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ABSTRACT

Blockchains are fairly novel systems that offer highly reli-
able, non-mutable and trustworthy storage of records. Ap-
plications include distributed payment systems like Bitcoin
and smart contract systems like Ethereum. This paper first
gives an introduction to blockchain technology using the ex-
ample of Bitcoin. One of the foci is the so called consensus
algorithm that controls which new block can be added to
the blockchain. Furthermore we explain why the consen-
sus algorithm of ”traditional” blockchains is not suitable for
smaller application scenarios such as corporate networks and
also is highly wasteful concerning energy consumption. As a
next step, the Linux FoundationaAZs Hyperledger Project
is introduced, which is an umbrella for various open source
projects concerning private blockchains. Here the focus is
on the blockchain implementation Sawtooth, which features
a new consensus algorithm called Proof of Elapsed Time
that makes use of a specific hardware security feature of
novel Intel CPUs. This algorithm features the best proper-
ties of Proof of Work while also eliminating the huge waste
of power. However, the dependency on the specific CPU fea-
tures can also be seen as a major weakness of the concept.
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1. INTRODUCTION

Blockchains are one of the most impactful technologies of the
new millennium, even though much of their potential still re-
mains undiscovered. They finally allow for the realization of
truly distributed ledgers that do not require a trusted third
party. They also raised the bar for non-mutability and re-
liability, thanks to their high redundancy. These properties
make blockchains attractive for numerous public and corpo-
rate applications everywhere there are records to keep [12].

The technology emerged in 2008 when Satoshi Nakamoto
presented Bitcoin [24], the first decentralized, digital cur-
rency. That is why it is the example used to illustrate the
explanation of blockchains in section 2. To this day, public
crypto-currencies are still the dominant applications using
blockchains. More recent ones like Ethereum [5] do not only
offer currency, but expand on the idea. Ethereum for exam-
ple further innovates by featuring a smart contract system.

Even though private blockchains (addressed in section 3)
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have not seen as much success as public ones yet, there
are a lot of big companies actively supporting ongoing re-
search. This difference in development compared to their
public counterpart is mainly caused by traditional consen-
sus algorithms not scaling down well. It will be argued in
section 3.2, that applying Proof of Work to a small net-
work essentially breaks the system. However, progress is
being made and one promising project is presented in sec-
tion 4. The project in question is Intel’s Sawtooth. It is a
modular enterprise solution for building private blockchains.
Sawtooth features some architectural upgrades compared to
a traditional blockchain, but most importantly introduces
a new consensus algorithm: Proof of Elapsed Time. This
algorithm is very promising for future blockchain develop-
ment, because it features the strengths of Proof of Work,
while also eliminating the large amount of wasted energy.

2. PUBLIC BLOCKCHAINS

A blockchain can be seen as distributed database with high
redundancy. It is replicated using a peer-2-peer system and
every participating node keeps a full copy. The major benefit
of a blockchain is that it provides high trustworthiness with-
out relying on a trusted third party. The absence of a trusted
third party involved in consensus also renders blockchains
more secure by removing an angle of attack while also cut-
ting costs and complexity.

The following overview will be using the example of Bitcoin.
However, the text is kept as generic as possible. Bitcoin is a
crypto-currency using a blockchain as a distributed, public
ledger and probably the most commonly known application
of blockchain technology. The focus of this overview is on the
architecture of the blockchain, not the underlying network.
Technical details presented in the following subsections were
taken from the Bitcoin Developer Reference [2], that can
also be recommended for information about the underlying
peer-2-peer network.

2.1 Transactions

In contrast to a database, a blockchain stores no tables, but
transactions. Generally a transaction transfers an asset from
one individual to another. These assets can be of any imag-
inable kind and the individuals do not need to be human.

Bitcoin transactions are financial transactions. Their struc-
ture can be seen in Table 1. As indicated by the fields tx_in
count and tx_out count, a transaction is not limited to only
one sender or receiver. These fields contain the number of
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Table 1: Bitcoin Transaction Structure [2]

Name Data Type |

uint32_t
compactSize uint

version

tx_in count

tx_in txIn

compactSize uint
txOut
uint32_t

tx_out count

tx_out

lock_time

Table 2: Bitcoin Block Structure [2]

| Name Data Type |
fixed value 0xD9B4BEF9
block size uint32_t
block header header
transaction counter varlnt
transactions transaction list

inputs and outputs (tx_in and tx_out) of a transaction. Ev-
ery input references a previous output and contains proof of
ownership. Every output specifies the amount of bitcoins to
spent and the new owner. Ownership in Bitcoin is handled
via asymmetric cryptography. Every individual is identified
by a bitcoin address computed from the public key of it’s
asymmetric key pair.

Blockchain transactions can also be timed. Bitcoin imple-
ments this using the lock_time field. A transaction may
not be processed before the time given there. The field’s
unsigned integer value is parsed dependent on size: below
500 million it is interpreted as a block height and above as
a unix epoch.

In Bitcoin there is one special transaction: the coinbase
transaction. It is used to create new bitcoins from noth-
ing. Technically this is realized by using only one input,
the coinbase input. It is like a normal input except that
it has placeholder values for most fields. The necessity of
this transaction is related to mining and will be discussed in
section 2.3.

2.2 Blocks

Blocks are used to group up transactions. They consist of
a header for meta data and a list of transactions. Every
block is connected to its predecessor by containing the hash
of the predecessor’s header in its own header. The header

Table 3: Bitcoin Block Header Structure [2]

Name | Data Type |
version uint32_t

previous block header | char[32]

hash

merkle root hash char[32]

time uint32_t

nBits uint32_t

nonce uint32_t
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header header header

transaction list transaction list transaction list

n-2 n-1 n
Figure 1: Simplified Blockchain Structure
Every arrow symbolizes a hashing operation. The origin is
the value being hashed and the target is where the hash
value will be included.

hash is used to uniquely identify a block. By constructing
a merkle tree over all transactions of a block and storing
the root in the header of said block, it is ensured that the
transactions also influence the block header hash. This se-
cures the transactions, because it allows for easy detection
of manipulation.

Table 2 shows the structure of a block as used by Bitcoin
and the corresponding header can be seen in Table 3.

Bitcoin implements the previous block header hash by
hashing twice with SHA256. The merkle root hash is the
hash in the root of the merkle tree hashing all transaction
ids of this block. If however the block only contains one
single transaction (coinbase transaction), its transaction id
is used as the merkle root. The time field contains a time
stamp in the standard unix format, making it possible to
enforce the lock_time found in transactions. Both nBits
and nonce field hold values important for Bitcoin’s consen-
sus mechanism, which will be addressed in section 2.3. In
addition to all of these specifications, blocks can also have a
data size limit. For Bitcoin, a block may never exceed 1MB
in size.

Figure 1 shows the essence of a blockchain’s structure. The
schematic shows part of a blockchain with emphasis on the
chain of hashes. Every arrow symbolizes a hashing opera-
tion. It can be seen, that the header of block n contains the
hash of the header of block n-1. These are the horizontal
arrows. The vertical ones show the transactions of a block
being hashed into its header.

Only the very first block of a blockchain has to deviate from
the exact shown structure as it has no predecessor. This
block is a kind of dummy block. It is called the genesis block
and contains placeholder values. This block is hardcoded in
every client for a blockchain.

2.3 Consensus with Proof of Work

The basic problem a blockchain solves is distributed con-
sensus. In a blockchain this means that all participating
nodes have to agree on the newest block added to the chain,
meaning they implicitly agree on one chain of blocks. In
order to achieve consensus, some form of voting is neces-
sary among these nodes. This consensus mechanism is the
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heart of every distributed ledger and arguably its most defin-
ing feature. The ledger’s characteristics (e.g. transaction
throughput, supported number of nodes) all depend mostly
on this mechanism.

Bitcoin uses a leader election protocol (refer to section 3.2)
in order to decide on a node being eligible to create the next
block. This specific system is the Proof of Work (PoW)
system. When creating a block, a crypto-puzzle has to be
solved. To be considered valid, a block’s header hash has
to be less or equal to the current target threshold. This
threshold is adjusted regularly in such a way that a new
block is created every 10 minutes on average and is encoded
in the nBits header field. The header hash is computed by
hashing twice with SHA256.

A node trying to solve this crypto-puzzle and creating new
blocks is referred to as a miner. Miners collect transactions
requested by other nodes and group them up into a block. In
order for the header’s hash to meet the required threshold
the miners are able to modify the header in the following
ways: First and most obvious, they can vary the nonce field
in the block header. Second, the order of the transactions
may be varied (except the coinbase transaction) in order to
change the merkle root hash in the header. Third and last
option is to change one of the fields (coinbase script) in
the coinbase input.

As long as the used cryptographic hashing function is secure,
solving this puzzle is computationally expensive due to the
miners simply having to brute force a solution. Because of
this, this system can be viewed as a lottery with computa-
tional power only affecting the likelihood of winning.

A miner has to invest in hardware and electricity. In order
to incentivize nodes to do mining, Bitcoin has a block re-
ward. This is a certain amount of bitcoins that is created in
the coinbase transaction as a reward to the miner in addi-
tion to the transaction fees. However this reward is halved
every 210,000 blocks. That is necessary in order to limit the
amount of bitcoins that will ever be created and in doing so,
preserving their value. On the downside this means that in
the not so distant future the transaction fees will be all the
reward a miner receives.

2.4 Blockchain Security Mechanisms

Anyone can create a transaction, but creating a valid one re-
quires proving the ownership of the asset(s) in transfer. Va-
lidity in this context means that other nodes of the network
will consider the transaction fit to be included in a block
on the basis of the current blockchain (e.g. asset was not
already spent) and the common specification (i.e. correct
transaction format). The transaction is then published onto
the network where every node on the way will also check the
transaction’s validity before distributing it further. If found
to be valid, a transaction will be kept by mining nodes to
be incorporated into a block. Only after a transaction was
published inside a block, it is considered to have been con-
ducted.

Whenever a node solves the proof of work it has finished a
new block. The validity of this block depends on the proof
of work matching the current threshold, the merkle tree

Seminars FI / IITM SS 17,
Network Architectures and Services, September 2017

43

root matching the transactions as well as their order and
the validity of each transaction. The node then distributes
the new block along the network. Every node along the way
checks the block’s validity before distributing it further and
adding it to it’s local image of the blockchain.

Since a miner can append his new block anywhere in the
chain, the blockchain may fork. Bitcoin’s solution to this
problem is simple yet effective: In this event the longest
chain of blocks is the one agreed upon. This works because
creating blocks is expensive. An individual will never have
the computational power needed to fork the chain and create
a longer chain than all of the other nodes in the meantime.
Honest nodes will always switch to mining on the highest
valid block, because they will not get any rewards if their
mined block is not part of the longest chain. By working
on a successor to a block, a node implicitly expresses it’s
acceptance.

For this blockchain to work there are mainly two assump-
tions made. The first one is that the majority of nodes are
honest. The second one is that no node ever reaches more
than 50% of the networks computational power. Both of
these make sure that the majority of blocks is always cre-
ated by honest nodes.

2.5 Attacks on Public Blockchains

This section introduces three attacks on public blockchains
and evaluates them. The main purpose of this section is
less to show weaknesses of public blockchains, but rather to
illustrate why they are so secure.

The most realistic attack on bitcoin is the double spend [25].
The goal of this attack is to spend the same transaction
output twice. This is possible to a certain extent because a
block can later on become invalid if another branch of the
chain becomes longer than it’s own one. An attacker could
buy an item from a seller. As soon as his transaction is en-
capsulated in a valid block, the seller would give the item
to the attacker. Then the attacker would need to fork the
blockchain right before his transaction and make it longer
than the original branch. This way he could void his trans-
action while already having obtained the item. In reality
this is very difficult to execute as it requires vast amounts
of computational power and even then this is still a gamble.
As the attacker would most likely have less than 50% of the
networks computational power he would have to be lucky
in order to overtake the original branch. To conclude, it
can be said that this attack is theoretically possible, but not
feasible due to the amount of funds and/or luck it requires.

Another take on the double spend attack is referred to as
fast double spend. Some exchanges with bitcoin require a
certain speed. A supermarket, for example, can not wait
for about 10 minutes for the next block to encapsulate the
transaction. These vendors instead rely on just seeing the
customer’s transaction on the network. An attacker could
possibly create the anticipated transaction while also cre-
ating a malicious second transaction that spends the same
transaction output as the first one, but this time transfers
it to another wallet under the attacker’s control. Then both
transactions are distributed across the network. The at-
tacker has to make sure the first transaction is broadcasted
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to the vendor while broadcasting the malicious transaction
to most other nodes. This increases the chances of the ma-
licious request being mined first. As both transactions con-
tradict each other, only the first one to be mined will ever
be mined. For more detail on this attack refer to [21]. In
practice it is still rather difficult and depends on luck.

All of these double spend attacks can be averted by sim-
ply waiting. With every block succeeding the one with the
transaction in question it gets exponentially more difficult
to undo the block. That is because an attacker would have
to fork the chain in front of that block, redo all succeeding
blocks and overtake the original branch all while the network
is still mining on said original branch. After only about 6
succeeding blocks a Bitcoin transaction can be considered
rather safe [25]. On the downside, this means having to
wait for about an hour.

It should also be mentioned that another angle of attack is
strategically withholding and publishing mined blocks such
as described in [20]. This kind of attack is referred to as
selfish mining. Normally an individual should earn a per-
centage of the total block rewards approximately matching
it’s percentage of the network’s total computational power.
The goal of this attack is to increase the percentage of the
reward without increasing computational power. Although
there are several theoretical strategies for attacking Bitcoin
like that, there is no evidence of them ever having been ex-
ecuted.

2.6 Problems in Public Blockchains

A major drawback of the PoW system is the large amounts
of computational power it requires. All of this energy is con-
stantly used and is essentially wasted. The Bitcoin network
is rapidly expanding and the continuous electricity consump-
tion is projected to be in between the production of a power
plant and the consumption of a small country like Denmark
by 2020 [19]. But even if this waste is considered to be
worth it, there has to be an incentive for the nodes to pro-
vide computational power. In a system like Bitcoin, that
is only designed to be currency, this incentivization is easy,
but there are numerous applications for blockchain that do
not involve currency.

Another problem caused by the PoW system is the limited
transaction throughput. As the system is tuned to produce
only one block (on average) in a certain interval of time, this
interval and the block size dictate the transaction through-
put [18]. This is a hard maximum that can cause transac-
tions to pile up and essentially clog the blockchain. This
maximum can only be increased by changing the specifica-
tion of the distributed system. That process however is very
tedious as can be seen with Bitcoin’s block size discussion
currently going on [3].

The need to have a full copy of the blockchain for most
applications leads to large amounts of data every node has
to hold. Currently the complete Bitcoin blockchain already
takes up more than 130 Gigabytes of disk space [4]. Even
though this can be considered affordable with respect to
today’s hardware, it also creates an ever rising entry barrier,
because every new node joining the network has to download
all blocks created so far.
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Because a node in a public blockchain may have a full copy
of the current blockchain, it has full access to all transac-
tions. For this reason it is impossible to conduct a transac-
tion without everyone else knowing. Even worse: from the
transactions the current balance of any individual can be
computed. Privacy is not possible in a public blockchain.

3. PRIVATE BLOCKCHAINS

A private blockchain is a blockchain that restricts read and
write access using additional security systems. This restric-
tion can be achieved by an access restricted blockchain de-
ployed on a public network, as well as a standard blockchain
deployed on a private network. This normally results in a
lot fewer nodes being part of the network and typically all of
these nodes can be authenticated. This type of blockchain
is also referred to as permissioned being the contrast of a
public, or permissionless blockchain.

3.1 Motivation

The research in the field of private blockchains is motivated
by the aforementioned problems found in public blockchains.
Private blockchains are mainly envisioned to be used as se-
cure ledgers in and in between companies, but the possibil-
ities are endless.

Blockchains remove an angle of attack on the system by get-
ting rid of an all-powerful admin. Furthermore a blockchain
provides better auditability than most current systems. Last,
but not least, a blockchain might also save costs, because
depending on the implementation of the private blockchain,
there is no or just limited involvement of a third party. These
aspects are so impactful that blockchain has the potential to
forever change a broad range of transaction-based industries
[12].

Privacy is required for mainly one reason. It is necessary
in order to maintain common business practices like private
contracts. Doing so also protects company data and there-
fore is essential in ensuring competitiveness.

3.2 Consensus

In order to understand why consensus in private distributed
ledgers is so challenging, some exposition on consensus mech-
anisms in general has to be given first. There are mainly two
approaches in existence. The first one is using a traditional
byzantine fault tolerant algorithm like Practical Byzantine
Fault Tolerance (PBFT) [16]. PBFT employs a voting sys-
tem in order to decide on a block and is resilient against
a maximum of 33% of the participating nodes being mali-
cious. However, this system needs some central authority to
manage network membership and the voting process does
not scale well with large network sizes. Nevertheless PBFT
is still a decent choice and for example was adopted for Hy-
perledger Fabric [7]. A new take on PBFT is the Federated
Byzantine Agreement (FBA) [23]. FBA is fully decentral-
ized and scales better. The central idea is that nodes do not
rely on the majority of other nodes on the network for block
acceptance any more, but on a majority of a set of nodes
they trust. This mechanism is the one used by the financial
service Stellar [14].

The other approach is a leader election protocol and also
known as "Nakamoto consensus”, named after the Bitcoin
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creator [15]. The idea of this protocol is to somehow ran-
domly select a leader that may then create one block. Apart
from Proof of Work discussed in section 2.3 the other no-
table, but far from being as widely used, representative of
this approach is Proof of Stake (PoS). The general idea of
PoS is that someone who owns a large part of a system
is expected to naturally act in the interest of this system.
Therefore a node’s chance of creating the next block should
be higher, the more value they control. The crypto-currency
PPCoin [22] features an implementation of this mechanism.
However, it does not rely on pure PoS and combines PoS
with PoW, making mining easier for richer nodes. The fea-
sibility of pure PoS is highly controversial.

All of these mechanisms are flawed in some way, especially
when applied to a private blockchain. PBFT (and most
other traditional byzantine fault tolerant) algorithms gener-
ally are a secure choice for small networks. However, they
scale so badly (especially PBFT) that even private networks
might quickly grow too large to achieve decent performance.
Leader election protocols on the contrary are highly scalable,
but PoW is the only one proven and extensively tested one.
And while the PoW system still is immensely popular and
used by a lot of big blockchain projects, it also has several
severe weaknesses. The most important ones were already
discussed in section 2.3 and following. When applied to a
private blockchain these problems only augment.

The first problem is mining incentivization. This might be
addressed by having decent transaction fees. But even if the
stakeholders of a private blockchain would agree on a mining
reward this would undermine one of the technology’s major
benefits: The costs of maintaining the blockchain would be
tremendous.

The most critical problem relates to the network’s size. The
small amount of nodes in a private blockchain results in less
combined computational power. This makes the system vul-
nerable to attack such as the ones presented in section 2.5,
because one individual can gain over 50% of the network’s
computational power with relative ease. In terms of secu-
rity this is catastrophic and renders the blockchain useless.
By these reasons, other consensus mechanisms are needed
in smaller, private networks.

4. HYPERLEDGER SAWTOOTH

Private blockchains in general are still very early early in de-

velopment and next to no commercially used private blockchain

systems are known at the time of writing (mid 2017). The
most promising development in private blockchains so far
probably is the Hyperledger Project [11]. This initiative was
brought to life by the Linux Foundation in 2015 and is in-
tended to form a community developing private blockchains
together. The goal is to improve on existing blockchain tech-
nology in order to make it applicable for business. Presti-
gious members like IBM, Intel, SAP and many more, under-
line the huge amount of interest in this technology.

There are several different projects being developed and all
of them are open source. This paper will focus on Sawtooth
[10] (sometimes also referred to as Sawtooth Lake), because
it seems to be the furthest in development and has the best
specifications [6]. It is mainly written in Python and offers
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Table 4: Sawtooth Transaction Structure [8]

| Name | Data Type |
header bytes
header_signature string
payload bytes

Table 5: Sawtooth Transaction Header Structure [8]

| Name Data Type |
batcher_pubkey string
dependencies repeated string
family_name string
family_version string
inputs repeated string
nonce string
outputs repeated string
payload_encoding string
payload_512 string
signer_pubkey string

APIs in C++, Go, Java, Javascript, and Python. Sawtooth
is able to support permissioned, as well as permissionless
networks with a maximum of about 100 nodes. These net-
works can be deployed anywhere.

Hyperledger Sawtooth was proposed to be included in the
Hyperledger Project by Intel in April of 2016 [9] and is an
active Hyperledger project at the time of writing (mid 2017).
It is meant to be an enterprise solution for not only running,
but also building and deploying (private) blockchains.

Nodes in Hyperledger Sawtooth can fill the roles of clients
and/or validators. Clients are individuals interacting with
the system by querying the state of the system or issuing
transactions. Validators are nodes involved in the consensus
algorithm and can be used for clients to request inclusion
of transactions into the current blockchain. These validator
nodes are comparable to miners in Bitcoin. However, they
do use a different consensus mechanism that is presented in
section 4.6;

Sawtooth’s overall architecture is quite similar to Bitcoin’s
and will be presented in the following sections. The techni-
cal details were taken from the Hyperledger Sawtooth Doc-
umentation [8].

4.1 Transactions

Sawtooth features not only one type of transaction, but
many different ones. They are grouped up into transac-
tion families. The project comes with three already con-
figured transaction families: sawtooth_config, intkey and
sawtooth_validator. Developers are able to add more cus-
tom ones in order to tailor the system to every possible use
case.

The sawtooth_config family allows for storing configura-
tion settings on the chain. This is extremely powerful, as this
enables users to configure the chain using the chain itself.
For example this includes the transaction limit per block or
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Table 6: Sawtooth Batch Structure [8]

| Name | Data Type |
header bytes
header_signature string
transactions repeated Transaction

Table 7: Sawtooth Batch Header Structure [8]
Data Type |

Name

signer_pubkey
transaction_ids

string

repeated string

the desired average time between blocks. This family also
is special because it deviates from the standard consensus
algorithm. Instead it has two options: Only one authorized
node that is able to apply changes on it’s own or a voting
system for multiple authorized nodes with a configurable ac-
ceptance threshold. The second transaction family included
is the intkey family. These transactions can be used to
associate integer values with names and modify these val-
ues. This allows for easy creation of bitcoin-like blockchains
for testing. The remaining set of pre-installed transactions
is the sawtooth_validator family, which is responsible for
adding new validators to the network.

A transaction in Sawtooth is composed of a header and a
payload. Table 4 shows the structure of a transaction and
Table 5 lists the transaction header fields. The dependen-
cies field is useful for validators and lists the transactions
that have to precede this one. The fields family_name,
family_version and payload_encoding are providing in-
formation about the family (and version of that family) the
transaction belongs to, as well as the family specific encod-
ing used for the payload. The nonce field is just a random
number used to differentiate between two transactions with
the same content. The last header field of interest is the
batcher_pubkey. This field ensures that a transaction can
only ever be included in a batch by someone that was al-
lowed to do so by the creator of the transaction. Batches
are discussed in section 4.2. Security is provided by the
header_signature found in the transaction. It can be val-
idated using the signer’s public key (signer_pubkey in the
header) and the payload is bound to the transaction header
via it’s hash in the payload_512 field.

The transaction payload consists of a list of key/value-pairs
that are encoded according to the payload_encoding field.
The number and type of these values are defined by the used
transaction family.

4.2 Batches

Batches are the first major deviation from the Bitcoin block-
chain presented in section 2. A batch groups up one or more
transactions of any type. It is to be noted that batches do
not replace blocks. Batches are a new component conceptu-
ally located in between transactions and blocks. The main
benefit of a batch is that it can either be accepted or de-
clined in all of it’s entirety, but under no circumstances only
part of the transactions in a batch may be accepted. This
for example is useful in a scenario where two configuration
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changes are supposed two be made, where applying only
one of these changes might have a catastrophic effect on the
system.

Structurally they consist of a header and a list of transac-
tions. This is shown in Table 6 and Table 7. The
signer_pubkey allows to check whether all transactions were
rightfully included into this batch. The transactions of the
batch are bound to the batch header via their transac-
tion_ids. The batch is secured by the header_signature
that can be validated using the signer’s public key
(signer_pubkey in the header), just like a transaction is.

4.3 Blocks

One block in Sawtooth groups up transactions to be applied
to the ledger just like it does in Bitcoin. The most important
property to mention here is that the block does not group up
the transactions directly. It only groups up batches. This
means that every transaction has to be batched. If a trans-
action’s acceptance is not supposed to depend on any other
transaction(s) that still means that a batch has to be created
for just this single transaction.

4.4 Global State

On top of simply storing the blocks, every Sawtooth valida-
tor also possesses a radiz merkle tree in order to additionally
store the current state of the blockchain. This again is a ma-
jor difference in comparison to the Bitcoin blockchain. It has
the benefit of being able to query the current state without
having to compute it from all of the blocks first. This radix
merkle tree is separately constructed by every validator and
never shared via network.

Every piece of data stored in this tree has a
unique address defined by the family and the piece
of data. For example, the address that defines the
maximum number of transactions per block is
sawtooth.validator.max_transactions_per_block. The
actual address used by the tree is a radix address derived
from this address. These radix addresses are 35 bytes long.
While the first 3 bytes of the radix address are the first
3 bytes of the SHA256 hash of the namespace address, the
other 32 bytes of the radix address have to be implemented
specifically for every transaction family. At each node of the
tree there is one byte labeling all outgoing edges. Following
the bytes of a radix address leads to the leaf node containing
the corresponding piece of data. This enables very efficient
lookup operations.

Additionally the tree is also a merkle tree, meaning that all
nodes can be hashed up into a single root hash. Each block
header contains the root hash of the according tree. This
links the blocks with the tree and assures that there also is
consensus on the current state.

4.5 Journal

The Journal is the central component of every validator. It
is highly modular to allow for different consensus algorithms.
It is responsible for generating new blocks, validating candi-
date blocks received via network and evaluating every valid
block in order to determine whether it should be the new
chain head. It also stores all blocks of the current chain
without any forks.
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Whenever the Journal receives a batch it first waits for all
dependencies to have been processed. Then it validates the
batch and places it in storage where it waits to be included
in a block. Periodically the Journal tries to build a new
candidate block from the stored batches. If successful, the
Journal waits until it is allowed to publish the block by the
consensus algorithm (refer to section 4.6) and then proceeds
to do so.

When the Journal receives a block, it is processed as soon as
all predecessors are present. The following steps are taken:
At first the root of the fork is determined. If the block
simply extends the last block, the current chain head is the
fork root. Then from this fork root on, all successors up until
the new block are validated. In the end, it has to be decided
whether the new block should become the new chain head.
This decision is entirely dependent on the used consensus
algorithm. If the new block is accepted as the new chain
head, the block store is updated and all batches included in
this block are removed from the pending batches.

The block validation process begins with a check for formal
completeness. This includes existence of a valid predecessor
as well as the presence of all batches on the block and the
correct batch order. Next, all batches are validated. There
may neither be duplicate batches, nor transactions and all
of the transactions need to have valid dependencies. Then
the block is validated according to consensus rules. Finally,
the state root hash present in the block header is checked
against the locally computed one.

Processing blocks inside the Journal is asynchronous. This
improves performance while under great load.

4.6 Consensus using Proof of Elapsed Time

Because of all the problems PoW has, Intel decided to come
up with their own leader election protocol: Proof of Elapsed
Time (PoET) [27]. Although Sawtooth can theoretically

support other consensus mechanisms, PoET is the most promi-

nent (and currently only) one. The basic idea of this system
is that every validator generates a random wait time for ev-
ery new block it wants to create. The first validator who’s
timer expires is allowed to create the block. This way every
CPU has the same chances of winning this lottery. Proof of
Elapsed Time is a huge leap forward in blockchain technol-
ogy, because it features all the properties of Proof of Work
without the huge waste of power.

In order to guarantee the security of this system, it is neces-
sary to be able to verify the correct execution of the timer
process. This is realized by using Intel’s Software Guard
Eztension (SGX) [13] [17]. Since the Skylake generation of
Intel processors, this feature is becoming available on more
and more Intel processors. SGX runs programs in protected
areas of memory called enclaves. In this enclave the correct
execution of a program can be cryptographically attestated
and neither the user, nor the operating system is able to
read or manipulate the enclave. Even though the initializa-
tion of an enclave is performed by untrusted software, it is
possible to verify that the enclave was initialized properly. A
measurement hash generated during initialization can prove
that the enclave was set up correctly.
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The backbone of this system’s security is that a remote party
can verify the integrity of an enclave. Every chip manufac-
tured by Intel receives two secrets into the chip’s one-time
programmable registers: The Provisioning Secret and the
Seal Secret. While the first one is known to Intel’s Provision-
ing Service, the latter one is generated on the chip and not
known by anyone. This is beneficial should Intel ever be the
target of a successful hack, because the Seal Secret is used to
derive a key that is used for securely storing other used keys
in the system. With a Provisioning Key, generated from
the Provisioning Secret, the enclave’s certificate-based iden-
tity (created by the enclave’s author) and a security version
number, the Provisioning Enclave can request an Attesta-
tion Key from the Provisioning Service. After provisioning
the local SGX, the Quoting Enclave can be used for soft-
ware attestation. It receives a local attestation report from
the enclave running PoET and signs it with the Attestation
Key. The signed attestation (also called quote) is the proof
for a newly created block. This whole system is completed
by the Intel Attestation Service (IAS) [1], a web service that
verifies the attestation issued by a node’s enclave.

However the PoET system is still experimental and has not
yet been fully implemented. Documentation is also lacking
to non-existent, making it very hard to go into detail. At
the time of writing this paper (mid 2017) only a test im-
plementation exists that is not safe for use in a production
environment, because it only uses a simulated enclave. All
details mentioned here should be taken with a grain of salt.

4.7 Problems with Proof of Elapsed Time
PoET in the currently envisioned version requires several In-
tel services. This can be seen as a setback to the completely
decentralized nature of a blockchain, as Intel is acting as a
central authority and every node has to trust them.

Another disadvantage introduced by the IAS is an increase
in difficulty of verifying blocks in comparison to PoW. While
the latter one only requires computing a hash and comparing
it, this new one needs to query the IAS. This adds a full
round trip time to every verification.

The SGX is theoretically breakable with a realistic amount
of effort, resources and knowledge. The result is catastrophic
because with PoET a single broken node is able to perform
majority attacks on the blockchain, such as the ones dis-
cussed in section 2.5. Intel is working on detecting compro-
mised nodes through statistical analysis, but the attainable
effectiveness remains to be seen.

Further problems and vulnerabilities may become appar-
ent once POET has been fully implemented and thoroughly
tested. Before that it will not be possible to accurately assess
the suitability of PoET as a distributed consensus mecha-
nism.

S. RELATED WORK

Apart from Hyperledger Sawtooth, that was presented in
section 4 of this paper, there are some other development
efforts in the field of private blockchains worth mentioning.

Hyperledger Fabric [7] also is a part of the Hyperledger
Project. Fabric was proposed for Hyperledger in early 2016
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by IBM and Digital Asset. It provides a foundation for de-
veloping permissioned blockchains using PBFT consensus.

Ripple and Stellar are two big financial service providers re-
lying on their own permissioned blockchains. They connect
financial institutions like banks with their network, allow-
ing for fast and secure transactions in between them. These
transactions use their respective crypto-currency to make
simple currency exchange possible. The big difference in be-
tween these two is, that Stellar is a nonprofit organization,
while Ripple is not. In terms of technology, Ripple uses a
custom voting algorithm called Ripple Protocol Consensus
Algorithm (RPCA) [26] and Stellar employs FBA [23].

6. CONCLUSION

This paper gave an introduction to blockchains using the
example of Bitcoin. It was shown that PoW, being the most
used public consensus algorithm, is effective at securing a
distributed ledger if the network is large enough. Yet it
is far from efficient due to the enormous power consump-
tion introduced by mining. It was further argued that PoW
simply is not applicable for small networks, such as private
blockchain systems, because they extremely facilitate 50%-
attacks.

Hyperledger Sawtooth by Intel was found to be a promis-
ing project to become a breakthrough in the field of pri-
vate blockchains. The most important innovation is the
new leader election protocol in development called Proof of
Elapsed Time. It theoretically provides the same benefits as
PoW does, but is applicable to smaller networks and does
not nearly consume as much power. All of this comes at a
price though: Because of it’s reliance on Intel’s trusted ex-
ecution environment SGX, the algorithm requires nodes to
place at least some trust in Intel. Also the block verification
is slightly more complex, because it requires a query to the
IAS.

Even though PoET is showing a lot of potential, it is far too
soon for a final verdict. The actual viability remains to be
seen once Sawtooth is production ready.
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