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ABSTRACT
A major objective of computer network performance and op-
timization models is to reduce energy consumption as much
as possible, thus lowering costs for electricity and the CO2

footprint while still offering a high service quality to the
user. To this extent, the study of queueing packets within a
network, as well as resource modeling, workload modeling,
and task scheduling are considered suitable to explain the
basics of some network performance models. The presented
models are compared to each other in terms of their perfor-
mance measurement aspects. Furthermore, the comparison
of several modeling techniques shows that the selection of
a model or a model technique depends on the expected re-
sults, parametrized constraints, and the execution in real
world systems.

Keywords
Queueing Theory, Network Calculus, Resource Modeling,
Workload Modeling, Task Scheduling Problem, List Schedul-
ing, Dynamic Programming, Linear Programming, Integer
Programming, Simplex Method, Branch and Bound.

1. INTRODUCTION
The research and study of quality of service guarantees

has been motivated by the increasing demand in transmit-
ting multimedia and other real time applications over the
Internet [25]. Packet switching and circuit switching are
two networking methods for transferring data between two
nodes or hosts. In packet-switched networks the route is
not exclusively determined. Routing algorithms are used,
which allows many users to share the same data path in the
network. This type of communication between sender and
receiver is called connectionless [39]. On the other hand, in
circuit-switched networks the route is setup and established
prior to initializing connections to the host. Circuit-switched
networks are used in telephone systems [49]. In contrast,
most traffic over the Internet uses packet switching because
the Internet is basically a connectionless network [39] and
because it performs better than circuit switching in terms of
average delay and buffer requirements [2]. For the commu-
nication channels in the network, queues are formed inside
the switching nodes, such as routers, bridges, and switches
[33]. Many aspects significantly influence the performance
within many networks and they can be modeled with vari-
ous performance models.

In this paper, the focus is on three major fields of computer
networks: The first field deals with the study of queueing of

packets and its performance models. The second field covers
workload modeling and the third field is concerned with the
task scheduling if many processors are available in a net-
work node for parallel programming. Hence, taxonomies
of performance models of network interconnect devices are
presented. These give instructions under which conditions
which models should be selected. First, section 2 gives in-
sights into the queueing theory and queueing systems. Then
section 3 compares two performance model techniques which
deal with queueing type problems encountered in computer
networks: queueing theory and network calculus. Section 4
covers resource modeling and subsequently workload model-
ing is presented in section 5. Finally, model techniques for
schedule optimization and task allocation within computer
networks are presented in section 6.

2. QUEUEING THEORY
2.1 Background Information

The origin of queueing theory can be traced back to the
early 1900s when A. K. Erlang, a Danish engineer, applied
this theory extensively to study the behaviour of telephone
networks [41]. In a network node, tasks are queued for CPU
in various stages of their processing [41]. Queueing systems
are dynamic and contain a flow of network data. There are
two different types of flows [29]:

1. Steady flow : These systems contain exact numbers of
constraints and do not depend on time. For example, there
is a network of channels, each with a channel capacity. To
analyze those systems, graph theory, combinatorial math-
ematics, optimization theory, mathematical programming
and heuristic programming are used to deal with schedul-
ing problem and task allocation. This will be explained in
more detail in section 6.

2. Unsteady flow : These systems do not have exact
numbers of constraints and must be predicted. Stochastic
tools are often used in this context and will be described
further in section 3.

Queueing theory can be clustered into three major compo-
nents: input process, system structure and output process
[41]. These components are shown in Figure 1. The in-
put process, also called the arrival process, deals with three
aspects: the size of the arriving population, the arriving
pattern of the customers and the behaviour of the arriving
customers. The system structure is concerned with the sys-
tems resources, which is described by the physical number
and layout of servers, as well as constraints like the sys-
tem capacity. The output process, also called the departure
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process, is characterized by the type of queueing discipline
and the service-time distribution. These characteristics are
demonstrated in Figure 2 as they contribute to modeled per-
formance aspects.
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Figure 1: Schematic diagram of a queueing system
[41]
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Figure 2: Components and characteristics of queue-
ing theory [41]

The following components, derived from the characteristics
presented in Figure 2, can be calculated with various math-
ematical tools [41]:

- average number of customers in the system
- distribution of number of customers in the system
- average waiting time of a customer in the system
- distribution of waiting time
- length of busy period
- length of an idle period
- current work backlog expressed in units of time

These components represent performance measurement as-
pects that vary in quantity in different queueing systems.

2.2 Kendall Notation
Queueing systems can have various compilations of differ-

ent elements. They are described as shorthand notations,
known as the Kendall notation, which was developed by
David G. Kendall, a British statistician, to describe a queue-
ing system containing a single waiting queue which has been
further extented [28]. The following notations apply:

A / B / X / Y / Z

A : Customer arriving pattern (inter-arrival-time distribu-
tion)
B : Service pattern (service-time distribution)
X : Number of parallel servers
Y : System capacity
Z : Queueing discipline

Example: The classical queue M/M/1/∞/FCFS, but known
as M/M/1, represents a queuing system where customers ar-
rive according to Poisson process and request exponentially

distributed service times from the server. The system has
only one server, an infinite waiting queue and customers are
served on a First Come First Serve (FCFS) basis. If only
the first three parameters are shown, the default values for
the last two parameters are Y = ∞ and Z = FCFS.

2.3 Queueing Systems
Queueing systems are clustered into two groups of sys-

tems, which have many variations of further queueing char-
acteristics within them [41]:

Markovian queueing system : A markovian queueing
system is characterized by a Poisson arrival process and ex-
ponentially distributed service times. Both the arrival and
service process are memoryless.

Semi-markovian queueing system : Semi-markovian
queueing systems refer to those queueing systems in which
either the arrival or service process is not memoryless. They
include M/G/1, G/M/1, their priority variants and the multi-
server counterparts.
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Semi-Markovian 

Queueing Systems

M/M/1/S M/M/m M/M/m/m M/G/1 G/M/1 GI/M/1M/M/1

Figure 3: Components and characteristics of queue-
ing theory [41]

Figure 3 gives an overview of the two groups of systems and
basic types of queueing systems, whereas M/M/1 is referred
to as the classical queueing system. For detailed explana-
tion of the other queueing systems that are presented in Fig-
ure 3, [41] gives clear definitions and demarcations. Queue-
ing networks are collections of interactive queueing systems,
whereby departures of some queues enter some other queues.
This can happen deterministically or probabilistically. From
the network topology point of view, queueing networks can
be categorized into two classes [41]:

Open queueing networks: In this queueing network,
customers arrive from external sources outside the domain of
interest, go through several queues, or even revisit a certain
queue more than once and finally leave the system. Open
queueing networks are good models for analyzing circuit-
switching and packet-switching data networks.

Closed queueing networks: In this queueing network,
customers do not arrive at or depart from the system. There
is a constant number of customers that behave within the
network like in the open queueing networks. Other than
open queueing networks, closed queueing networks are good
models for analyzing window-type network flow controls as
well as CPU task scheduling problems.

3. QUEUEING THEORY COMPARED TO
NETWORK CALCULUS

Generally, queueing theory considers the average quan-
tities in an equilibrium state and the traffic that enters a
queueing system (or queueing network) is always charac-
terized by a stochastic process, such as the Poisson distri-
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bution. However, unique customer and service characteris-
tics and requirements in such networks as the Internet often
make the application difficult to analyze [26]. Beginning
with [15], it has been shown several times that the Pois-
son distribution is not necessarily a realistic assumption for
Internet traffic [43]. In contrast, in network calculus the
arrival traffic is assumed to be unknown as long as it sat-
isfies the following regularity constraints: ”The amount of
work brought along by the arriving customers within a time
interval is less than a value that depends on the length of
that interval” [41]. Network calculus is a new paradigm of
queueing analysis, which is part of the deterministic queue-
ing [35]. This paradigm is able to put deterministic bounds
on network performance measures. This new methodology
was pioneered by Rene L. Cruz [10] for analyzing delay and
buffering requirements of network elements and was further
developed by Jean-Yves Boudec and Thiran [35]. The main
difference between these two is that queueing theory allows
us to make statistical predictions of performance measures
whereas network calculus establishes deterministic bounds
on performance guarantees. The idea of network calculus is
that service guarantees can be achieved by regulating the
traffic and deterministic scheduling. Analog to the classical
queueing theory, a system is classified into the same ma-
jor components as classical queueing theory (see Figure 1).
The input, mostly referred to as an arrival curve, is an ab-
straction of the traffic regulation, and the transfer function,
mostly referred to as a service curve, is an abstraction of the
scheduling [43]. The difference with classical queueing the-
ory is that non-traditional algebra, such as min-plus-algebra
and max-plus-algebra, is used to transform complex network
systems into analytically tractable systems, as well as focus-
ing on the worst case [26]. Network calculus has developed
into two branches:

Deterministic network calculus: R. L. Cruz introduced
in [10] the idea of using a function to deterministically upper-
bound the cumulative arrival process. For arrival modeling
he developed the arrival curve model, which specifies a traffic
envelope to arrivals. In contrast, for server modeling a func-
tion to deterministically lower-bound the cumulative service
process is used [44],[26]. However, the service curve model
evolved and out of it emerged the idea to compare the ac-
tual departure time with a virtual time function and to use
the difference together with the rate parameter to define the
virtual clock scheduling algorithm [57],[26]. A server model,
called guaranteed rate was developed in [18],[26]. Based
on these concepts, the derivation of worst-case performance
bounds including backlog and delay can be calculated [14].

Stochastic network calculus: Latest techniques try to
bring stochastic approaches into network calculus [3]. The
arrival and server models of stochastic network calculus can
be considered as probabilistic extension or counterparts of
the deterministic network calculus [26]. The approach’s goal
is to comprehend statistical multiplexing and scheduling of
non-trivial traffic sources in a framework for end-to-end anal-
ysis of multi-node networks [14]. Fidler stated in [14] that
compared to classical queueing theory, the stochastic net-
work calculus comprises a much larger variety of stochastic
processes, including long range dependent, self-similar [47],
and heavy-tailed traffic [36].

The backlog as a function of time is shown as the vertical
marked as b(t) in Figure 4. It is the amount of bits that is
held inside the system. The virtual delay at time t is the

Cumulative data amount

Time

d(t)

b(t)

Arrival curve

Departure curve

Figure 4: Example of an input and an output func-
tion with horizontal and vertical deviations, that
demonstrate delay and backlog in network calculus
theory [35, Page 5]

delay that would be experienced by a bit arriving at time
t if all bits received before it are served before it. It is the
horizontal deviation, marked as d(t) in Figure 4 [34].

4. RESOURCE MODELING
In this section, further performance models describe re-

sources of which limitations can be analyzed. Packet pro-
cessing systems make extensive use of resources like cashes,
memory controllers, buses and NICs [12]. In [16] the perfor-
mance of the packet processing application built for high-
speed IO frameworks is modeled. As resources have limits
and bottlenecks, in [16] four distinctive characteristics that
limit the performance of the packet processing are listed:

1. The maximum transfer rate of the used NICs
2. The link capacity, such as the capacity of a PCI express,
which is used to connect the NICs to the rest of the system
3. The restriction of the possible network bandwidth in a
RAM
4. The maximum processing load on the CPU, which can
be kept low due to modern offloading features of NICs

For these characteristics, the high-performance prediction
model can be used to provide upper bounds for the capa-
bilities of a software-based packet processing system [16].
According to Rizzo [48], packet processing costs can be di-
vided into per-byte and per-packet costs, whereas the latter
has a deeper impact on IO frameworks. This model assumes
that if the limit of the NIC is reached and a constant load
per packet times the number of packets is lower than the
available CPU cycles, the cycles are spent waiting for new
packets in the busy wait loop. By adding these costs, a new
value of the constant cost per packet is calculated [16]. The
constant cost per packet consists of the sum of the cost used
for sending and receiving packets (cIO), the cost of the com-
plexity of the task (ctask) and the cost that is introduced by
the busy wait on sending or receiving packets (cbusy). The
available CPU cycles are the main limiting factor of soft-
ware packet processing. The throughput of a packet pro-
cessing application heavily depends on the amount of CPU
cycles available for its processing task. According to [16],
this amount is influenced by the following factors for real
world applications:
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- the complexity of packet processing
- the time the CPU spends waiting for data to arrive in cache
- the effect of different batch sizes

These factors can be determined precisely by various mea-
surement methods. Experiments in [16] show following per-
formance characteristics predicted by this model: Further
measurements demonstrate that this model can be applied
to estimate processing tasks, which can be approximated
with a constant average load. A possible use case for this
model is to evaluate the eligibility of PC systems for specific
packet processing tasks. In addition, the results illustrate
the trade-off between throughput and latency with differ-
ent queue sizes. The larger the batch sizes, the bigger the
throughput but also the higher the average latency, even
though performance increases. The reason is, that packets
spend more time queued the larger the batch sizes are. How-
ever, batch sizes also have a lower bound due to overloading
frameworks. Hence, smaller batch sizes are more suitable
for applications that are sensitive to high latency, whereas
larger batch sizes are more suitable for application where
raw performance is critical.

5. WORKLOAD MODELING
As the resource model describes how to deal with resource

limits, workload modeling gives insights about characteris-
tics of the load, which have an impact on resource modeling
as well as on task scheduling.
”The workload behavior of the system can be defined as the
disposition of resource usage over a period of time. The dis-
position allows us to characterize the behavior of the system
during that period of time [23].”

As shown in Figure 5, workload modeling can be classi-
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Figure 5: Taxonomy of workload modelling
[23],[4],[46]

fied in three different branches: models that are based on
histograms, models that are statistical-based, and adaptive
approaches. Workloads can be visualized as histograms [23].

The histogram model [53], [50], was introduced by Skelly
to predict buffer occupancy and loss rate for multiplexed
streams. The loss rate and network delay distribution can
be obtained using the buffer occupancy distribution [23]. In
[23] three traffic models are proposed:

1. HD model [53],[50]: This model has only one histogram
for a given sample period and is short-range dependent. It
uses an analysis method based on a M/D/1/N queueing sys-
tem. Compared to the other models and to the real traffic,
this model reduces the number of cells. Although, the in-
accuracy increases with the number of cells, the model is
simple and compact and the results are still accurate. There-
fore, it is a good approximation.

2. HDm model [38]: This method is based on the mod-
ification of the Mean Value Analysis (MVA) algorithm. It
is based on several histograms using different time scales.
The disadvantage of this model is that they resolve each
histogram’s groups independently. Therefore, no dependen-
cies between the histograms groups are taken into account.
Furthermore, the selection of the number and values of the
sample periods can be one problem. The model can be too
complex with too many sample periods. It is more accurate
but is not as compact as the HD model. But compared to
MVA, the HDm loss curve is more precise.

3. HDh model [22]: This model is based on a Hurst pa-
rameter and is long-range dependent. The underlying idea
is to modify the variance of the histogram depending on the
Hurst parameter. In addition, this model needs only one
histogram.

The results of the experiment in [23] showed that HDm

has the best results. However, this approach can be cum-
bersome. Therefore, the best approach is the HDh model,
which is compact and very precise.

In general, loss ratio and node delay are traffic quality
of service parameters that are obtained. So, the probability
that a packet is delayed is higher than a certain value can be
predicted. For example, in application areas like video and
audio transmission, the delay histogram can be useful in the
end nodes to adapt their transmissions rates or to configure
the buffer in the reception nodes. Further application areas
are e.g., admission control, traffic provisioning, and network
configuration [23].

The main objective of workload models is the optimal pro-
visioning of network resources, so service cost of network
transmission can be reduced. According to [4], ”the work-
load is considered to be only that processing which is specif-
ically required to satisfy the user request”.

In [4], three models are presented, which are used to char-
acterize the system workload and are constructed in a sta-
tistical framework: Therefore, any user request R made to a
distributed computing system may be characterized by the
quadruple (T, L, X, F): T = time, L = location, X = amount
of service requested, F = flag.

1. A mixture distribution approach (A): This model
takes only X and F into account and ignores the effects of
time and spatial distribution of the requests. The advan-
tage of this formulation is that a very complex probability
distribution can be represented in terms of several simpler
distributions. When no reasonable assumptions about the
conditional probability distributions can be made, clustering
is a viable approach for construction of probabilistic mod-
els of workload. All clustering techniques assume that the
items to be grouped are specified in terms of certain param-
eters. Therefore, a workload characterization study using
the clustering approach can be effected significantly by ju-
dicious choice of such parameters [4].

Stochastic process workload models (B, C): The goal is
to create a validated probabilistic workload model first, and
then to use that model to construct a test workload [4].

2. The time series model (B): This model takes the
time characteristics of the requests into account and ignores
the source of the requests. Time series analysis requires
data be collected over a long period of time. For example,
the number of jobs processed per day may be adequate to
analyze the load on a system over a year. To study the time-
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dependent nature of steps in the job a markovian model can
be used [4].

3. Model for distributed environments (C): The re-
quests of this model are characterized by the quadruple. If
location is allowed to have only a few discrete values, then
this model may be considered to be a multivariate point pro-
cess over time and space. In an actual distributed computing
environment, more complex models may be required. The
techniques of multivariate point process analysis are likely
to be useful. These models may then be used for generating
representative test workloads [4].

The third branch of workload modeling in Figure 5 are
adaptive workload models:
These are models that can learn and adapt to any envi-
ronment. There are dynamic models [21] and time-based
models [7]. In [46], the adaptive model, Support Vector Re-
gression (SVR) model, predicts the short-term future as a
string. The information content in the string conveys as a
substring that reflects the future. It has been successfully
applied in real environments, such as web traffic generation
and virtual path bandwidth management in ATM networks.
Therefore, these models could also be applied in areas such
as MPEG video stream modeling, intrusion detection, and
intelligent prefetching [46].

6. SCHEDULE OPTIMIZATION AND TASK
ALLOCATION

In chapter 2, CPU task scheduling was mentioned in terms
of closed queueing networks. This chapter deals with task
scheduling problems in multiprocessor systems. The increas-
ing demand for efficient parallel programming algorithms
leads to this issue gaining importance [54]. The multi-
processor scheduling theory is concerned with optimally al-
locating sets of agents to complete a set of tasks over time
[54]. Scheduling is a fundamental hard problem (an NP-hard
optimization problem [31]), ”as the time needed to solve it
optimally grows exponentially with the number of tasks”
[55]. In related works, e.g. [37],[42],[20],[45],[52],[56],[9],[24],
good but not optimal scheduling algorithms are presented
[55]. Optimal schedules can make a fundamental difference
e.g. for time critical systems, or to enable the precise eval-
uation of scheduling heuristics [55].

When computing an optimal schedule, the system may be
trying to achieve one or more of the following objectives [54]:

- minimize the service time of the schedule
- minimize the weighed completion time of each service
- minimize the total number of processors used to solve the
problem
- minimize the amount of communication bandwidth used
- if there is a value associated with assigning a task to a
particular processor, maximize the aggregate value
- if there is a cost (other than time) associated with assigning
a task to a particular processor, minimize the aggregate cost

In general, schedules are constrained by the execution de-
lay of each service, the task release times and precedence
relations, as well as communication delays between proces-
sors [54]. As many variations of scheduling problems exist,
many techniques were proposed to solve them. There are
some techniques that assume that processors are a scarce
resource, while others suppose the opposite. Some tech-
niques assume that the execution time for each task on each

processor is constant [13], while others do not consider the
communication delay, which implies that the communica-
tion time between processors is zero [8]. Some fundamental
scheduling techniques are presented in the Figure 6 to give
and overview of the different approaches:

Optimization Techniques for Task Scheduling 

and Allocation in Multiprocessor Systems

Linear Programming

List Scheduling Dynamic Programming Mathematical Programming

Mixed-Integer Linear 

Programming

Simplex Method Branch & Bound Method

Integer Programming

Integer-linear 

Programming

Critical Path Method

Dynamic Critical  

Path Method

Figure 6: Optimization techniques for task schedul-
ing and allocation in multiprocessor systems [54]

List scheduling works with priority levels by which tasks are
ordered in a list. Therefore, the first step is the task prior-
itizing phase, where a priority is computed and assigned to
each task. The second step is the processor selection phase,
where the prioritized tasks are assigned to processors that
minimizes a suitable cost function. The processor selection
phase can be static or dynamic:

Static: The two phases happen sequentially. Hence, the
processor selection phase starts after the completion of the
task prioritizing phase [5],[54].

Dynamic: The processor selection phase and the task
prioritizing phase are interleaved [19],[11].

Most scheduling heuristics algorithms are based on list
scheduling [5],[6],[8],[54], but they differ mainly in different
prioritizations of the tasks. However, the main goal of all
list scheduling algorithms is to find and place the most crit-
ical tasks high on the priority list, so they can be executed
quickly [55]. For example, the critical path method is a
technique, where priorities are assigned to tasks according
to how far away they are from the starting point, therefore
giving preference to tasks that are likely to be on the critical
path. This is the longest chain of tasks, where its length is a
lower bound on the optimal schedule that can be produced
[54]. Ronald Graham, a mathematician also known for his
work in scheduling theory, first examined list scheduling, a
stochastic approximation, in detail in 1966 [19]. He looked
at a classification that assumes that each processor is iden-
tical, therefore execution delay is a function of the task only
but no communication delay between the processors is con-
sidered [54]. By assuming the latter, Kohler [30] and Sih
[51] pointed out, that this can be a problem, because large
communication delays between processors can often result
in sub-optimal makespan [54]. R. E. Bellmann, the scientist
who coined the term dynamic programming developed the
theory in its initial stages [5]. Dynamic programming is a
technique that breaks the scheduling problem into simpler
sub-problems at different points in time. By getting optimal
solutions to the smaller sub-problems, optimal solutions to
the bigger scheduling problem can be found [1]. A variation
of the introduced critical path method is the dynamic criti-
cal path method [17], that works on following steps [32]:
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1. Determine the critical path of the task graph and se-
lect the next node to be scheduled dynamically.
2. Rearrange the schedule on each processor dynamically.
The positions of the nodes in the partial schedules are not
fixed until all nodes have been considered.
3. Select a suitable processor for a node by looking ahead
the potential starting times of the remaining nodes on that
processor.

According to [54] ”dynamic programming may be used to
develop polynomial-time approximation algorithms or op-
timal solutions for very simple scheduling classifications”.
However, it is only suitable to solve schedules optimally if it
runs in exponential time, which is no better than mixed inte-
ger linear programming techniques [54]. The third branch in
the Figure 6 is mathematical programming. This tool solves
complex problems such as those that can be modeled as an
objective function with a set of mathematical constraints
[54]. Generally, the objective is to minimize or maximize a
linear function of these variables. Linear programming (LP)
problems are mathematical programming formulations where
the objective and each constraint is formulated as a linear
function of X1, X2,... , Xn. Therefore, an LP-formulation
would have the following structure of constraints [54]:

MIN(orMAX) :
c1X1 + c2X2 + ... + cnXn

Subject to :
a11X1 + a12X2 + ... + a1nXn≤b1

...
ak1X1 + ak2X2 + ... + aknXn≥bk

...
am1X1 + am2X2 + ... + amnXn = bm

One widely used algorithm for solving linear programming
problems is the simplex method. It has been proven to find
optimal solutions (if there are any) to all instances of linear
programming problems. The underlying idea of the algo-
rithm is that there is always a single optimal solution to any
linear programming problem, which can be found on a corner
point of the feasible region [6]. Another method of mathe-
matical programming is integer programming, in which some
or all the variables are restricted to being integer. Integer
linear programming (ILP) adds the rule, that the objective
function and the constraints must be linear. These mod-
els are for cases, where the decision variable represents a
nonfractional entity such as people or cars, or where a de-
cision variable is needed to model a logical statement. For
instance, 5.23 cars cannot be produced - only 5 or 6. An-
other example is to set integers for binary decisions, such as
yes (1) and no (0).

For multiprocessor scheduling with communication delays
(MSPCD) optimal ILP solutions are presented in [55] which
aim to maximize the utilisation of each available proces-
sor and minimize the task schedule length. To achieve this
goal, the algorithms need to find where and when each task
will be executed, so that the total completion time is mini-
mal. Node costs as required time for task completion, edge
costs as communication time between two tasks on different
processors as well as data transfer times as communication
delays are considered as constraints. A variation of LP-

formulations based on diverse logic systems can be derived
from this provided information. In [55] the formulation of

ILP-REVISEDBOOLEANLOGIC (ILP-RBL) and ILP-

TRANSSIVITYCLAUSE (ILP-TC) are proposed. While
the formulation ILP-RBL reworked the logic for Boolean
multiplication, ILP-TC enforces the partial ordering of the
processor indices with the help of an additional transivity
clause. Both formulation methods manage to reduce the
number of variables and constraints by effective lineariza-
tion of the bilinear equation arising out of communication
delays in the MSPCD model. The results of the experimen-
tal evaluation show that in the ILP-RBL the formulation
runs faster over a small numbers of processors and the lin-
earization in ILP-TC runs faster over a larger number of
processors.

Other cases exist where some decision variables must be
integers but the remaining decision variables are allowed to
be non-integers. In those cases, mixed integer-linear pro-
gramming can be applied [54]. The branch and bound tech-
nique is used to find those integer solutions [54]. The idea
behind branch and bound (B&B) is to optimally solve the
problem via a relaxation of the problem. A relaxation is
a simplification of a problem, which makes the calculation
easier.

In [27] a parametrized B&B algorithm for scheduling real-
time tasks on a multiprocessor system is presented to min-
imize the maximum task lateness in the system. Task late-
ness is defined as the difference between a task’s completion
time and its deadline. The algorithm uses a search tree that
represents the solution space of the problem. Each vertex
in the search tree represents one specific task-to-processor
assignment with schedule ordering. The optimal solution is
presented as one or many vertices (if one exist), where all
tasks have been scheduled on the processors. With the aid
of intelligent rules for selecting vertices to explore/expand
and pruning vertices that do not lead to an optimal solution,
the complexity of the search can be reduced. However, not
only the choice of a vertex selection rule, e.g. last-in-first-out
(LIFO) or least-lower-bound (LLB), but also the determina-
tion of a lower-bound funtion and an approximation strategy
of the B&B method, have impacts on the optimal solution.

In a maximization problem, the optimal objective func-
tion value of an ILP-relaxation is always an upper bound
on the optimal integer solution, whereas any integer feasible
point found is always a lower bound on the optimal integer
solution [6],[54]. The values are used to compare and up-
date the upper and lower bounds at every step to narrow
down the solution area, so the optimal integer solution is
found [54]. Tompkins stated in [54] that branch and bound
works better for mixed-integer-linear programming problems
than listing every possible integer solution. One problem of
branch and bound is that the running time in some cases
may grow exponentially because of the size of the problem.
However, he stated that ”the closer the linear programming
relaxation is to the bound, the less time it takes to find the
optimal integer solution, as less division can be made” [54].

7. CONCLUSION AND OUTLOOK
Many different parts within a computer network can be

modeled to give information about the network performance.
Throughout this paper, many complex models and tech-
niques are presented to obtain specific results to improve
network performance. The challenge here is to figure out
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what results are expected and how constraints need to be
parametrized. Furthermore, models and techniques often
do not provide very precise results. Therefore, taxonomies
are presented to propose subordinate topics which lead to
techniques that match the problem and present their ad-
vantages and disadvantages.

In the future, optimization problems within queueing and
scheduling in networks will become more relevant due to
the increasing amount of data and therefore also increas-
ing data traffic. The long-term objective is to save as much
energy as possible, thus reducing the electricity costs and
lowering the CO2 footprint. This leads towards the concept
of Green NFV Infrastructure, which deals with placing as
many virtual network functions as possible on the smallest
set of physical servers [40]. Here as well, optimization mod-
els, such as mixed-integer optimization, with e.g. the robust
optimization technique, are used to solve the virtual network
function placement problem to optimality [40]. Therefore,
more complex performance models that are used in many
areas of different layers of a network are required and gain
importance.
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