ′

0 and P ′
1. The state change caused by the system call

is transferred between the processes so that the execution of
P0 is equivalent to the execution of P ′

0 and P ′
1.

Figure 1: Creation of multi process malware from
single process malware. Source: [28]

4.3 Heuristic Analysis
Heuristic methods make use of data mining and machine
learning techniques to try and detect malware. Such tech-
niques try to classify malware using knowledge from previous
data that can either be labeled or not. The algorithm uses a
feature vector as an input and outputs a classification of the
supposed to be malware that is either malign or benign. A
feature vector contains different information about the mal-
ware that is used in the classification process. The chosen
features are vital for the success. Five features are discussed
in [6]:

• API/System calls: a program’s requests to the operat-
ing system.

• Control flow graphs: a program’s statements and con-
trol flow to construct a directed graph.

• N-Grams: substrings of a program’s binary code.

• OpCode: sequences and statistical frequencies of dif-
ferent machine language instructions.

• Hybrid features: a combination of feature types.

The feature vector is built from the chosen data. Classifi-
cation based on system calls could use sequences of system
calls as input, which the algorithm processes to determine if
its an illicit sequence.

Yan et al. [55] have made a study of useful features in auto-
mated malware classification. Their results point out that
the header of a Windows executable is highly discrimina-
tory. But there is a dilemma, since an adoption of the tech-
nique might lead to feature obfuscation by malware writers.
Robustness of features is therefore an important issue and
further discussed in [56].

Machine learning techniques can be used to detect metamor-
phic malware. A detection technique using Hidden Markov
Models is proposed in [54], where a model is trained on a
family of metamorphic malware to be able to recognize its
defining features. The model becomes specialized in one
malware family, but managed to also detect some malware
from another family. The same weakness of similarity is
exploited by Runwal et al. [40] in a detection technique in-
volving the similarity score between the opcode graphs of
metamorphic families and normal files.

Heuristic analysis can be a very powerful technique con-
sidering its automation possibilities, but as [6] summarizes:
heuristic malware detection suffers from a high false positive
ratio.

5. PROTECTING KERNEL INTEGRITY
The kernel of an operating system has complete control of
the system. It handles start-up, input and output from pro-
grams, peripherals, memory and CPU. Access to the kernel
can be used to extend the operating system with malign
functionality such as backdoors, logging keystrokes, escalat-
ing privilege of malware or tampering with other defense
mechanisms. The premise of malware detection methods is
that they have higher privilege than the malware, which is
invalid if the malware has kernel access.

The malware type rootkit will try to stay covert after in-
fection while it fulfills its illicit objective. A typical hiding
method is to remove its entry from the system processes list.
Kernel rootkits are malware that targets the kernel and ac-
tively tries to tamper with it.

Baliga et al. [4] propose a general classifying scheme for
rootkit attacks, which are categorized by the tampering tech-
nique: Control hijacking and control interception both ma-
nipulate the control flow of the kernel by changing the sys-
tem call table, interrupt descriptor table and kernel code.
Control tapping will ensure that the attack code is executed
on every invocation of a specific function without affecting it.
Data value manipulation tries to indirectly manipulate the
kernel by changing values of critical variables. Inconsistent
data structures similarly tamper with kernel data structures,
which are assumed to be consistent, but are made inconsis-
tent and can be used to hide processes and modules. A
rootkit can combine a variation of these to accomplish its
task on the system.
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Defense against rootkits can be divided into prevention and
detection. The goal of prevention is to avoid unauthorized
access to the kernel by keeping its integrity consistent. A
method of doing so is kernel module signing. Such a pol-
icy requires all kernel modules to have an embedded digital
signature, which can be verified against a source of trust.
Windows requires signed drivers by default [52] - a feature
that only can be disabled via a reboot. As [23] mentions,
kernel module signing security is made on the assumption
that all loaded code in the kernel is safe and prevents execu-
tion of unsigned kernel code. The Turla (a.k.a. Uroburous,
Snake) [44] rootkit managed to bypass Windows’ driver sig-
nature policy by leveraging a flaw in the virtualization tool
VirtualBox [49], which included a signed driver containing
a privilege escalation vulnerability.

Detection on the other hand tries to safeguard the kernel in-
tegrity by detecting unexpected changes in critical regions.
As function call hooking is often a vital part of rootkits,
detecting and preventing the hijacking could protect the
kernel’s integrity. Detecting illegitimate function pointers
(hooks) requires a reference to compare with. Some detec-
tors [50, 58, 51, 39] dynamically find kernel hooks, which
they use shadow memory to keep consistent. Shadow mem-
ory is a technique that maps memory bytes to metadata.
The metadata could keep track of the number of writes to
a specific memory section or also if the memory originates
from a trusted source.

Verifying that only trusted sources modify function pointers
could protect their integrity and prevent rootkits. Hardware-
based memory protection can safeguard the function point-
ers, but it only protects on a page-level granularity. Data
that does not need memory protection, but is on the same
page as a function pointer, would get an access overhead
using such a technique.

A novel approach by [50] is to generate a shadow copy of all
function pointers in a centralized page-aligned memory loca-
tion depicted in figure 2, where hardware-based protection
is utilized efficiently. Function pointers are accessed through
an indirection layer with either read or write operations. A
read request will be fulfilled directly by the indirection layer
and a write operation will be passed on to the hardware-
based memory protection to validate the request.

Figure 2: Redirection of function pointers to protect
their integrity. Source[50]

Windows has an approach similar to shadow memory that
saves data about kernel function pointers and interrupt ta-

bles to allow validation. The data can be known-good copies
and metadata in the form of checksums, which allows the op-
erating system to validate kernel integrity during run-time
to prevent tampering [53, 42].

Although preserving kernel integrity thwarts the majority
of rootkits, such a technique can be bypassed using return-
oriented rootkits [23]. Return-oriented rootkits construct
malicious stack frames by using gadgets. A gadget is a com-
bination of kernel instructions that together form a well-
defined behavior, e.g. computing AND of two operands.
The self-contained gadgets can be combined to manipulate
the stack and launch attacks upon the system. Integrity
checks and memory protection fails since all malicious ac-
tivity is done with safe instructions already in the kernel.

6. ASSESSMENT
Static analysis and syntactic signature detection methods
are a great first defense against malware. Using a dictio-
nary of previously known malware makes it harder for old
malware to infect systems again, but it is inherently weak
against new and advanced malware.

Semantic detection in static analysis is powerful due to its
complete analysis of all the malware’s execution paths and
the generality of its signatures. Future malware using an
already known way to achieve its objective can be detected
without updating the signature database. The limited amount
of system calls suggests that a thorough cataloging of mali-
cious sequences are possible.

An issue with semantic detection arises with the increased
complexity of analysis that obfuscation can yield. Most of
the semantic techniques try to construct a behavior signa-
tures from graphs, but correlation between system calls and
actions are not always obvious. A malware split up into
multiple processes requires a more advanced analysis to try
find data or control dependencies between processes. The
analysis becomes even harder if dependencies between pro-
cesses are obfuscated by using a non-conventional messaging
system. Process A and B could communicate with differ-
ent servers, which relay messages between each other and
thereby hide the connection between process A and B.

Dynamic analysis is unfazed by encryption methods and ob-
fuscated constants, which testaments its relevancy besides
static analysis. As of now, dynamic analysis can be effi-
cient against traditional malware that acts on a rapid pace,
but is lacking if the malware is patient. An APT that can
hide and stay inactive for months is hard to detect using
dynamic analysis as the malware does not generate any ev-
idence against itself until it actually acts.

Protecting against advanced malware and especially new
malware requires a general and automatic classification sys-
tem that can perform without human intervention. Heuris-
tic methods are not mature enough yet, but their success in
other areas showcase their power in classification based on
features, which makes it a promising research area. Another
important area is kernel integrity, since a breached kernel
can tamper with anti-malware and do substantial damage
to the system.
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7. CONCLUSION
There exists a wide variety of malware detection methods,
but none of them are robust to all malware. Different advan-
tages and disadvantages in analysis methods suggests that
a detector should not be limited to one method, but rather
utilize a wide set of different tools to complement each other.

The possibilities to automatically increase the complexity
of static analysis and dynamic analysis highlights the chal-
lenges that anti-malware software faces. Automatically de-
tecting new malware is an important topic, where machine
learning is a promising area. Machine learning has made
breakthroughs the last years that will hopefully spread to
malware detection.
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