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ABSTRACT
The Transport Layer Security Protocol in its current im-
plementation is based on a centralized and intransparent
infrastructure. These flaws have been the cause of Man-
in-the-middle (MitM) attacks, which are most commonly
rooted in compromised Certificate Authorities. Log-based
enhancements, such as Certificate Transparency, have made
an effort to solve these problems by logging every signed cer-
tificate and thus making signing a public process. However
these systems lack proper financial incentives and automa-
tion. In this seminar paper Instant Karma PKI (IKP) [15],
a system to improve on Log-based enhancements and on
the Public Key Infrastructure (PKI), is described and dis-
cussed.
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1. INTRODUCTION
Secure data transfer on the internet is based on the Trans-
port Layer Security protocol (TLS) [8]. It allows two actors
on the web to communicate in privacy and provides data in-
tegrity. The most commonly used protocol based on TLS is
HTTPS [18], which allows transfer between client and server
in an end-to-end encrypted connection.
The basis for the trust model in TLS is the Public Key
Infrastructure (PKI). The PKI has two main actors, the
websites that want to establish trust in their public key for
secure communication, and the Certificate Authorities (CA),
who sell a certification of those public keys. The trust in
those certificates is established via a chain of trust, which
is rooted in certificates bundled with web browsers and op-
erating systems. An example for this can be seen in figure
1. The main point of failure in this system are the CAs
themselves. Worldwide, CAs have been compromised and
used for Man-in-the-middle attacks. Examples for this are
TURKTRUST [10] from Turkey, VeriSign [16, 23] and Co-
modo [19] from the U.S., DigiNotar [2] and GlobalSign [24]
from the Netherlands. One of the newest incidents came
from Symantec [21], one of the largest CAs. The issue with
these compromises is that every single CA can issue certifi-
cates for any website and thus compromise even big websites
like Google or Facebook. This problem is facilitated by the
fact that browsers contain hundreds of root certificates.
One approach to solve this, proposed by Google themselves,
called Certificate Transparency (CT) was published as an
experimental RFC in 2013 [14]. It is a log-based approach

that is supposed to be publicly monitored, thus making de-
tection of unauthorized certificates faster and easier.
The authors of IKP [15] identified two main goals with their
system. It should add incentives for all actors to behave
correctly and everything should be automated. This will be
described in more detail in Section 3.1. In Section 2 back-
ground information to understand IKP is presented, Section
3 deals with the components of the Instant Karma PKI and
evaluates its functionality.
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Figure 1: Chain of trust in the public key
infrastructure.

2. BACKGROUND
This section describes background information that is im-
portant to understand the IKP architecture and why its im-
plementation is desirable.

2.1 Log-based enhancements
Log-based enhancements such as Certificate Transparency
[1] aim to move the process of signing certificates to the pub-
lic and thus make detecting malicious certficates faster by
keeping a log of every certificate signed. This log has certain
cryptographic features, for example being append-only, that
allow verification of the logs themselves and of the existence
of a certificate in the log. Furthermore certain important
characteristics such as invulnerability to malicious actors [9]
can be proved. In the CT system the browsers leverage these
features to extend the TLS protocol to include verification
that a certificate has been logged using the Signed Certifi-
cate Timestamp extension to X.509 certificates [7], this ver-
ification of logging is part of the extended validation pro-
cess. Log operators are for example Google or CAs. Other
important actors are the monitors who watch for suspicious
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certificates in the logs and reporting those. They also make
sure that all logged certificates are visible by periodically
fetching new entries and exchanging this information with
other monitors and auditors using a gossip protocol.

2.2 Ethereum and smart contracts
Ethereum [26] is a blockchain-based cryptocurrency. Sim-
ilar to other such currencies it relies on its decentralized
structure to reach a consensus on a public ledger containing
blocks of transactions.
The feature that makes Ethereum suitable for implementing
IKP are smart contracts. While originally defined as a digi-
tal version of contracts, Ethereum takes them one step fur-
ther and allows executing arbitrary code in contracts which
means the consensus also has to enforce correct contract exe-
cution. It achieves this by introducing a new type of account,
the contracts, which are created by sending a transaction
from an externally controlled account to the empty account
with the code to be executed as data. While smart contracts
can contain programs and state they can only be executed or
react to something if a transaction is sent to the contract ac-
count, thus making code execution in the system dependent
on actions of externally controlled accounts. Computation
power, which is essentially a state change of the contract,
is paid for in a seperate currency from Ethereums currency,
called gas. The price for gas is relatively low, however each
contract has to have a self imposed gas limit.
However smart contracts are not fool proof, can have bugs
and can be attacked [3]. An example of this is the DAO
hack [17], where a large contract had severe problems that
caused unwanted money transfers. In the end this lead to
a fork of the blockchain, which is generally speaking un-
desirable because it disrupts the value of the currency and
reduces trust in the consensus mechanism.

3. INSTANT KARMA PKI
This section is going to describe the Instant Karma PKI [15]
system with all its components and afterwards discuss and
evaluate it.

3.1 Analysis
To describe a system such as IKP it is important to keep
in mind what problems exist and how it attempts to ap-
proach them, the authors of IKP identified the following
problems [15]. Certificate Transparency, as briefly described
in Section 1, doesn’t solve important problems that exist in
todays PKI infrastructure.
One flaw of CT specifically is that the list of authorized logs
is centralized, thus adding another point of failure, the list
of trusted logs shipped with browsers. Other log-based en-
hancements have tried to solve this [12], however none have
been implemented, so actual security of alternatives is hard
to verify.
Another obvious problem is running logs and monitors. Run-
ning logs is expensive for actors not participating in the PKI,
specifically anyone but CAs, and some logs in the current CT
system are run by CAs who were compelled by Google to do
so due to security incidents [20]. Furthermore running mon-
itors is best done by domains themselves since they know
best what authorizes a certificate for their domain, while
this requires additional setup, services like SSLMate’s Cert
Spotter, which is available on github [22], make this easier

even for smaller actors.
An important issue is the difficulty of actually reporting
unauthorized certificates. Only the CAs themselves can
currently revoke certificates within a reasonable timeframe
and reporting to them means manual effort for the detec-
tor. Other possibilities for the detector would be contact-
ing browser vendors and getting the root certificate revoked,
however rolling out browser updates takes testing and time
and thus won’t be finished in a short amount of time either.
An example for where this works is the repeated misbehavior
of Symantec, who Google decided to take action against by
severely limiting Symantecs root certificates in Chrome [21].
Another observable issue is that CAs need to invest more
in their security and their verification process. As seen in
Section 1 a lot of CAs have been the target of hackers who
then proceeded to execute Man-in-the-middle (MitM) at-
tacks, thus increasing their security is the obvious move.
Some CAs also seem to take the verification of ownership
very lightly and gave intermediate certificates to companies
that don’t enforce any verification [13]. They need to be
given incentives to invest in their security, and the verifica-
tion of domains and of companies they sell certificates to.
With these problems in mind, IKP’s goals are to add fi-
nancial incentives for CAs to behave correctly, besides the
monetization of certificates, to automate verification of sus-
picious certificates and to reward the detectors accordingly
and to achieve this in a decentralized way [15].

3.2 Overview
This section defines the main goals as identified in the IKP
paper [15]. The main idea of IKP is to automate a decen-
tralized system that creates financial incentives for handling
CA misbehavior. To do so it is important to define CA mis-
behavior, so it has to introduce a concept that allows the
definition of authorized certificates. To also add automated
financial incentives for reporting certificates, IKP needs the
ability to evaluate those certificates and it has to provide a
way to respond in case the evaluation results in the identi-
fication of CA misbehavior.
These ideas result in a system that should fulfill the follow-
ing properties:

• Auditability of the information in the IKP system that
define authorized certificates.

• Automation of reactions to CA misbehavior without
any third parties

• Financial incentives that ensure actors who show good
behavior get rewarded

• Punishment of CAs for misbehavior resulting in dis-
couragement of more misbehavior

Before going into details, actors in this system are estab-
lished and possible adversarial behavior of those actors is
described. The three obvious actors, are the ones that in-
teract in the TLS protocol’s system, namely domains, CAs
and clients. Another important actor is the detector, who
reports suspicious certificates. Since IKP is based on the
idea of adding financial incentives to the PKI, the goal of
all actors is a positive Return of Investment (ROI). For CAs
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generally speaking this means issuing an unauthorized cer-
tificate but not being penalized for it or receiving more pay-
ments than penalties. Domains can act malicious via collu-
sion attacks together with detectors and CAs, and detectors
can try to report every certificate they come across and re-
port it, hoping for one of them to actually be unauthorized
and thus receiving rewards.
In TLS the domains buy certifications of their public keys
in order to verify their identity to clients during the TLS
handshake and establish a secure connection for transfer-
ring data. In order to achieve IKP without impact on the
existing infrastructure, a new entity is introduced: the IKP
authority. As seen in Figure 2 it enables domains to regis-
ter so called Domain Certificate Policies (DCP), which are
a concept for describing CA misbehavior. DCPs allow the
domain to define what makes a certificates authorized in a
way that can be checked by the IKP authority automatically.
CAs are enabled to register Reaction Policies (RP) to the
IKP authority. These policies are bought by domains from
CAs and are supposed to be the financial incentive for CAs
to not issue unauthorized certificates, because if no unau-
thorized certificates are issued against the domain until the
expiry date, the CA is rewarded. They act as an insurance
for the domain against misissuance, as the domain and the
detector receive rewards from the RP if an unauthorized cer-
tificate for it is detected. The IKP authority also executes
the important inspection of the certificates that detectors
report using the DCP that the domain published and issues
payouts based on the RPs. Furthermore the authority con-
trols a global fund to send and receive payments, as a result
it has the role of a trustee to all other parties.
To register in this system all entities have to first register
in the Ethereum blockchain. This is necessary in order to
receive payments and also to interact with the IKP author-
ity, since it is implemented as a smart contract and thus can
only be interacted with by sending transactions to it. This
is what results in a fully automated system and enables IKP
to run with little supervision. Another result of the author-
ity being a contract is that the essential part of DCPs and
RPs have to be implemented as a contract too, such that
the IKP authority can automatically execute them in case
it has to check a reported certificate or send payments from
the reaction policy.
To summarize, the IKP authority has to store DCPs and
RPs in order to automate misbehavior checking, the CAs
issue RPs to domains, the domains publish DCPs to articu-
late what authorizes a certificate for them and the detectors
report suspicious certificates, thus starting the checker func-
tionality of the IKP. The authority contract has to escrow
funds and send out payments according to the results of
checks of certificates.

3.3 IKP authority
This section further describes the functionality offered by
the IKP authority as it is described in the IKP paper [15].
Similar to having their root certificate in web browsers, CAs
need a way to register in IKP if they want to sell insurance
policies. To start this they have to register an externally
controlled account in Ethereum and then send a transac-
tion to the IKP contract with the fields depicted in Figure
3. The CA name identifies it, the Valid From field specifies
at what point the registration information is valid, the pay-
ment account is the address of the CAs Ethereum account,

CA

Global fund balance
CA Registry

DCP Registry
RP Registry

Misbehavior checker
Payout enforcer

IKP Authority

Domain

Client

CA Domain Client

Detector

register RP

issue cert  offer RP

TLS

register DCP

report suspicious cert

act as

Figure 2: Overview of IKP showing its entities and
corresponding functions. Adapted from [15].

note that it does not necessarily have to be the account the
registration transaction came from. The public keys are the
CAs signing keys that are contained in their root certificate,
the update keys are an optional security measure that al-
lows CAs to define other keys in case their primary account
is compromised and lastly the update threshold defines how
many update key signatures are needed to update the reg-
istration information. It is important to see that while the
update mechanic adds a certain amount of security, it is not
a complete protection against compromise, private keys still
have to be kept secret. However since CAs already have to
store their certificate signing keys in a secure way, securely
storing update keys and the Ethereum key should not be a
problem.

CA
Abc

Account
Public Key(s)

Update Key(s)

CA registration transaction

CA name: CA Abc
Valid from: 17 Aug 2015 0:00:00

Payment account: 0x02a04…
Public key(s)

Update key(s): 0xa7eda8…
Update threshold: 1

IKP Authority

Figure 3: Overview of CA registration in IKP.
Adapted from [15].

Domains have to be able to register in the IKP system
too, since they have to issue the DCPs which are crucial
to the whole system. The idea is to use DCPs not only to
describe authorized certificates but also to act as a way of
registering. The domain has to register similar information
to CAs, this is described in detail in Section 3.4.
The IKP also offers a fair exchange mechanism for payment
transfers during RP issuance. The procedure is as follows:
First the domain sends the payment for the price/fee for
the RP and a hash over the RP to the IKP authority, then
the CA creates and sends the RP to the authority. The au-
thority then verifies that the sent RP corresponds to what
the domain is expecting to buy from the CA and that cer-
tain payout constraints are fulfilled. If anything goes wrong
all payments are returned and the process is cancelled. If
everything is correct the IKP authority will send the price
the domain paid for the RP to the CA and all funds in the
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transaction that created the RP are transferred to a global
fund that the IKP authority maintains.
With this, after the domain and the CA negotiated the con-
tents of the RP, the IKP acts as an escrow service for the
associated payments. This escrow functionality can also be
used to issue certificates, since both parties who participate
in certificate issuance, the CA and the domain, already man-
age Ethereum accounts to participate in the IKP system, it
makes sense to offer this service as the IKP authority itself
is an easily auditable smart contract.
Furthermore the IKP has to accept reports of misbehav-
ior from detectors. This usually happens in the form of
sending a suspicious certificate and Ethereum account infor-
mation. The detector has to pay a fee for reporting certifi-
cates in order to discourage sending every single certificate
a detector encounters and hoping one of them is unautho-
rized.
Another important part of this is a so called pre-report con-
taining the reporting fee and a hash of the certificate and a
secret. This is enforced so that blockchain miners cannot re-
place the detectors name with their own and thus receive the
rewards for detecting a malicious certificate. This is called
commitment hash and the commitment is opened after a
certain number of blocks are mined by sending the actual
certificate and the secret. Note that the reward for a detec-
tor is supposed to be negotiated between domain and CA
when buying a RP and furthermore has to be larger than
the initial reporting fee. The reward is only sent out if the
IKP authority detected misbehavior.
If misbehavior is detected, not only is the detector paid, the
reaction program also contains payouts to the domain and
the CA. The financial transactions are executed by the IKP
authority. The penalty in the CA occurs in the form of less
payout than it would have received without misissuance.

3.4 Domain Certificate Policies
This section describes the design goals for DCPs, the actual
implementation and functionalities that the checker program
has to offer, as described in the IKP paper [15]. The last
paragraphs give information about the functionalities the
IKP authority has to provide and leverage in order for DCPs
to function.
Domain Certificate Policies are an important aspect of the
IKP architecture since they allow domains to publish what
properties an authorized certificate has to fulfill, which then
defines CA misbehavior. Following are the design principles
the IKP creators had in mind when developing DCPs.
Firstly the information contained in DCPs that allows check-
ing a certificate and results in the assessment of the certifi-
cate, is only determinable by domains themselves. Thus IKP
allows only domains themselves to specify what authorizes
a certificate for them. As a result it is possible to move
away from terminology established in CT, the concept of
a suspicious certificate, and concretely define authorization
criteria. This also enables detectors who know these criteria
to report unauthorized certificates with corroboration from
domains themselves.
Secondly to enable detectors to determine criteria for au-
thorized criteria, DCPs are stored in a decentralized way.
This is enabled through the blockchain and enables the in-
formation to be globally consistent through the consensus
mechanism. This also allows the authenticity to be affirmed
by anyone, thus making determining authorization of cer-

tificates globally consistent.
Lastly the criteria to determine authorization have to be
as expressive and detailed as possible. This allows for var-
ied policies and this is important since larger organizations
probably have more complex requirements for their certifi-
cates. This is realized by implementing the checker program
as smart contracts that returns a boolean value describing
authorization, true if a certificate is authorized, false oth-
erwise. An interesting observation is that while programs
can be arbitrary since Ethereum offers turing-complete lan-
guages to program contracts, the gas cost for certain opera-
tions is relatively high and reaches the upper limit of com-
pute power contracts are allowed to use. An example for this
would be parsing X.509 certificates [7], the type of certificate
used in TLS. This resulted in the current implementation of
IKP having to employ different parsing techniques. However
since the method provided by the checker contracts does not
change the program’s state, they only have an initial gas cost
for deploying them and afterwards are free to use by the IKP
authority to check whether a specific certificate is authorized
or not.

Domain Name: y.com
Valid From: 17 Aug 2016 0:00:00

Version Number: 1
Payout Account: 0x036a03...

Update Key: 0xa8ade7...
Update Threshold: 1

Checker Program: 0xce71446b...

Domain Certificate Policy
y.com

Account
Update Key(s)

Domain

Checker Contract
approved = [CA A, CA B]
def check(cert):
issuer = parse(cert).issuer 
if (issuer in approved)
return true else
return false

Figure 4: Overview of a Domain Certificate Policy.
Adapted from [15].

DCPs themselves, or rather the transaction that the domain
has to send, have to contain information about the policy
itself, such as Valid from and Version number fields, but
also information about the domain, since DCPs are to also
function as a domain registration as described earlier. All
fields that have to be part of the DCP can be seen in Fig-
ure 4. Information for domain identification are the domain
name, payment account and update key fields. The Domain
name is the domain’s DNS name, the Payout account is
the domain’s Ethereum account it intends to send and re-
ceive payments in the IKP system from and the Update keys
allow the domain to recover from a compromised or lost
payment account. The Update threshold defines how many
signatures of update keys are needed to update information
in that case and lastly the Checker program binds a specific
checker contract to the DCP. This checker contract has to
provide a method check() that the IKP authority can call
when checking a specific certificate. Identifying the policy is
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implemented via the Valid from field, which specifies when
the DCPs comes into effect, the Version number field which
identifies the new DCP, but only if the checker program is
replaced or modified, and the checker program, which con-
tains the account key of the checker program contract. The
Valid from and Version number fields are further used to
bind a specific checker program to a RP, since running ev-
ery single DCP the domain published, in order to verify a
reported certificate, is time intensive and could lead to con-
flicting information. The specific interactions are described
in Section 3.5.
To realize the functionality of DCPs the IKP authority has
to be able to offer a way to prove ownership of a domains
during registration. To achieve this either the existing DNS
or TLS infrastructures are leveraged. The domain signs its
name and DCP either with its DNSSEC private key and
includes a signature chain to the DNS root or in the case
of TLS it signs with its TLS private key and includes a
chain to a root CA. The first option is the preferred way
of handling this since the DNS root has less of a history
of security incidents. However, according to measurements
by the IKP authors [15], DNSSEC is not widely adopted.
Thus the TLS approach is the more realistic one, however
it requires the IKP to have a list of accepted root CAs just
like browsers. Thus it is important to keep the amount of
trusted CAs minimal, so that DCPs cannot be registered
with rogue certificates. For updates the IKP authority has
to verify signatures signed with the domain’s update keys
and ensure the minimum amount specified by the domain is
met.

3.4.1 Examples for DCP checker contract function-
ality

This section will describe possible functionality of checker
contracts and operational functionality the IKP authority
has to offer to run the system. As defined earlier, the poli-
cies, implemented as checker programs, should be expres-
sive. The following example implementations can be com-
bined with each other to achieve a set of desired criteria for
a domain’s certificates. Since contracts can call each other’s
check method, if a set of criteria is already implemented by
another domain they can be included in the domain’s own
contract using boolean relations such as AND or OR.
The standard for certificates in TLS is X.509, so the fields
available in such a certificate are provided as parameters
through parsing. The first obvious kind of program are
whitelists for CAs. The contract takes the Issuer Name field
and matches it against a list of authorized CAs. Another
whitelist can be implemented by checking the key identifier
contained in the certificate. Similar to public key pinning,
where domains specify a list of trustable keys, the Subject
Public Key Info field can be extracted and matched against
a list of authorized and pinned keys. This is a different ap-
proach compared to current implementations of certificate
pinning [11] because of the decentralized storage of the list.
Short-lived and wildcard certificate rules are also supported
by extracting the Not Before and Not After fields to de-
termine the lifetime of a certificate and extracting Subject
Name to make sure * does not appear. Wildcard certificates
specifically enable MitM attacks on all subdomains, since
wildcard certificates are valid for every single subdomain.
As in CT’s implementation it is possible to enforce that a
certificate has been logged, similar to the signed certificate

timestamp (SCT).

3.5 Reaction Policies
This section explains the goals for designing RPs, their im-
plementation and lastly gives an overview over the different
scenarios that involve CA misbehavior or good behavior and
how the financial rewards work in these situations, as de-
scribed in the IKP paper [15].
Unlike Domain Certificate Policies, Reaction Policies only
serve a single purpose, which is acting as an insurance for
the domains against misbehavior. However just like with
DCPs there are three main design goals. They are intended
to prevent unwanted incentives and consequences.
Firstly RPs should be independent from certificates, because
while they are both sold by CAs to domains, they are sup-
posed to be an addition to certificates and are supposed to
protect domains against misbehaving CAs, so binding them
to one specific certificate doesn’t make sense.
Secondly RPs are issued for a specific DCP, specifically they
are bound to a single version of a DCP, which means there is
exactly one checker program the IKP authority has to check
against if a certificate issued by the CA that issued the RP is
reported. This means the domain has to be registered via a
DCP in the IKP system before being able to purchase RPs.
Thirdly a RP is only valid against a single occurrence of CA
misbehavior. This is mainly done because the IKP authority
has to make sure there are enough funds available to issue
payouts. A domain can however hold multiple reaction poli-
cies, so the only limiting factor is the transaction that has to
take place in order to register the RP in the IKP authority.

Domain Name: y.com
Issuer: CA Abc

Valid From: 17 Aug 2016 0:00:00
Valid To: 17 Aug 2017 23:59:59

DCP Version Number: 1
Reaction Program: 0x45c19c3d5...

Reaction Policy

Domain Name: y.com
Valid From: 17 Aug 2016 0:00:00

Version Number: 1
...

Domain Certificate Policy

Payout Reaction Program

Affected-Domain Payout: 100 Ξ
Termination Payout: 10 Ξ
Detection Payout: 50 Ξ

Figure 5: Overview of a Reaction Policy. Adapted
from [15].

As with DCPs, RPs have to be sent as a transaction to the
IKP authority. Figure 5 shows the different fields the pol-
icy has to include. The Domain name field, which identifies
who the RP was issued to, the Valid from field, which de-
scribes the time from which the RP becomes active and the
DCP version number, which binds the triggering of an RP
to a specific checker contract, all serve the same purpose as
in DCPs and bind a reaction policy to specific domain pol-
icy. The Issuer field serves as an identification of the CA
that issued the policy, the Valid to field which denotes when
the RP runs out without any occurrence of misbehavior and
lastly the Reaction program contains the address to a reac-
tion contract account. The reaction program, similar to the
checker program, has to define specific methods. The trig-
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ger() method is called when an unauthorized certificate is
reported via the IKP system for the domain specified in the
policy. If that is the case, the IKP authority also records the
date when misbehavior occurred. The terminate() method
is called by a domain in case a CA issued an unauthorized
certificate and the domain wants to terminate the RP early,
because it lost trust in the CA. In this scenario the IKP
authority has to compare the Valid from field with the date
of misbehavior occurrence. The expire() method is what
ends the contract at the date specified in the Valid to field
and is called by the CA that issued the RP.
As seen in Figure 2 the IKP authority acts as a registry for
RPs. This is implemented as a mapping of domains and a
list of their active RPs. This list is ordered by the Valid to
field. This ensures that the RP that expires the soonest is
triggered first.

3.5.1 Payouts and constraints
The reaction program in Figure 5 is just a sample of what
can happen as a reaction. While the program has to pro-
vide three methods, it is not defined what they do, which
differentiates it from checker programs that have to return
a boolean value. However the overall goal of IKP, as defined
in Section 3.2, is creating financial incentives, so the only
contract discussed here and the original paper [15], are pay-
out reaction programs. The goal was to keep this as generic
as possible and thus specific payment amounts are not en-
forced or given.
The affected-domain payout is the amount the domain
receives if any CA that is registered in IKP issues an unau-
thorized certificate for the domain. This payment does nat-
urally not occur if the CA is not registered with the IKP
authority. It is supposed to compensate the domain for the
risk of MitM attacks.
The termination payout is a payment that gets split be-
tween the CA that issued the RP and the domain that
bought it. This payment occurs whenever the reaction con-
tract is terminated early, there can be multiple reasons for
this, which will be explained in Section 3.5.2. The payment
is split proportionally to the amount of time left in the RP’s
validity period in such a way that the domain receives less
money the longer the RP is active. The amount the domain
receives is bound by a minimum that is defined globally in
IKP and the total amount defined in the payout contract.
The detection payout is the financial incentive for the
detectors for monitoring logs and CA operations and for re-
porting unauthorized certificates they may find. Note that
this payment is only made if the reported CA is registered
in the IKP system and as such can be higher than the ini-
tial fee a detector has to pay for reporting since the amount
can be imposed on the misbehaving CA. This also means if
the CA is not registered in IKP the detector simply gets the
initial fee paid back.
To issue an RP the domain and the CA negotiate the terms
of it outside the IKP system. If the RP is negotiated as
a payout contract, they negotiate the price/fee and just de-
scribed payouts. There are two constraints that must be held
up: The affected-domain payout plus the minimum termi-
nation payout for the domain must be larger than the price.
This is a measure against collusion attacks between domains
and CAs or domains and detectors and guarantees a nega-
tive ROI if all payouts are summed up. The price must be
larger than the termination payout itself, so that an issuing

CA can still profit from a RP that is terminated, when the
issuing CA wasn’t the one that misbehaved. As mentioned
in Section 3.3 the detection payout must be larger than the
fee the detector has to pay when reporting certificates.

3.5.2 Scenarios of (mis)behavior
This next section lays out possible scenarios that describe
reactions to CA misbehavior and correct behavior and how
aforementioned payouts are involved, as described in the
IKP paper [15].
If a CA issued an RP for a domain and there are no oc-
currences or detections of misbehavior by this CA during
the validity time, the RP simply expires and the issuing CA
receives the money it escrowed by the IKP authority for
the CA. This escrowed funds are not defined in the final
version of the IKP paper [15], however in the first version
it is described as a fraction, between zero and one, of the
sum over affected-domain, termination, detection and global
fund payouts.
If a domain terminates an RP early, for example if the is-
suing CA misbehaved against someone else, it is paid its
fraction of the termination payout and the CA is paid the
escrowed funds minus the domains termination payout.
For the next part the concept of internal and external misbe-
havior is introduced. Since the IKP system can only penalize
CAs that are registered with it, it distinguishes between in-
ternal, where the offending CA is registered with the IKP
authority and external misbehavior, where the CA is not
part of IKP.
In the case of internal misbehavior we distinguish between
the CA that misbehaved and the CA that issued the RP
since the RPs are ordered by validity ending time, and thus
the case, where the misbehaving and the issuing CA are the
same entity, is rare. The detector sends the reporting fee
to the IKP authority, which then detects the misbehavior.
It then makes the misbehaving CA pay the affected-domain
payout and the detection payout to its global fund. After-
wards it pays the domain the affected-domain payout and
its part of the termination payout, which will be relatively
close to the minimum payout that is globally defined, since
the oldest contracts are triggered first. The detector receives
the detection payout and the CA that issued the RP receives
all escrowed funds minus the domain’s fraction of the termi-
nation payout.
For external misbehavior penalization of the CA that mis-
behaved is impossible. Thus the detector only gets its re-
porting fee back and no payout. The domain again receives
a fraction of the termination payout and the RP issuing CA
receives the escrowed funds minus the domain’s split.
Lastly if an RP expires, which means the time specified in
the Valid to field is in the past and no misbehavior hap-
pened, the IKP authority removes the RP from the mapping
mentioned earlier and sends any payments made by the CA
during issuance, which were escrowed, back to it.

3.6 Evaluation
After describing IKP, this paper now evaluates IKP and de-
scribes possible problems and implementation challenges. It
is important to note that while there seems to be a github
for IKP, https://github.com/syclops/ikp, it is apparently
not available to the public.
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3.6.1 Weaknesses of the architecture
Firstly the negotiation and effectiveness of RPs heavily de-
pend on the size of the participating entities [15, p. 7]. One
strategy that CAs specifically could employ is minimizing
the detection payouts. While this wouldn’t work when nego-
tiating with big organizations wanting to participate in IKP,
it certainly works with smaller actors. This could cause all
RPs a domain owns to have low detection rewards and thus
can remove financial incentives from reporting rogue certifi-
cates for all small domains.
Secondly CAs have to willingly participate in the IKP sys-
tem in order for it to be effective. This means the financial
incentives have to outweigh the risk the CAs incur by being
openly penalized for misbehavior.
The system allows the fair exchange mechanism used for RP
issuance to be used for certificate issuance too, however this
adds more bloat to the system and does not seem to make
sense financially since cryptocurrencies are rather unstable.
Lastly if for example a single person detects an unautho-
rized certificate, there’s an initial hurdle for them by having
to register in Ethereum in order to send transactions to the
IKP authority. While this system is clearly enhancing fi-
nancial incentives for log operators and monitors, it does
not put a focus on single detections.

3.6.2 Problems and risks incurred by the implemen-
tation in Ethereum

Another risk for CAs are vulnerable contracts. As seen in
the DAO hack [17], a contract cannot be updated easily if
it is found to be vulnerable and thus a CA could poten-
tially lose escrowed money. Another example for this is the
Parity multisig bug, which recently occurred due to method
passthrough functionality in Ethereum contracts [5].
The current version of IKP is also not implementable due
to RSA signature verification [15, p. 12], which is presum-
ably needed for update keys, not being a part of the current
Ethereum implementation for smart contracts. It heavily
reduces the cost from 3000 gas to 200. There exists a pro-
posal on the Ethereum proposal github [4], however it has
been open for over a year as of the writing of this seminar
paper and noone is assigned to it.
Another problem that is based on Ethereum is that while
smart contracts are written in a turing complete language
and thus can produce arbitrary programs, there is a maxi-
mum limit on gas, which limits actors with complex checker
contracts. Furthermore it can take a significant amount of
effort to formulate a contract for large entities with complex
requirements for certificate authorization.
An aspect that is important to consider is privacy. In a sys-
tem such as IKP that enables an insurance system, trans-
actional privacy is a desirable property. Ethereum lacks
this feature, however the next major release of Ethereum,
Metropolis, is supposed to include privacy enhancing fea-
tures [6].
The recent development of a decompilation tool called Poros-
ity [25] has shown that reverse engineering smart contracts
is a focus in research. This can become a serious problem for
the security of checker contracts, since they contain sensible
information. This could for example allow an attacker to
decompile a domain’s checker contract and attack specific
CAs listed in the contract, if it is implemented as a simple
whitelist.

4. CONCLUSION
Instant Karma PKI is meant to add financial incentives to
the PKI that disincentivize misbehavior and reward the ab-
sence of it. A blockchain is used to add natural financial
incentives and keep the access to the whole system decentral-
ized. The choice of Ethereum specifically allows for a large
part of the system to be completely automated. In order to
define misbehavior, it allows the only actor that truly knows
when a certificate for itself is malicious, the domain, to de-
fine what authorizes certificates issued for it. While lacking
in implementation, the system is well thought out and is rel-
atively cheap to run due to low gas costs in Ethereum. This
system does not solve the problem of misbehavior occurring
itself, however doing so would probably require a full rework
of the whole PKI and reworking systems on the internet is
difficult and adoption for new standards is low, this can be
seen with IPv6 for example. It also cannot function properly
if no CA willingly joins the system, however the hope is that
the financial incentives outweigh the risk of being penalized
for misbehavior.
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