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ABSTRACT

This paper investigates how varying parameters for aggre-
gation of flow data impact network traffic predictions based
on the Holt-Winters filtering algorithm. Changes in aggre-
gation level (minute to daily granularity) and aggregation
functions (e.g., mean, percentiles) are considered as well as
a change in training set length. These evaluations are based
on real-world flow data collected in a large enterprise net-
work. For this, the two traffic prediction use cases “anomaly
detection” and “capacity planning” are considered. It is con-
cluded that Holt-Winters in combination with small aggre-
gation levels and the 90th percentile serving as aggregation
function perform best for short-term prediction with focus
on anomaly detection. For long-term prediction as a tool for
capacity planning, it is demonstrated that Holt-Winters on
daily granularity data on the given data set is not sufficient.

Keywords
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1. INTRODUCTION

Visibility in enterprise networks is crucial for success. Hav-
ing insight into a network is important for multiple reasons:

e debugging and analysis in case of faulty behavior of
applications and networks,

e retrospective analysis of anomalies in the network, such
as attacks and outages, and

e detection of possible bottlenecks in the network for
capacity planning.

While having the possibility to analyze past traffic is suffi-
cient for the scenarios described above, enterprise network
traffic is subject to certain patters. These patterns are
usually seasonalities (daily, weekly, yearly) and underlying
trends that can be leveraged to estimate the future behavior
of the network traffic. Machine learning algorithms for time
series analysis are able to capture these patterns through
the fit of a function to the given data points by leverag-
ing various parameter estimation procedures. The resulting
model is then extrapolated to give estimations about future
values in the series and can often also quantify the certainty
of such predictions. Two main use cases for such prediction
in enterprise network traffic were identified:

Anomaly detection allows detection of significant traffic
changes that do not fit a previously learned pattern.
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Such anomalies can range from attacks to an extraor-
dinary number of requests due to a special offer on the
website.

Capacity planning focuses on forecasting the underlying
trend of the network traffic to enable early identifica-
tion of possible future capacity issues.

In the implementation, both use cases consist of three dis-
tinct steps. First, a model satisfying the use case require-
ments is fitted to a training data set. Second, a certain
number of future data points are estimated using the result-
ing fit. Third, the prediction is compared to reference values
to identify special cases for further investigation by network
operators.

For both use cases, the number of predicted data points de-
pend on the granularity of the data (i.e., the number of
data points per period). Anomaly detection will require
fine-grained data sets (minutes, hours) while for long-term
prediction for capacity planning, coarse granularities (daily,
weekly) suffice. However, the reference values required for
comparison vary per use case. For anomaly detection, ac-
tual measured network traffic data forms the reference to
identify large deviations from the prediction and potentially
raise an alarm. Capacity planning would instead use a fixed
threshold as reference that, when likely to be exceeded in
the near future, could also generate a notification.

Since preserving fine-grained historic traffic data can be high-
ly storage space-consuming, an alternate strategy to over-
writing old records is to aggregate the traffic data with in-
creasing age. A possible aggregation strategy could be to use
a granularity of 1 min for the past 4 weeks, then aggregate
the data in 5 min intervals for a further 2 months, and then
preserve data in 1h granularity for a full year. A history
over past years could then be kept by aggregating in 24 h
intervals for another 3 years. Multiple functions for aggre-
gation exist, such as the mean, summation, percentiles, or
minimum/maximum operators, and others.

It is unclear whether the use of aggregated training data in
prediction algorithms can produce meaningful results and
how changes in granularity and the use of different aggre-
gation functions impact the forecast results. The focus of
this work will be to study how different aggregation levels
and -functions change the accuracy of forecasts made by the
Holt-Winters filtering algorithm in context of the anomaly
detection use case. Furthermore, the impact of the training
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set size to the forecast in capacity planning is investigated,
again using Holt-Winters filtering. Two data sets exported
from a large enterprise are used for the experiments; one
with minute granularity and length of 4.5 weeks and a sec-
ond set with daily granularity recorded over 3.5 years.

In section 2, this paper first describes two protocols for net-
work traffic measurements. Then, the Holt-Winters filtering
is introduced, followed by a comparison of quantification
algorithms for prediction errors. After section 3 mentions
related work, section 4 contains the analysis. First, in sub-
section 4.1, the test setups and the data sets used are de-
scribed. Subsequently, subsection 4.2 compares aggregation
levels, -functions, and -accuracies using the fine-grained data
set with focus on the anomaly detection use case. The sec-
ond part of the evaluation then analyzes different training
set lengths and their impact on long-term traffic prediction
accuracy for capacity planning. A conclusion in section 5
finally summarizes the results and presents possible future
steps.

2. BACKGROUND

This section introduces two protocols commonly used in net-
work traffic measurements, namely NetFlow and IP Flow
Information Export (IPFIX). Then, both the additive and
the multiplicative variant of Holt-Winters filtering are de-
scribed. Finally, the most common algorithms to evaluate
prediction errors are discussed.

2.1 Network Traffic Measurement

Network traffic measurements can be performed using either
active or passive methods. Active methods such as Cisco IP
SLA inject artificial traffic into the network by setting up
special probes to actively measure the network performance.
In contrast, passive methods monitor the existent traffic on
key components in the network (e.g., on routers) by inspect-
ing the transported packets. Since active probing requires
changes in the network setup and anomaly detection as well
as capacity planning potentially requires information about
the packets flown, this paper will make use of passive net-
work measurements. [5]

In contrast to the Simple Network Management Protocol
(SNMP) that both allows to monitor and dynamically con-
figure network devices[12], NetFlow and its successor IP
Flow Information Export (IPFIX) focus on the monitoring
of network devices (also referred to as “observation points”)
via “flows”[3]. Routers or switches usually function as such
observation points. The corresponding RFC defines a flow
as “set of packets or frames passing an Observation Point in
the network during a certain time interval”. Flows are identi-
fied by the “flow key”, a user-defined set of packet properties
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used by the observation point to group encountered packets.
Such a flow key can be, but is not limited to, the “5-tuple”
consisting of source IP and port, destination IP and port,
and protocol.[1][7]

The devices that host the observation points are called “ex-
porters”. They periodically send the packets containing flow
information to “collectors”. Collectors can potentially collect
flows from multiple exporters simultaneously and perform
pre-processing and aggregation for downstream analysis sys-
tems. A possible setup of exporters and collectors is shown
in Figure 1.

Flows are closed and exported after either one of two spec-
ified timeouts occur. One of these timeouts is specified in
the active case (i.e., packets of a certain flow are still ar-
riving); the second occurs if the given flow has been inac-
tive/idle for a certain amount of time (i.e., packets of a that
flow were not seen during that time span). During these
timeout intervals, the exporting devices caches packets and
aggregates their relevant properties into a flow. Since Net-
Flow/IPFIX is capable of inspecting packets the observation
points encounter, flow exports can also include information
about packet content.[14] Exported values of observed pack-
ets can therefore be, but are not limited to, the number of
bytes received, packet counters, or protocols observed, and
range from OSI layer 2 (Data Link) to 7 (Application).[4]

Since SNMP is restricted to only exporting externally ob-
servable information about the encountered packets[12] (also
referred to as the “interface view”), it cannot provide in-
sight into the network apart from quantitative information
regarding the packets encountered. Therefore, using Net-
Flow/IPFIX as a method to inspect the network flow is more
promising since this potentially enables fine-grained analysis
with focus on single hosts, subnets, or protocols.

2.2 Holt-Winters Exponential Smoothing
Time series analysis and forecasting can be performed using
numerous different algorithms depending on the properties
of the series. The network traffic data investigated in this
paper shows seasonality (a pattern that repeats after a fixed
number of iterations) while partially also exhibiting a trend
over time. An filtering method that can incorporate both
seasonality and trend is Holt-Winters filtering and belongs
to the group of exponential smoothing procedures.

Exponential smoothing procedures are forecast algorithms
that rely on updating equations to calculate predictions. In
principle, exponential smoothing forecasts are “weighted av-
erages of past observations, with the weights decaying expo-
nentially as the observations get older”[9]. Multiple versions
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Figure 2: Test setup and evaluation work flow

Granularity Obs./Week Reasons
1 min 10080 Most common granularity for NetFlow /IPFIX
5 min 2016 Often used by network monitoring tools; originates from 5 min SNMP polling interval
1h 168 Natural time interval
4h 42 Divides 24 h granularity
24h 7 Natural time interval

Table 1: The data set granularities and the respective number of observations per season (week)

exist, with the most basic form being simple exponential
smoothing (SES). SES supports neither trend nor season-
ality, but it forms the foundation for more sophisticated
exponential smoothing models. Some of these models can
support trend, some support seasonality, and some combine
both.[2]

Another name for Holt-Winters filtering is “triple exponen-
tial smoothing” since it is based on three updating equations:
¢; models the level, b; the trend, and s; the seasonality of
the time series. §;45): represents the forecast at time ¢ + h
given all the data points up to time ¢, and the constant m
represents the seasonality (i.e., the number of observations
per season). The equations are defined recursively, allowing
for an iterative calculation of the predictions.[2][9]

Two variants of the Holt-Winters algorithm exist depend-
ing on how the a change in mean relates to the seasonal
effect. The “additive” method is used if the seasonal effect
is constant in each season (i.e., a change in mean does not
impact the amplitude of the seasonal curve). Alternatively,
the “multiplicative” covers the case when the seasonal effect
is proportional to a change in the time series’ mean. The
additive updating equations are defined as follows:[2][9]

Geane =l +hbe +s, 4
by = a(yr — St—m) + (1 — @) (be—1 + be—1)
be = ﬁ*(et - Et—l) + (1 - B*)bt—l
st =yt — le—1 —b—1) + (1 —7)St—m

In contrast, the multiplicative formulates the equations slight-
ly differently:

Jewnie = (b + hbi)s, o+

bo=a (1 —a)(lios +be-r)
t—m
by = 5*(&5 — b))+ (1— /B*)bt—l
Yt
=y——+ (1 - —m
5t Fygtfl +bt1 ( st

The equations for level, trend, and seasonality depend on
three smoothing parameters «, 8, and +, respectively. To
find appropriate values for the parameters, the most com-
mon approach is to first define an error term e; = y: — 94
with y; as the training data point at time ¢ and ¢, as the
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estimated value of the algorithm. A minimization of the
sum-of-squared-errors term Ze? can then be used to esti-
mate the three parameters.|[2]

For the prediction of network flow data, Holt-Winters filter-
ing seems reasonable since it provides a sufficient formula-
tion of a model with support for both trend and seasonality
as exhibited by the measured flow data.

2.3 Prediction Error Quantification

To evaluate the performance of forecasts it is necessary to
quantify their error (i.e., the difference between predicted
and actual values). Such calculations can either be per-
formed in-sample or using a test set. In-sample error compu-
tation compares the fitted model to its training data, while
out-of-sample error computation uses a subset of the whole
data set for training and then compares the model’s pre-
dicted values with the expected values from the test set. The
former tends to support overfitting (i.e., a lack of generaliza-
tion by specializing on the training data), which is why this
section will focus on out-of-sample error computation.[9]

If different models are compared against the same data set,
simple scale-dependent errors are often sufficient, while inter-
data set comparisons require scale-independent error calcu-
lations to achieve comparability.[9] An example of inter-data
set comparison is prediction of traffic for an entire network
and comparing it with another prediction for a subnet of
that network — the scale might differ by orders of magnitude.
Since aggregation of the data set might potentially change
the data’s scale, the evaluations will use scale-independent
errors for the calculation.

Scale-dependent errors calculate the error between predicted
and actual values by subtraction: e; = y; —¢;. If the scale of
the test data is changed, e; changes, too. Therefore, scale-
independent percentage-based errors remove the scale by di-
viding by y;: p; = 100¢:/y;. A popular variant of such errors
is the mean absolute percentage error (MAPE):[9]

Eniape = mean(|p;|)

Although more sophisticated versions such as the symmetric
MAPE exist, Hyndman and Koehler [10] suggest not to use
percentage-based scale-independent errors due to their as-
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Figure 3: Plots of the original data sets
# Date Range Gran. Periods Data Pts. Comments
1 19.08.2016, 13:00 — 1 min ~ 4 (weeks) 44355 clear weekly seasonality visible, minimal trend, small
18.09.2016, 20:14 amount of outliers
2 01.01.2014 00:00 — lmin = 3.5 (years) 1278 data aggregated by collector, damped trend visible, rel-

29.06.2017, 01:00

atively clean data except a single large anomaly in 2017,
365 days per period except in 2016 due to the leap day

Table 2: The originally exported data sets used to evaluate the aggregation

sumption of meaningful zeros (i.e., a value of 0 indicates that
the quantity measured is absent) as well as possible unstable
calculations (e.g., an assumption must be that y; # 0).[9]

Another group of accuracy measures not based on such as-
sumptions are the “scaled” scale-independent errors. These
make use of a scaling factor calculated using a naive forecast
on the training data set. Such scaling ensures that the result
does not depend on the scale of data sets and can therefore
also be used for inter-data set comparisons. Three variants
to calculate such errors exist and can be used interchange-
ably depending on what patterns are found in the data. For
data exhibiting seasonality, Hyndman [10] suggests using the
seasonal naive forecast (gjscasonal) by assuming that current
observations in the time series have the same value as the
respective data point in the previous period. The mean ab-
solute scaled error (MASE) is then defined by computing
the mean over all errors:

e
ﬁ ZZ:de [yt — Yt—ml
MASE = mean(|g;|)

If MASE = 1, the model used to compute the forecast is
equally as good as the naive forecast model used to compute
the scaling factor. If the value is > 1, the forecast model
performs worse, and consequently, if the result is < 1, it
performs better.[10]

@j,seasonal =

Due to the seasonality of the data and the recommendation
to not use scale-independent, percentage-based errors, this
paper uses MASE in combination with a the seasonal naive
forecast to compute prediction errors. The data sets are
therefore divided into training and test set for fitting and
evaluation, respectively.

3. RELATED WORK

In [6], Hellerstein et al. identified and inspected the same use
cases (prediction for capacity planning and anomaly detec-
tion) for traffic prediction on a single web server. They base
their calculations on the number of HTTP operations per
second aggregated in 5 minute intervals in a data set with 8
months length. Based on this data, they construct a model
from ground up that resembles the anomaly-free case and
incorporates time-of-day, day-of-week, and monthly season-
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ality. By then analyzing the remaining error after applying
the model to measured data, they propose an algorithm to
detect “change points” that, as they argue, indicate anoma-
lies. Additionally, they successfully 6apply the model to ca-
pacity planning by predicting the web server traffic multiple
months into the future.

Miinz [13] primarily focuses on anomaly detection in net-
works based on flow-level measurement data collected via
NetFlow/IPFIX. Instead of only using bytes per flow, he in-
corporates additional metrics that are derived from the flow
data for detection by using an approach called “multi-metric
analysis”. For the analysis, he compares multiple techniques
for the detection, such as exponential smoothing, control
charts, and principal component analysis. In addition to the
pure detection of anomalies, he also describes automatic pro-
cedures to classify detected anomalies by relevance as well
as to identify their causes. He concludes that the success of
anomaly detection is highly dependent on the selection of
metrics for classification.

In [15], Taylor and Letham propose a “scalable”, “intuitive”,
“fast”, and “accurate” way for forecasting business time se-
ries. For this, they make use of a model with components
for growth, seasonality, and holidays. If the learning process
is fed with information about, for example, holidays, the al-
gorithm can learn the impact these days have on the time
series, and consequently produce more accurate forecasts if
such days occur again. They then developed a framework
(“Facebook Prophet™) that implements the algorithm they
describe in R and Python. During the research, the au-
thor of this paper attempted to test the framework using a
minute-granularity data set with around 44000 data points.
The framework was unable to predict these points, and con-
tact with the developers yielded that this was both due to
the fine granularity as well as the resulting large data set?.

In his work for the social media company Twitter, Kerjawal
[11] developed the “AnomalyDetection” R package® to detect
outliers in time series that describe the usage of Twitter’s so-

'https://github.com/facebookincubator/prophet/
*https://github.com/facebookincubator/prophet/
issues/215
3https://github.com/twitter/AnomalyDetection
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Figure 4: Comparison of 1 min, 1h, 24 h granularities aggregated using MEAN (the plot’s scales differ)

cial media platform. The main use cases are the detection of
rises in social engagement (e.g., during sporting events) and
also identify malicious activity and its causes (e.g., spam-
mers or bots). Instead of using fitting, the framework imple-
ments a method called “seasonal hybrid extreme studentized
deviate” testing. This algorithm first applies decomposition
of the time series into, for example, trend and seasonality,
and then test if any of the residuals indicate anomalies. Due
to its focus on anomaly detection, however, the framework
cannot be used for prediction of the time series data.

4. EVALUATION

This section first introduces the test setup and the two data
sets used. Then, it is investigated how a change in param-
eters impacts the traffic predictions produced with Holt-
Winters. First, different aggregation levels are compared.
Second, it is shown how aggregation functions impact the
forecasts. Third, accuracies of forecasts with varying aggre-
gation level and -function are compared. Finally, it is shown
how a change in training set length impacts long-term fore-
casts.

4.1 Test Setup & Data Sets

Figure 2 displays the process from the data set acquisition
to the generation of the test results. The exporter devices on
the left are shown qualitatively; the actual number of mon-
itored devices is approximately 50. The NetFlow/IPFIX
exports are collected by a single collector instance that logs
and pre-processes the flows and loads them into a database
system. In the production environment, an analysis system
would directly connect to this database and extract the data
required for network analysis. However, in the test environ-
ment, the data is exported as CSV files including a times-
tamp and the total bytes flown in the network. This helps to
make the tests reproducible and eases both anonymization
and aggregation of the flow data. Subsequently, the data sets
are fed into the Holt-Winters implementation built into the
language R. The resulting model is then used to predict and
plot the forecasts. Although an alternative implementation
to Holt-Winters in R exists with the “ets” function from the
package “forecast”, the basic “HoltWinters”-implementation
was preferred since ets does not allow for forecasting periods
longer than 24 data points[8].

The data sets used are listed in Table 2. Set 1 was recorded
in August and September 2016 over a period of a month in a

Seminars FI / IITM SS 17,

29
Network Architectures and Services, September 2017

network of a large enterprise with a minute granularity. The
traffic of all NetFlow/IPFIX exporters in the network was
aggregated by timestamp using a summation to represent
the total number of bytes flown in the network at a certain
point in time. Furthermore, the set only contains a small
number of anomalies (e.g., in the form of holidays). A plot
of the data set is shown in Figure 3a.

Data set 2 was aggregated by the collector prior to export-
ing it from the enterprise network to a granularity of 24 h
using the MEAN function. Such aggregation is necessary
due to storage constraints in the collecting system — a data
set length of 3.5 years in a finer granularity was not possible
while the data set was collected. As shown in Figure 3b,
the data set contains a trend and both weekly and yearly
seasonality. Furthermore, the seasonal effect is proportional
to the time series’ mean. A single large outlier is visible in
the beginning of 2017, and furthermore, the data set experi-
ences irregular seasonality due to the leap day added in the
3rd period (the year 2016).

The different levels of aggregation are produced by first di-
viding the minute granularity data into subsets with the size
of the given aggregation factor f and then applying the ag-
gregation function. Since the data sets are not aligned with
the beginning of a day, the aggregation starts with the first
observation and then aggregates the first f data points. This
may result in an incomplete last aggregation, but this effect
is minimal due to the large number of data points in general.
The granularities investigated are listed in Table 1.

Seven aggregation functions are compared during the eval-
uation. MEAN and SUM are interesting since they both
incorporate all data points from the respective aggregation
interval, while MEDIAN (equal to the 50th percentile) has
the interesting property of not being influenced by outliers.
The 80th and 95th percentile have the same property as
the MEDIAN and are also popular measures used for data
sets. The two functions MIN and MAX are investigated as
well since they could potentially reveal interesting properties
about bottoms and peaks of the data set.

MASE is the measure used to evaluate the prediction accu-
racy. Since MASE requires a training set to compute the
scaling factor and a test set to compute the actual accuracy,
the data sets are split into such sets. In data set 1, the given
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4.5 periods (weeks) are splitted into approximately 3.5 peri-
ods for training and one period for testing, which comes close
to the popular split of 80 % to 20 % for training and test-
ing, respectively. Furthermore, the models are trained and
evaluated on the same granularity. If, for example, hourly
aggregation is used in the test set, hourly aggregation is also
used in the training set.

4.2 Test Results & Comparison

With the data sets and the process described above, it is
possible to test numerous combinations of aggregation levels
and -functions to determine the best fit for the given use
cases. The first three comparisons are based on the minute
granularity data (data set 1) since this is the most useful
for aggregation, and is therefore focused on the anomaly
detection use case. Subsequently, it is investigated how Holt-
Winters predictions and accuracies vary based on the size of
the training set. Since it is useful to have a data set for such
variations over a long period of time, these comparisons are
based on data set 2.

The prediction plots all follow the same color scheme. The
black line resembles the collected/aggregated flow data, while
red and blue show the Holt-Winters fit and prediction, re-
spectively. The gray area surrounding the blue prediction
line is the 95 % confidence interval.

4.2.1 Aggregation Levels

Since it is of interest how the different levels of aggregation
impact the ability of the Holt-Winters algorithm to predict
the flow data, different aggregation levels are compared first.
The graph shown in Figure 4a displays the data that has
been exported with minute granularity originally which was
then fitted with a additive Holt-Winters model. The black
line shows that due to the fine granularity of a minute, a lot
of noise is visible. This also appears to impact the training
phase of the model, since both fit and prediction are noisy.
Such a fit is likely the result of overfitting.

The data that was used to generate Figure 4b is based on
the same data set as the previous plot but is aggregated with
factor 60 (1h granularity) using the MEAN function. The
noise mostly is compensated by the aggregation function,
which results in a less noisy fit. Besides preventing overfits,
the noise reduction has another interesting effect. At noon
and midnight (i.e., the peaks and bottoms of the fit), small
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drops and increases in capacity used become visible that
were invisible in the 1 min granularity data. The increase at
noon is likely caused by the employee’s lunch breaks while
the increase at night could be the result of scheduled nightly
backups. If aggregated with 4h granularity, the noise is
further reduced, as visible in Figure 4c.

The graph shown in Figure 4d is plotted using flow data
aggregated to 24 h granularity by again making use of the
MEAN function. The noise that is still visible in the 1h
aggregation mostly disappeared, but as expected, any sub-
day effects disappear as well. This, however, reveals differ-
ent interesting aspects in the data. First, it can be seen
that during the week, a peak in the traffic either appears
during Thursday or Wednesday. Furthermore, the plot indi-
cates that the peak day seems to change every other week.
Furthermore, due to the lack of noise, the Holt-Winters fit
appears to fit the data well.

4.2.2 Aggregation Functions

Figure 5 shows a comparison of four aggregation functions
(MEAN, 95th percentile, MIN, MAX) on the same aggrega-
tion level, namely 4 h. The plots in Figure 4c and Figure 5a
are both based on 4 h aggregation with MEAN for compar-
ison.

As expected, the aggregations based on MEAN and SUM
only differ in the scale. Both functions can therefore be
used interchangeably depending on whether it is required
to preserve the original scale (i.e., bytes per minute with
MEAN) or the total number of bytes flown in each time
interval (e.g., bytes per 4h with SUM. Furthermore, the
plots show that SUM, MEAN, MEDIAN and the percentiles
preserve the seasonality well by either compensating (SUM,
MEAN) or ignoring outliers (MEDIAN, percentiles).

Aggregation with the MIN function as shown in Figure 5c
appears to also preserve seasonality at 1h and 4 h granular-
ity, because the data set appears to have a clear lower bound
in the number of bytes tracked. For 5 min granularity a clear
lower bound does not exist. Similarly, predictions based on
24h MIN aggregation do not perform well since only the
bottoms at night are preserved. Both result in a bad MASE
value as shown in Figure 3. However, with 4h granular-
ity, MIN can reveal drops in the bytes captured, as seen on
Thursday of the fourth week in the plot. The MAX func-
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tion is shown in Figure 5d. In contrast to MIN, MAX does
not preserve structure at any aggregation level due to the
apparent lack of a clear upper bound in traffic.

4.2.3 Aggregation Accuracies

Figure 6 and Table 3 display the MASE of the Holt-Winters
with varying aggregation levels and -functions. Since an
aggregation factor of one results in the same data set for all
aggregation functions, all plots start at the same error value
for 1 min granularity.

The error for 1min aggregation is insignificantly smaller
than one. This is a sign of overfitting — the noisy fit of
Holt-Winters in Figure 4a supports this hypothesis. Fur-
thermore, the very similar error of the MEAN and SUM ag-
gregation functions reveal that both perform almost equally,
which is again due to the similarity of both aggregation func-
tion. Therefore, both are overlapping in the graph (here, the
MEAN plot is covered by SUM). Aggregation using the 90th
percentile performs most stable and results in MASE values
greater than one6 for all granularities. The performance of
the 80th percentile is close, which means that both functions
ignore outliers well. With an increasing aggregation factor,
outliers are more likely to be compensated, thus allowing
MEAN and SUM to outperform the quantiles.

In general, a clear trend towards a better fit with an increas-
ing aggregation level is visible. This can be explained by the
decreasing number of data points and the resulting, increas-
ing compensation of outliers, which prevents Holt-Winters
from fitting the error and therefore modeling the data bet-
ter. One clear exception is the MIN function — its plot shows
outliers with large jumps and no clear trend. Although the
plot of the MAX function accuracy does not show similar
large jumps or poor MASE results, plots of its fit (e.g., Fig-
ure 5d) exhibit large confidence intervals in the prediction
due to the lack of a clear structure in the aggregated data.
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4.2.4 Training Set Size

The previous analyses primarily focused on short-term pre-
diction due to the structure of the data set used. Data set 2,
however, suits well for long term predictions due to its length
of 3.5 years. The original data set is plotted in Figure 3b.
Due to the length of the data set, a comparison of fit accu-
racies with varying training set lengths (2, 2.5, 3 years) is
possible. Such a comparison is crucial, since it can reveal for
what period of time a forecast can be trusted. Furthermore,
the multiplicative formulation of Holt-Winters is used since
it allows to capture the multiplicative effect in the data.

The resulting forecasts with their MASE result are shown in
Figure 7. Looking at Figure 7a shows that the fit can esti-
mate the data relatively well until mid-2016 and then clearly
underestimates due to the growing trend in late 2016. Sim-
ilar results with a MASE value of 2.02 have been collected
with a training set length of 2.5 years, however, the plot has
been omitted for simplicity. In Figure 7b, the fit overesti-
mates the actual trend immediately.

The fits for 2 and 2.5 years of training have in common
that the prediction is off towards the end of 2016 due to
the additional leap day. This effect is not visible in the
third plot since the beginning of Christmas 2016 is still part
of the training set. However, in the last fit, the irregular
seasonality learned might impact the prediction at the end
of 2017.

In general, the poor MASE result of > 1.60 for all train-
ing set lengths indicates that the prediction based on Holt-
Winters was unable to learn the pattern and trends of this
data set sufficiently.

S. CONCLUSION

In conclusion, short-term prediction for use case 1 appears
to be promising. The best function for the given data is the
95th percentile-function since it results in good MASE re-
sults for all aggregation factors. MEDIAN, MIN, and MAX
should generally be avoided unless special requirements have
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to be met. Provided that the data contains a seasonal, sta-
ble lower bound, MIN could, for example, be used to detect
anomalies resulting in bandwidth drops (e.g., a failure of a
core router) as a scenario of the anomaly detection use case.

Given that the proper aggregation function is used, short-
term prediction appears to work well for small aggregation
levels (potentially between 5min-1h). Aggregation gener-
ally seems to be a powerful tool to compensate for outliers
to prevent overfitting and, therefore, enable better detection
of anomalies. Anything with a coarser granularity than ap-
proximately 1h should, however, not be used for anomaly
detection since this potentially results in a loss of important
sub-day effects. In such a case it may become impossible to
detect anomalies either due to the delay in aggregation or
suppression of such outliers by the aggregation function.

For long-term prediction required for the capacity planning
use case, the best aggregation function still remains unclear
due to the lack of data. The MAX function could potentially
be a good candidate since it may preserve peaks crucial for
capacity planning. Daily granularity appears to be suffi-
cient, since it preserves weekly seasonalities and reduces the
number of data points in the data set to a size suitable for
fast learning.

It also remains unclear which prediction algorithm works
best for long-term prediction. Due to the poor MASE results
and the lacking possibility to incorporate special days as well
as seasons with different lengths, Holt-Winters may not be a
good candidate in this scenario — although this claim should
be verified by testing further data sets. Simpler algorithms
such as a simple fitting with a trend component only or
more sophisticated frameworks such as Fracebook Prophet
may constitute alternatives and could be subject to further
investigation.

Future work could potentially also investigate more sophisti-
cated aggregation functions, such as an aggregation by busi-
ness hours (i.e., only use values between 6AM and 6PM for
aggregation). Additionally, it may be interesting to ana-
lyze subsets of the data (e.g., specific interfaces, protocols).
Furthermore, a better training could result in even better
fits with Holt-Winters. A possibility for that might be to
train the model with a coarse-grained training set (>1h)
and evaluating it against a fine-grained test set (<5 min).
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