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ABSTRACT
In the past few years, a trend of softwarization in the net-
working world has emerged. Software defined networking
and the virtualization of networking functions, which can
be realized in off-the-shelf hardware, help network opera-
tors to meet the new challenges that arise from nowadays
traffic demands. The demand on routing traffic can partly
be traced back to the rise of a digital society and hypes like
internet of things, streaming platforms and others.
In order to encounter these challenges software defined net-
working and virtualized networking functions are required
to be implemented efficiently on commodity hardware, so
they can offer a high quality of service, while also saving
expenses for hardware and energy consumption. These and
other reasons motivate modelling the system of commodity
hardware devices.
This paper introduces the basics of Queueing Theory Mod-
els and then identify challenges which arise from modelling
commodity hardware. Furthermore, recent literature is sur-
veyed in respect to how or whether the proposed models
map hardware and software properties.
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1. INTRODUCTION
The internet has led to the creation of a digital society,
where almost everything is connected and accessibly from
anywhere [11]. This effect has also been intensified by the
rise of the internet of things. The demand on processing traf-
fic has therefore risen significantly. To meet those demands
while saving costs (e.g. costs for hardware, software and en-
ergy consumption) and staying environmentally aware, new
approaches to meet these demands have been developed.

One step to engage these challenges is software-defined net-
working (SDN). With this new paradigm, the control plane
and the data plane are decoupled and are more bundled
within single networking devices. In SDN the control plane
decides how to handle network traffic. While the data plane,
which forwards traffic according to decisions made by the
control plane, can be leveraged and managed in a simpler
way (i.e. network switches become simple forwarding de-
vices). [11]

At the same time, a complementary trend has emerged:
network function virtualization (NFV). In NFV network-
ing functions like packet-forwarding, routing, applying fire-
wall rules etc. are decoupled from their physical devices.
Furthermore, NFV has the ability to facilitate the new de-
ployment of new services with increased agility and faster
time-to-value [15].

Both paradigms, namely SDN and VNF, offer the oppor-
tunity to be flexible and considerably cheap compared to
dedicated hardware. Both approaches allow well-designed
networking-systems to meet and balance demands, while
staying cost-efficient and maintaining a high quality of ser-
vice (e.g. for an ISP). In order to develop, optimize and un-
derstand certain behaviours of the new systems, modelling
is crucial. ”Modeling is an important and useful approach
for performance evaluation and system validation and it can
provide prediction and comparison of design alternatives”
[1].

The focus of this paper lies on queueing theory models and is
structured as follows: an introduction to the basics of queue-
ing theory is presented in chapter 2. Chapter 2 also pro-
vides insight on how a device (i.e. a router) can be mapped
to a queueing theory model. Furthermore, Chapter 2 pro-
vides reasons and properties, why queueing theory can be
an appropriate tool to model networking systems or devices.
Chapter 3 lists some challenges and real-world effects that
might come with modelling commodity hardware comput-
ers. Chapter 4 covers recent literature, in which queueing
models have been developed and surveys them regarding the
collected challenges from chapter 3. Chapter 5 concludes
this paper and summarizes the results of this work.

2. QUEUEING THEORY
”Queueing theory deals with one of the most unpleasant ex-
periences of life, waiting. Queueing is quite common in many
fields, for example, in telephone exchange, in a supermarket,
at a petrol station, at computer systems, etc.” [18]

It was mentioned first by A.K. Erlang at the beginning of
the 20th century, when he studied the behaviour of tele-
phone networks [5, 6]. Erlangs works inspired engineers
and mathematicians to deal with queueing problems using
probabilistic methods [18]. And now, over a hundred years
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later, hundreds of articles and books have been published
and queueing theory is still a widely-used modelling tech-
nique.

Queueing theory is used to compute mean values and pre-
dictions of a system. This chapter is mostly inspired by the
books of Kobayashi et al [10] and Sztrik [18].

2.1 Basic Queueing Theory
To characterize a queueing system, the probabilistic prop-
erties of the incoming flow of requests, service times and
service disciplines have to be identified [18]. The time be-
tween incoming requests is also called interarrival time. In
the following the term customer is used to describe an entity
that is being served or processed by a service or server [10].
The interarrival time A(t) is usually given as a stochastic
distribution, which can, in example, express the probability
of customers arriving to our system within a specific time t.

A(t) = P(Customer enters system < t)

There is also the property of service time. The service time
B(x) is a probabilistic distribution, and denotes, for how long
a request is served. Following the example from above, this
distribution expresses the probability of a customer being
served within time x.

B(x) = P(Customer is served < x)

The interarrival times and service times are commonly sup-
posed to be independent random variables [18]. The service
discipline describes in which manner the requests are being
processed. Some commonly used service strategies are:

FIFO: First In First Out
The first to arrive at the queue, is served first.

LIFO: Last In First Out
The last to enter the queue, is served first.

PS: Processor Sharing
Entities arriving at the Service are served immediately
and receive service in the following way: C/n. Where
C equals the total servicing capacity of the server and
n is the number of entities. This is an idealization of
the Round-Robin scheduling scheme. [10]

Priority: Some other priority, i.e. Random
Enqueued entities are being processed according to
some other priority.

Queueing Systems can have multiple service units offering
the same service that serve customers. The number of ser-
vice units within a queueing system is denoted as m.

Finally, the capacity of the system and the population size
of the queueing system can be identified. The capacity K
of the system represents the maximum number of customers
within the system, including the ones being served [18]. The

Figure 1: A typical depiction of a single queue,
with arrival rate λ and a single service node with
service rate µ.

population size n basically describes whether the source of
incoming customers is limited by a variable, number or ∞.

Figure 1 shows the usual visual representation of a simple
single queueing system. Customer arrive at arrival rate λ
and are enqueued into the waiting area. The customers are
served at rate µ.

2.2 Kendall’s Notation
In 1953 Kendall [9] introduced a notation to describe a
queueing system, which is commonly used nowadays. He
denoted the system by

A / B / m / K / n / D

where

A: distrubtion function of the interarrival times,

B: distribution function of the service times,

m: number of service units (offering the same service),

K: capacity of the system,

n: size of the source, and

D: service discipline.

Throughout literature, the notation A/B/m is used when
the capacity of the system and the size of the source are
assumed to be ∞ and the service discipline is FIFO. Com-
monly used options for A and B are:

M: A Poisson arrival distribution (an exponential distribu-
tion) or an exponential service time distribution. This
usually denotes a Markovian process, which possesses
the memoryless property. The memoryless property
means, regardless of how long ago a customer arrived,
the probability of a customer arriving now stays the
same. [10]

D: A deterministic or constant value.

G: A general distribution with a known mean and vari-
ance formulas. [10]

Example 1: M/M/1/∞/∞/FIFO is abbreviated to M/M/1,
denoting a system with poison arrivals, exponentially dis-
tributed service times and a single service unit.
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Example 2: M/G/m denotes an m-server system with Pois-
son arrivals and generally distributed service times.
Example 3: Mx/G/M denotes the same system as in Ex-
ample 2, but additionally defines that there are x sources
from which customers can arrive with the same arrival dis-
tribution.
Example 4: M/G/m-S denotes the same system as in Ex-
ample 2, but additionally defines the queue length S.
Example 5: M/M/r/K/n describes a system with a finite-
source of n elements, where they stay for an exponentially
distributed time and the service times are exponentially dis-
tributed. Furthermore the service is carried out according
to the request?s arrival by r servers, and the system capacity
is K. [18]

More examples, explanations and theory can be found in
[18] and [10] or any other book on queueing theory.

2.3 Properties
From the queueing system the following properties can be
derived:

• The arrival rate of customers (denoted by λ) which can
also be referred to as birth rate.

• The service rate (denoted by ţ) which can also be re-
ferred to as death rate.

• The server utilization, throughput and response time.

• The number of customer in the system at time t.

• The probability of n costumers in the system at time
t.

• The length of an idle or a busy period.

• The traffic intensity (usually denoted as ρ = λ / µ),
which represents the expected number of arrivals dur-
ing the service of a customer.

Furthermore, there are some more properties that can be
calculated only if the the system is in steady-state. This
is the case, if the system is not overloaded, e.g. when re-
quests arrive faster than the system can processes them. The
steady-state is also called equilibrium. ”A queue is defined
as stable if µ > λ or ρ > 1. When ρ > 1, requests entering
the queue accumulate faster than they can be served and, in
theory, latency increases to infinity. In practice, the system
saturates, limiting the request rate to be λ = µ, (or ρ = 1)
and stabilizes the queue with high latency.” [16]

Using theorems and formulas, the following properties of a
M/M/1, M/M/n or M/M/∞ queueing system can be de-
rived if the system is in steady state:

• The mean number of customers in the queue.

• The mean number of customers in the system.

• The mean total waiting time in the system.

3. CHALLENGES IN MODELLING X86 DE-
VICES USING QUEUEING THEORY

This chapter lists and discusses some features that can come
with commodity hardware. Software effects are also consid-
ered. Each of the features is explained and if necessary an
example is given. Then an it is pointed out, how the features
could be taken into account by a queueing theory model. At
the end, there is also an example given, how a commodity
hardware computer could be modelled as a queueing system.

3.1 Multi-Core
One of the main reasons, why off-the-shelf hardware is able
to compete with dedicated hardware is because of the ability
to process data in parallel due to multiple central processing
units (CPUs). Cores or threads are mapped to service units
in every queueing model and therefore represented by the
number of service units. The CPU is therefore modelled as
a queueing system.

Furthermore the CPU-frequency is modelled and represented
by the service time distribution. The frequency usually has
the biggest impact on the service time distribution.

3.2 Bus
Data from any NIC usually has to be transferred to memory
or cache, so it can be accessed and processed by a processing
unit. Direct Memory Access (DMA) is a way to transfer data
from a device via a bus system to the main memory without
involving the CPU. This provides an efficient way of moving
data into the main memory for processing. [17]

A step further than DMA is the direct cache access (DCA),
which basically does the same as DMA, just that the data is
directly passed to a CPU cache. Though, these techniques
are not available on every off-the-shelf hardware. In any
case, a bus system moves the data into the cache or main
memory.

The bus system, which transfers the data to the cache or
main memory can be modelled as a single queue. Therefore,
the queueing system of the bus and the queueing system of
the CPU can be modelled as a queueing network 1.

3.3 Number of NICs
Using commodity hardware, systems have to be equipped
with Network Interface Cards (NICs) in order to receive and
send packets. To fully utilize the system, as many NICs as
supported should be installed. As shown by Runge et al. in
[19], the number of NICs can have a significant impact on
the performance of a networking device.

As NICs are part of a computer, their output is an input to
the next queueing system within the computer (e.g. a bus
or CPU). A NIC itself can be modelled as a single queueing
system. The input from NICs can be implicitly modelled
by adding an exponent to the interarrival distribution of the
next queueing system entity in the queueing network (e.g.
Mx/M/1).

1When multiple queues are plugged together, e.g. the out-
put of a queue is the input of the next queue, then this is
called a queueing network.
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3.4 Memory and Software Latencies
There are several latency effects that can arise from mem-
ory and software. In the following some effects which can
introduce latencies are listed:

• moving data between cache hierarchies (L1, L2, L3 and
main memory)

• interrupts, which can be triggered by hardware (e.g.
a packet arrives at a NIC and need to be stored in
main memory) or software (e.g. a process with higher
priority forces a context switch)

• resource contention (e.g. threads are fighting over CPU
time and force context switches)

• queue implementation (e.g. a queue must be imple-
mented in a way so that parallel processing, retrieving
and inserting of data is efficient, which is also pointed
out by Orozco et al. in [16])

These latencies have an impact on the time a packet is
spending in the system. One could model these effects by
adding a term or constant value to the service time distri-
bution. Even though, the listed effects are usually neglected
for simplicity by the models proposed in literature.

3.5 Finite Memory
Any physical device has limited resources regarding space
(caches, buffers and main memory) available. And since
they represent queue sizes (and capacity of the system) they
should be modelled and not assumed to be limitless. A infi-
nite or infinite buffer has a direct impact on properties like
the waiting time for a packet in the system. Though, most
proposed models neglect this fact. The capacities of the sys-
tem are assumed to be infinite.
When queueing models in networking assume infinite buffers,
they can become vulnerable to attacks (i.e. Denial of Service
Attacks) as shown by [3].

3.6 Batch-Processing
In computer hardware, it is common to load and transfer
batches of data in order to hide loading latencies. I.e. a
NIC does not instantly transfers a packet on its arrival, but
waits until a certain time has passed or the batch is filled up.
Also CPUs tend to load blocks of data into higher cache hi-
erarchies at once for processing.This behavior can influence
the performance of a system significantly. Consequently,
batch processing has an impact on the time a packet stays
within the system and the service time of a packet. Batch
processing is sometimes modelled by recent literature.

3.7 Packet Size
When dealing with traffic in the internet, it is very likely to
encounter packets of different sizes. I.e. when processing a
big packet (or a batch of big packets), the total number of
packets processed is comparatively lower, compared to pro-
cessing small packets. On the other hand, the throughput
(in Mbit) is higher that way.

Therefore, the size of different packet sizes should be con-
sidered in the service time of the queueing model. This also
has an impact on the time the packet spends in the system.
The packet size is usually not considered in recent models.

3.8 Example
In general, commodity hardware can be modelled as a tan-
dem queueing network [14]. A tandem queueing network
is a subclass of queueing networks. In case of a tandem
queueing network, customers, who arrive at the system, can
encounter multiple queue-service pairs, until they leave the
system again. E.g. this means that after a packet has en-
tered a queue and has been serviced, it enters yet another
queue to a service and so on, until it finally leaves the sys-
tem again. It should also be noted, that customers cannot
skip one or multiple queues.

In literature, a computer system is modelled either as a sin-
gle queue, usually representing a bottleneck, or as a network
of queues. In Figure 2, an example of computer modelled as
a queueing network is shown. The figure shows the packet
flow λ+ through the computer. λ represents the incoming

Figure 2: A Router Model of [14] which shows, the flow of packets through a computer. The NICs, bus and
CPU are each modelled as a queueing system, forming a queueing network.
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traffic which is split into λ+ (packets that enter the system)
and λ- (packets that are dropped at the NIC due to over-
load). Solid arrow depict the packet flow towards the CPU,
while dashed arrows depict the flow of processed (outgoing)
traffic. Mayer et al [14] show this figure, but finally model
only the CPU as an M/M/n queue.

A possible alternative for the modelling of Figure 2 could
be as follows: The system can be modelled as a queueing
network, starting with an M/M/1 queue, which represents
the NIC that receives the incoming traffic. Packets leaving
the NIC are then enqueued into another M/M/1 queue for
the bus system. The CPU can be modelled either as n *
M/M/1 queues or as M/M/n queue, where n is the number
of CPU cores or threads. Finally, packets leaving the system
must pass through the outgoing NIC, which again could be
modelled as an M/M/1 queue. The here proposed queueing
network results in a jackson network 2.

4. QUEUEING THEORY MODELS IN X86
INTERCONNECT DEVICES

In this chapter, some recent literature is presented and sur-
veyed in respect to whether the proposed models consider
the aspects presented in chapter 3, or not. The focus is on
research, which uses commodity hardware. At the end of
this chapter a comprehensive overview within Table 1.

Meyer et al. [14] propose a tandem queuing model to model
a software router. This model is then simplified to the ex-
tend where the model basically only includes the packet
size and multiple service units (CPU cores) and the services
times. This is done in order to measure the performance at
the bottleneck, namely the CPU. Their goal is to measure
and predict the maximum throughput of a general software
router.
The authors do not provide a notation for their queueing
system, but given from the information in the text, it boils
down to a M/M/n queue for the entire router. In the formu-
las, the packet size and multi-cores are taken into account.
Other effects are neglected or ignored for simplicity.

In the work of Jemaa et al. [2] a model for VNF placement
and provisioning optimization strategies over an edge-central

2A jackson network is a special case of queueing networks
where all external arrivals into the queueing system are a
Poisson Process, service times are exponentially distributed,
and the utilization of all queues is less than one [18]

carrier cloud infrastructure is introduced, which takes QoS
requirements into account. Since the paper is dedicated to
spawning VNFs in cloud environments, it could be consid-
ered off-topic. Nonetheless, the reason this paper was taken
in, was because the paper includes the delay, which intro-
duced by virtualization layer of a virtual machine (VM) in
the cloud.
The authors model each VNF as a single M/M/1 queue. The
VNFs are hosted in a VM, which is therefore modelled as a
jackson network. Packets that are transferred between two
VMs are modelled as a M/GI/infty queue which acts like a
bus. Arriving packets at the queue are instantly processed
and sent to the next VM. In the formulas the latencies of
spawning a VNF is taken into account.

An energy-aware resource allocation scheme to manage vir-
tual machines, dedicated to perform certain virtualized net-
work functions is proposed by Bruschi et al. in [4]. The
authors Mx/M/1/SET model assumes batch arrivals with
a constant packet size and take this into account in their
formulas. They also model multiple packet arrival sources
and a wake up time for servers that have been idle.

Gebert et al. [7] propose a general analytical model for
generic virtualized network functions running on commod-
ity hardware. They model NICs as a external queues which
send incoming traffic into oneGIx/GI/1-L queue, which rep-
resents the CPU, using batch-processing. A packet in the
batch arriving at the CPU queue is dropped if the packet
has stayed in queue for too long. Packets are also rejected,
when they arrive and would have to wait longer than L-1
packets need for processing.

Jarschel et al. [12] derive a basic model for the forwarding
speed and blocking probability of an OpenFlow switch com-
bined with an OpenFlow controller. In their model, they
assume a queue of infinite size, which collects incoming traf-
fic. That traffic is then forwarded and passed into a queue
with limited buffer size (denoted by the parameter S in their
queueing system).

In [8] Mahmood et al. extends the case in which a controller
in a OpenFlow network is only responsible for a single node
in the data plane to multiple nodes. They approximate the
case as an open Jackson network and provide formal proof
for their approximation for the case of infinite buffer and
finite buffer sizes.

Table 1: Summary of the surveyed papers in respect to whether they take the challenges of chapter 3 into
account, or not.

3.1 Multi-Core 3.2 Bus 3.3 Number

of NICs

3.4 Memory &

Software Latencies

3.5 Finite

Memory

3.6 Batch

Processing

3.7 Packet

Size

Queueing System(s)

[14] yes no no no no no yes M/M/n

[2] yes & no yes no yes no no no N * M/M/1, M/GI/∞
[4] no no no yes no yes yes Mx/G/1/SET

[7] no no yes no no yes yes GIx/GI/1-L

[12] no no no no yes & no no no M/M/1, M/M/1-S

[8] no no no no yes & no no no M/M/1
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As can be seen in table1 the models in recent literature do
not take all challenges listed in Chapter 3 into account. In
most papers the packet-processing system was modelled as
a single queue. This might be an sufficient assumption as
long as the CPU stays the bottleneck of such systems.

5. CONCLUSION
This paper introduced basic queueing theory and provided
challenges on how such a model can be applied to a commod-
ity hardware computer. Queueing theory has proved to be a
suitable model to predict long-term and average behaviours.

Judging from the validation of the proposed models that
have been conducted in the presented papers, the models
seem to be approximating the real world systems sufficiently.
Which is impressive, given the fact that most of the models
only take some of the challenges listed in Chapter 3 into
account. This on the other hand, just shows how powerful
this modelling technique is.

It general, is also reassuring to see that research can already
provide queueing theory models for recent advances in the
softwarization hype, e.g. towards flexible and scalable net-
working using SDN and VNF.
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