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ABSTRACT
In this paper, we show the state of the art technology in key
escrow mechanisms. Secure communication over the inter-
net as well as inside an intranet is based on the encryption of
sent data. Hence the keys used for encryption are not only
precious for the user but also for economical institutions. As
soon as these keys are inaccessible the encrypted data can
not be recovered, which might result in a loss of essential
information. Therefore a way to regain these keys is fun-
damental for any institution. In this context Key Escrow
provides a simple way to provide this desirable infrastruc-
tural feature. This paper will introduce several mechanisms
to escrow keys and try to give a suitable solution for mod-
ern networks. Consequently key escrow in general will be ex-
plained and the currently popular mechanisms will be shown
divided by the approach used in the infrastructure. These
approaches will be explained on protocol layer and checked
for the practicability. Finally it should give a conclusion
over all protocols.
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1. INTRODUCTION
A fundamental part of modern communication is the secu-
rity of communication. Therefore almost every entity com-
municating over the internet or any insecure channel uses
cryptography to encrypt their information. Except for the
positive outcome of pseudosecure communication, this trend
also generates new issues. Assuming that any kind of key
was used for protecting the data, all participating entities
have the same preconditions for encryption and decryption
of data. While the communication is protected, the gener-
ated data can only be read with the key intended to do so.
This creates a long term problem with accessing all kind of
data after the user key is lost. Especially when the data is
critical, regaining it is essential.
In an institutional environment, adding, changing and delet-
ing keys is a daily procedure. As soon as a key gets deleted,
even though still necessary or an employee leaves, without
transferring the decryption keys, the data encrypted with
these keys is irrecoverably overwritten. Especially universi-
ties or high-tech industry deal with critical data and make
use of cryptography for messaging and data transfer. The
consequences of not having the ability to decrypt the data
again, can result in a loss of money, time but also in legal
actions. This problem can be solved by setting up key re-
covery or key escrow during the generation of such a key.

This means the keys can be recovered after they are lost
and therefore the encrypted data can be recovered. There
are several approaches, which escrow the keys, based on,
whether the keys are symmetrical or asymmetrical, which
kind of key management is used and which special proper-
ties are expected.
Key Escrow in general has quite a bad reputation, since the
expression also refers to a means to an end to give govern-
ments access to encrypted communication of their inhabi-
tants. Already in 1990 the US government proposed the
’Clipper Chip’, which generated a user key from a built in
master key and sent the halved user key to two entities [1]
. This enabled the access to encrypted data for the relevant
US authorities. In modern escrow the underlying principle
remained the same, but the Use Case changed. The use of
key recovery/escrow in companies is not based on surveil-
lance but on the ability of decrypting critical information
encrypted with no longer existing keys.

In this paper several Key Escrow mechanisms will be dis-
cussed with focus on asymmetrical encryption in decentral-
ized infrastructures. These will be rated based on several
predefined requirements.

2. DEFINITIONS AND REQUIREMENTS
First of all several basic crypto mechanisms and encryption
standards must be defined. Modern key management sys-
tems base on two major structures, the symmetrical and the
asymmetrical encryption. These will be described as well as
the criteria, used to benchmark the later presented mecha-
nisms.

2.1 Symmetrical Encryption
Symmetrical encryption is a method to encrypt data sent
between two entities with a single key. For this purpose the
entities agree on a key first, which later is used to encrypt
and decrypt the messages. An example for this would be
the blockcipher AES [2], where the data is encrypted with
in several rounds with the same key. Since this kind of
encryption uses one key for every communication partner,
it is not common for a scalable network. Due to this the
work focuses on the usage of asymmetrical encryption.

2.2 Asymmetrical Encryption
The other encryption method, the asymmetrical encryption,
is in terms of key management contrary to our first method.
This technique uses two keys per user, where one key is used
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to encrypt data and the second key to decrypt data. In con-
trast to the symmetrical encryption these two keys are suf-
ficient to communicate with all entities inside the system,
since the encryption key of another person is used to en-
crypt data meant for him. The asymmetrical encryption is
the common method for key management in larger systems.
For the understanding of this paper the knowledge of basic
asymmetrical encryption standards is necessary. Therefore
the state-of-the-art techniques RSA and ElGamal will be
presented.

2.2.1 RSA
RSA is based on the factoring problem, which results from
the generation of the keys[3]. Every entity in the system
owns two keys a private key (SKentity) and a public key
(PKentity), which are used to encrypt and decrypt any mes-
sage sent to them. In order to do so, the public key of the
user, who should be able to decrypt the message/data must
be used. These keys are derived from the following algo-
rithm.
1. n = p ∗ q with p 6= q and p, q are prime
2. ϕ(n) = (q − 1) ∗ (p− 1)
3. e : coprime to ϕ(n) with e < ϕ(n)
4. e ∗ d+ k ∗ ϕ(n) = 1 and derive d from it
5. PKuser = (n, e) and SKuser = (n, d)
The encryption is done with the public key:
1. ENC(m) = me mod n = c
The decryption with the private key:
1. DEC(c) = cd mod n = m

2.2.2 ElGamal
ElGamal is based on the discrete logarithm problem, since
it is based on the idea of the Diffie-Hellman protocol. It also
relies on the basic idea of private and public keys, but these
are generated differently than in RSA.
1. G of order q with generator g
2. f ∈ {1, ..., q − 1} with ggT (f, q) = 1
3. h = gf

4. PKuser = (G, g, q, h) and SKuser = (f)
The encryption is done with the public key:
1. m′ = m ∈ G
2. y ∈ {1, ..., q − 1} with ggT (h, y) = 1
3. c1 = gy

4. c2 = m′ ∗ hy
5. c = (c1, c2)
The decryption with the private key:
1. c3 = cf1
2. m′ = c2 ∗ c−1

3 with c−1
3 as inverse of c3 in G

3. m⇐ m′ with ⇐ as reconversion
The ElGamal algorithm is less common in modern system
than RSA. Therefore this paper will focus on infrastructures
with RSA keys to escrow.

2.3 Requirements
The usage of Key Escrow comes along with several problems
and unwanted features. To provide a fair comparison of the
different mechanisms the must-have requirements and the
good-to-have requirements are presented and explained.
Must-have:
1. The keys may not be sent in clear text. Otherwise it
could be accessed by an attacker listening to the network.
2. It must be impossible for the user to use another key for

decryption than the one escrowed. The user might send no
key at all or doesn’t use the key, which makes the escrowed
key invalid.
3. It must be possible to generate new keys effortless. This
means a new key should not force the whole system to reload.
Good-to-have
1. The key should be stored on more than one entity to re-
duce the risk of an entity cheating and decrypting the data.
This also reduces the risk of a system loss, when one entity
is infected.
2. A proof should be generated for the escrowed key, so that
every user can verify the recoverability of the key.
3. The mechanism should be capable of being integrated
into an existing system.
4. There should solely be the entity in need to escrow and
the entity storing the keys. No third party should be re-
quired.
5. The entity storing the keys should not able to imper-
sonate the user storing the keys. Since the user stores his
private key, used to sign messages the entity is able to sign
any message as the user with the private key.
6. Keys should be exchangeable effortless. Whenever a key
is compromised the key pair of the user must be replaced.
This should be doable as effortless as possible.

3. KEY ESCROW IN CPKIS
The main property of centralized public key infrastructures
(CPKIs) is the centrally generated key pair. Whenever a
user requires a key the central entity has to generate a key
pair and send it to the user. This has to happen over a
secure channel, to ensure the integrity and confidentiality of
the keys. The key escrow in a CPKI happens directly at the
central entity generating the key, depending on how the key
was generated.

Figure 1: Key distribution in CPKIs

3.1 Private Key Storage
When generating an asymmetric key pair, the relevant part
for decrypting data is the private key. Therefore the storage
of each user’s private key can be a solution. In this scenario
the necessary entities are the key database and the key gen-
erator. The keys are generated and sent to the database as
well as the user. These must be done over a secure channel
to provide confidentiality and keep the key secret. In this
scenario the key escrow fully relies on the database and the
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connection to it. Thus the database is a valuable target, for
an attack.

3.2 Master Key Storage
When a master key is in use, the keys are getting computed
based mainly on an identifier of the user and the master key.
Therefore the key pair can be recovered by re-computing the
user keys. This provides a way of key recovery, where only
the master key must be escrowed.

3.3 Problem with Key Escrow
The main problem of key escrow in a CPKI is the access of
the keys. Since the keys are stored at a single entity, every-
body having administrative rights on it has normally access
to the keys. Further accessing the keys does not require the
cooperation of several entities, which would intercept on a
cheating entity, wanting to access the key on its own, but
since only one entity can access the key storage, a single
entity is sufficient to gain the plaintext of all messages en-
crypted with the associated keys. Since the central authority
generates all keys, it can impersonate any user in the system
and read any encrypted message, without the user noticing.

4. KEY ESCROW IN DECENTRALIZED PKIS
Decentralized public key infrastructure(DPKIs) allow every
user to generate his own key pair. This makes it, compared
to a centralized PKI more flexible and usable, since the users
are independent of a key generator and only need to send the
public key to the centralized authorities in order to enable
the certification, while the private key of the user stays with
him. Whereas key escrow in a decentralized PKI is difficult,
since the private key must be transmitted to one or more
entities in order to escrow it. Therefore in DPKIs no escrow
mechanism is part of the basic protocol.

Figure 2: Key distribution/Certification in PKIs

4.1 Fair Encryption of Keys
A practical approach to a publicly verifiable proof that an
entity involved in our cryptosystem is able to recover the se-
cret key of our user, was proposed by Poupard and Stern [4].
In their scenario every user owns a pair of keys, from which
the secret key is sent to an entity, that is not involved in pro-
cess of verification or encryption [4, p. 172]. In this context
the term ”fair encryption” was used for this cryptosystem.

Since their protocol operates on asymmetric encryption, es-
pecially with modern RSA, it can be used in a decentralized
PKI.

4.1.1 Preconditions
To use the proposed ”fair encryption” on modern RSA keys
several cryptographical assumptions are made. First of all
the entity used to store the secret key has a public key pair
(N,G) in the Paillier cryptosystem [5]. Second user 1 has a
RSA key pair (SK,PK) and wants to escrow SK. Since the
user created SK and PK as RSA keys from n = p ∗ q with
p and q as prime numbers (usually they must be different,
but this protocol does not check the dissimilarity of them).
A collision-resistant hash function like H()=SHA-256 must
be available on all clients for the proof.

4.1.2 Key Escrow
The conditions for a fair encrypted secret key SK are fur-
thermore a ciphertext Γ and a proof of fairness[4, p. 178].
First the user computes
x = n− ϕ(n) = p+ q − 1,
where ϕ() is Euler’s totient function. To make the encryp-
tion probabilistic a random number should be added into
the ciphertext. Therefore a random number u ∈ ZN∗ is se-
lected. Now the Γ is calculated the as follows:
Γ = Gx ∗ uNmod N2

Since the public RSA key of our user consists of the RSA
modulus n and a number e coprime to ϕ(n), the entity al-
ready knows our modulus n. Now the user sends Γ to the
entity. The combination of n, Γ and the Parllier secret key
of our entity can factor n in q and p and from these factors
the private key SK from our user can be computed via
e ∗ d+ k ∗ ϕ(n) = 1, solve for d[4].

4.1.3 Proof of validity
A main characteristic of this protocol is the non-interactive
key storage entity. This means any validation is done by the
user itself. The typical proof consists of user 1, who wants
to proof the key and user 2, who wants to see, whether the
key can be recovered. Thus both users first have to agree on
randomly chosen integers
zi ∈ Z∗n for i=1,...,K.
Then user 1 has to compute the proof:
Choose:
(ri)i=1,...,l ∈R [0, A[l and (vi)i=1,...,l ∈R ZN∗l
Generate:
t = ((GrivNi modN

2)i=1,...,l, (z
ri
j modn)i=1,...,l;j=1,...,l and

(e1, ..., el) = H(t,N,G, (zj)j=1,...,K , n) and { yi = ri + ei ∗ x
and y′i = uei ∗ vi mod N } for i = 1, .., l
Now user 1 sends the proof ((yi, y

′
i, ei)i=1,...,l). This proof is

verified by user 2:
Check 0 ≤ yi < A for i = 1, ..., l
Generate:
t′ = ((Gyi ∗ y′Ni /Γei mod N2)i=1,...,l,
(zyi−einj mod n)i=1,...,l;j=1,...,K)

Check (e1, ..., el) = H(t′, N,G, (zj)i=1,...,K , n)
If the equality of the last line is given, the key is recoverable
by the entity with N and G as public key[4, p. 183].
In this proof several variables were used. Poupard and Stern
made a proposal for them in the year 2000. Since then the
recommended key sizes increased to a minimum of 2048 [6],
these sizes should be adapted. Since we use SHA-256 as
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our hash function the values of e are between 0 and 2256 .
The probability of success in breaking the protocol is 1/Bl,

which would be in our case 1/2256l. That makes the length
l=2 proposed in 2000 still usable. The variable A is a number
smaller than n and larger than x ∗ 2256 ∗ 2. Since the key
length of RSA should be 2048, A < 22048. Thus a number
greater 21300 can be sufficient. In case of K the used integer
has no real effect on the security. In 2000 the value 3 was
proposed and since it only changes the amount of random
numbers used in the protocol any number higher than 5
should be sufficient[7, compare with].

4.2 Auto-recoverable Cryptosystems
Another way of escrowing keys with a verifiable proof was
presented in the year 2000 by Young and Yung. They dealt
with the topic of auto-certifiable and auto-recoverable cryp-
tosystems [8] in general and published an implementation of
it based on ElGamal [9] in 1999. This was expanded on RSA
in 2000. This cryptosystem escrows the private RSA key of
a user and gives proof on the recoverability. This scheme
works on one escrow agent as well as on a group of escrow
agents, since it basically just encrypts the private key. The
protocol consists of four steps. The first one is the genera-
tion of the RSA key pair. The second one is the generation
of the certificate, which provides the data for the recovery to
the escrow agents and a proof for anybody else. The third
one is the verification of the certificate and the fourth one
the recovery of the private key by the recovery agents. In
this example the non-interactive version of this protocol is
presented.

4.2.1 Preconditions
For the initialisation, the generation, the verification and
the recovery of the key several functions need to be defined.
These variables might be initialized during the setup of the
system and give an overview.
ENC(r,s,E) encrypts the plaintext r using the random value
s with the key E.
H(x) is a ideal hash function, hashing x with range Z∗n.
H”(x) is a random oracle hash function, hashing x.
”Ei” is the public key of the escrow agent i.
”e” is one part of the public key of the user, that wants his
key escrowed.
”n” is the RSA module of the public key.
”d” is the private key of the user, that needs to be escrowed.
”ai ∈R Zϕ(n)” is a random number, chosen by the user.
”si,1 and si,2” are the two random numbers for the encryp-
tion, chosen by the user.
”ti and t

′
i” are variables used during the certification. They

either are generated randomly or given by the verifier.
”P” is the computed proof by the user.
λ(n) is the Carmichael function.
”m” is the amount of escrow entities.
”k(m)=ω(log m)” is the length of the transcript.
”δ” is an additional variable to increase the size of the tran-
script independent of m [10, p. 329-334].
For the key recovery it is essential, that n consists of two
different prime numbers. As protocol to validate this Young
and Yung propose [12].

4.2.2 Generation
In this step the RSA keys are created. This is the standard
process of RSA key generation, where n is the product of
two distinct prime-numbers p and q, e is a number coprime
to ϕ(n) and larger 0 and d is the modular multiplicative
inverse of e(modϕ(n)).[10, p. 332] Afterwards the variables
e, n and d are initialized.

4.2.3 Key Certification
To construct the proof of escrow, we need the RSA key pair
of our user. The output is a proof P, with which the escrow
can be verified.[10, p. 330]
1. Initialization
First the initialization takes part, then some randomly based
values are generated:
P = (n), t0 = H(n)
for i = 1 to δk(m) :
t′i−1 = H(ti−1) ; ti = t′ei−1 mod n
Now the encryption of the data, later relevant for key recov-
ery is done and added to the end of P. In this example the
key used for encryption is just E. This could also be a set of
keys from several escrow entities E1, ..., Em[10, p. 331]:
for i = 1 to δk(m) :
ai ∈R Zϕ(n) ;
si,1 and si,2 randomly chosen;
vi = taii mod n
Ci,1 = ENC(ai, si,1, E);
Ci,2 = ENC(d− ai modϕ(n), si,2, E);
add(vi, Ci,1, Ci, 2) to P [10, p. 332].
2. Partially Proof
At last the actual ”proof” is generated, since the user needs
the following to verify the correct encryption of the data,
which is made probabilistic by a random oracle.
val = H”(P);
set b1, ..., bδk(m) as the least significant bits of val (bi ∈
{0, 1})
for i = 1 to δk(m) :
ai,1 = ai; ai,2 = d − ai mod ϕ(n); zi = (ai,j , si,j) with
j = 1 + bi
add zi to the end of P
3. Entire Proof
Now the entire proof is generated and has the form:
P = (n, (v1, C1,1, C1,2), ..., (vδk(m), Cδk(m),1, Cδk(m),2),
z1, ..., zδk(m)) [10, p. 333]

4.2.4 Verification
Since the verifier knows
P = (n, (v1, C1,1, C1,2), ..., (vδk(m), Cδk(m),1, Cδk(m),2),
z1, ..., zδk(m)) where zi = (ai,j , si,j) with j = 1 + bi
he can extract n from P. This implies he can generate t1, ..., tδk(m)

from the known public key e and the hash function H(),
similar to the key certification. Further he can compute
b1, ..., bδk(m),
as he can hash the first part of P:
P2 = (n, (v1, C1,1, C1,2), ..., (vδk(m), Cδk(m),1, Cδk(m),2)) with
the function H”(). Now several values are checked:
First of all some general values need to be verified. These
are the basic variables used for the generation of the proof.
ti ∈ Z∗n and ai,1+bi < n for 1 ≤ i ≤ δk(m).
Now the actual verification takes place.
Ci,1+bi = ENC(ai,1+bi , si,1+bi , E),
where the values from P2 are compared with zi.
t
ai,1+bi
i = (t′i−1/vi)

biv1−bii mod n,
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where t
ai,1+bi
i can be computed from our first step of ver-

ification and the first part of zi. The second part of the
equation is given either just by P2 or by P2 and t′i. As long
as these equations and the basic variables are correct the
key is correctly escrowed. [10, p. 333].

4.2.5 Recovery
First of all the escrow agents need to decrypt Ci,1 and Ci,2,
to extract the corresponding plaintext either ai or d−a modϕ(n).
Now d′i is computed as the plaintext from Ci,1 plus the plain-
text of Ci,2. Further Ki is generated via Ki = ed′i − 1. In
this way Ki is created for each i from 1 to δk(m) [10, p.
333]
Now it is possible to factor n given Ki with a Las Vegas
algorithm [11, p. 10]. This algorithm is run on Ki for all i.

5. IDENTITY BASED ENCRYPTION
The basic idea behind IBE, abbreviation for Identity Based
Encryption, is to encrypt messages with an identifier instead
of a key. This scheme differs in several points from a PKI,
but the main advantage of an IBE scheme is the built in
escrow mechanism. Therefore the usage of IBE instead of
PKI to enable key escrow is a noteworthy option.

Figure 3: Key distribution in IBEs

5.1 IBE in General
The basic IBE scheme consists of an amount of users n and a
private key generator PKG [13]. Each user has an identifier
the so called ID. Based on this ID the user can request a
corresponding private key from the PKG. The PKG owns a
private and a public key, whereas the public key is rather a
set of system parameters. For the usage of the encryption
scheme (IBE.E) the following four basic algorithms are the
framework as described by Boneh and Franklin in 2003:
1. Setup, which the PKG runs once to derive the pub-
lic and the private key (MK) from a security parameter k,
where the public key is generally called ”params” meaning
system parameter.
2. Extract, which is run by the PKG each time a new user
requests a private key and giving the PKG his ID. It takes
MK, params and the user’s ID to generate a corresponding
private key (d), that is given to the user.

3. Encrypt, which is run each time a user wants to send
a message encrypted. This algorithm takes the ID of the
receiver, the message to send and params to encrypt the
message.
4. Decrypt, which the receiver of an encrypted message
must run, to decrypt it. This takes the encrypted message,
the ciphertext, params and d of the receiver and outputs the
plaintext message.[14]
As one may notice the critical spots are the connection be-
tween the user and the PKG and the risk of a compromised
PKG.

5.2 Key Escrow in IBEs
One of the main features of identity based encryption is the
automated key escrow. Since the user gets his private key
from the PKG, the PKG has two different strategies how to
escrow the private keys of the user.

5.2.1 Key Escrow with Master Key
Due to the fact, that the PKGs private key (MK) is used to
generate the users private key, while as only other variables
the static values params and ID are used, the private key can
be recovered by running the algorithm again. This strategy
is the most comfortable, since the amount of data to store
and the effort to restore a key is minimum. On the other
hand the MK is the single point of failure in the escrow
system. When this key is lost, the whole system beneath
this PKG can not be escrowed anymore, aside from the fact
that if it was stolen, the attacker has full control over the
system.

5.2.2 Key Escrow by Storing Keys
To assign the key escrow to a third entity, an option is to
store the computed private keys of the user in a database,
which is not necessarily on the same system as the PKG.
This increases the required storage capacity, keeps the effort
at a minimum and distributes the critical data, seen from
the side of key escrow, on two systems.

5.2.3 Problems with Key Escrow
The main problem concerning key escrow in IDE schemes
is, the access of escrowed keys. Since in both shown ways of
escrowing keys, these keys can be accessed by a entity and
do not require a cooperation of several entities(compared to
PVSS mechanisms). So a special kind of four-eyes principle
must be implemented if this kind of security is required.

5.3 Cascade-realized Identity Based Encryp-
tion

The basic protocol of IBE consists of one single encryption
scheme, used on one PKG. As seen earlier this creates sev-
eral problems with the security of the key escrow. This issue
could be solved by splitting the PKG authority into a group
of entities, which was proposed as a cascade realized iden-
tity based encryption scheme(CARIBE) by Hale, Carr and
Gligoroski [15].
In this scheme n different PKGs cooperate to generate keys,
encrypt and decrypt the messages based on possibly n dif-
ferent encryption schemes. This is realized by encrypting
the messages under a cascade realisation, where the cipher-
text of the first encryption is the plaintext of the second
encryption and so on.
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Figure 4: Key distribution in CARIBE

5.3.1 Algorithms
The algorithms are based on the same framework as de-
scribed in [5.1], but differ in the amount of variables used
in every step. Further there can be n different encryption
schemes, used during the setup[15, p. 8-9]. The used func-
tion calls refer to the specific function used in scheme i, e.g.
Setupi is the function Setup of the encryption scheme i:
1. Setup, where n security parameter (k) are taken and n
params and master keys MKi are generated:
for i ∈ {1, ..., n} :
(paramsi,MKi) = Setupi(ki) end
return (params1, ..., paramsn}, {MK1, ...MKn})
2. Extract, which takes n params and MKs and the ID of
one user and computes the corresponding n private keys di:
for i ∈ {1, ..., n} :
di = Extracti(paramsi,MKi, ID) end
return d1, ..., dn
3. Encrypt, where message m is encrypted using the ID of
the user and n params to generate the ciphertext:
c2 = Encrypt1(params1, ID,m)
for i ∈ {2, ..., n} :
ci+1 = Encrypti(paramsi, ID, ci)
end
c = cn+1; return c
4. Decrypt, where the ciphertext, n private keys of the
receiving user (di) and n params are used to produce the
plaintext:
cn = c; i=n
for i > 0 :
ci−1 = Decrypti(paramsi, ci, di); i=i-1
end
m = c0; return m
As one can see the messages are cascaded en-/decrypted
with n keys, n params under n schemes(not necessarily dif-
ferent).

5.3.2 Problems with Key Escrow
The main problem mentioned in [5.2.3] was the access of
the keys. This problem has been solved by giving each PKG
only access to one layer of encryption. If using the MK of
each PKG, n different entities must be requested to decrypt
the message. Otherwise if the keys are not stored in a single

database, also n databases must be requested for the access.
Solely if all user keys are stored in one database the problem
keeps remaining. The only missing property would be the
ability to regain access to the encrypted data, even though
PKGx ⊂ {PKG1, ..., PKGn} is compromised or the keys
are lost.

5.3.3 Problems with CARIBE
There are several problems going along with a cascade real-
isation of IBE. First of all the length of the ciphertext in-
creases, since several encryptions are run successively. This
problem was declared as not imposing, as modern IBE schemes
are less expanding and the transmission rates are fast enough
to deal with this size of data[15, p. 12]. Another problem is
the new amount of keys. These must be stored securely at
the client, but first of all need to be transmitted to the client.
The usage of CARIBE increases the amount of necessary se-
cure channels to transmit data in advance. Since IBE at all
does not deal with the problem of key distribution, this is
no CARIBE specific problem. Further the performance of
en- and decryption is problematic, since these must be run
n times. At last cascade cryptography is seen as CCA inse-
cure, as any user can decrypt and re-encrypt the outermost
encryption, when in possession of the key. But the posses-
sion of this key is only an assumption and not realistic for
this case [15, p. 9].

5.4 Risks of IBE
IBE on its own has few considerable security risks. The con-
nection between user and PKG must be highly secure, since
the private key of the user is sent over this channel. This
general problem of PKG can only be solved based on the
use case. Also a compromised key is a problem, since the
identifier is the public key and therefore the identifier of this
user must be changed in order to grant security, but these
identifiers are normally static values(like email addresses).
Since the PKG generates all keys, it can on the one hand
impersonate every user in his system and on the other hand
can decrypt all messages. Because of these enormous priv-
ileges, the PKG is a worthwhile attack target. As soon as
the PKG is compromised the whole system is compromised
and can no longer be used.

5.5 RIKE
A way to integrate IBE into PKI was proposed in 2012[16].
The key management infrastructure was called RIKE and
integrates a identity based encryption into a already existing
PKI to enable key escrow in the PKI. This is basically done
by hashing the user certificate and the value computed in
this way is the new public key of our user in the IBE scheme.

5.5.1 Algorithm
The preconditions for implementing RIKE is an existing PKI
with the user key pair (PKu, SKu) for every user and an CA
with identity IDca and keys, which signs the users public key
and returns a certificate Cert(U) = SIGNSKca(IDca, PKu)
signed by the private key of the CA. The integration of the
IBE requires several values, which are equal to the data
used for an IBE. This comprises the PKG, with the system
parameters params, the private key of the generator MK
and the standard functions Encrypt, Decrypt and Extract.
These function are the same as in a basic IBE scheme[16, p.
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52].
1. Initialization, where params and MK is generated, sim-
ilar to [5.1/1.] and signs the new certificate
CERT (CA, params) = SIGNSKca(IDca, PKca) and adds
params as extension[16, p. 62/63]. This certificate is sent to
every user, so that every user has params and the certificate
of the CA.
2. Key Generation, where the PKG produces the second
private key of the user from the hash of the users certificate
SKu2 = Extract(MK, params,H(Cert(U))) comparable to
[5.1/2.]. Now the second, escrowed secret key gets sent to
the user. The user now has (SKu, PKu), which is the not
escrowed pair and the new (SKu2, (PKu2 = H(Cert(U))))
as the escrowed key pair.
3. Usage, can be done from now on, since the IBE scheme
is now implemented. The encryption and decryption works
just as in a normal IBE scheme with the escrowed keys, ex-
cept for the fact that the certificate of the user is checked
first. This grants a fast way of revoking compromised keys
in the IBE scheme. Also signing can be realized by using the
not escrowed private key (SKu). That solves the problem
of the almighty PKG, because it can no longer impersonate
any user of the system.[16, p. 52/53]

5.5.2 RIKE based on different structures
The larger the cryptographic environment is, the more enti-
ties are needed to manage the users. This tends to result in
a increasing number of CAs. To deal with this, RIKE is also
compatible to a hierarchical CA structure in [16, p. 54-56].
Usually there are several different CAs cross-signing each
other in order to ease the validation of certificates for users.
This can also be implemented by RIKE, which is described
in [16, p. 56-59].

5.5.3 Key Escrow in RIKE
RIKE builds an IBE inside a PKI, so the key escrow prop-
erties apply to the system. But this only applies to the
keys generated by the PKG, not to the existing asymmet-
rical keys. Therefore the use of the first key pair has to be
forbidden for encryption to enable full escrow.

6. OTHER KEY ESCROW OPPORTUNITIES
There are further ways of escrowing keys in different cryp-
tosystems. Since every of these schemes are comparable
complex to the others given in this paper, they will just
be explained briefly.

6.1 SE-PKI
Self escrowing public key infrastructures deal with key es-
crow by intervening into the key generation at the user. The
user generates his key pair decentralized, but with the pub-
lic part of trapdoor information provided by a central entity.
This connects the public and the private key under a master
scheme. Then he computes a proof, which everybody can
verify. In case of a lost key, the users private key can be re-
covered by the private part of the trapdoor information by a
central authority. The key recoverability can be distributed
between several entities.[17]

6.2 PVSS
A rather universal approach are the publicly verifiable se-
cret sharing mechanisms. These mechanisms allow to share
a secret among several participants and generates a proof
for the recoverability of this secret. [19] This proof can be
verified by any user of the system. As mentioned in [18]
the usage of these properties enable key escrow in any in-
frastructure. Instead of a secret, the private key of the user
is divided into shares and sent to the escrow entities. Any
user of the system can verify the recoverability of the key.
As soon as the key must be recovered the entities having the
shares must collaborate to recover the key. This is a quite
universal solution to the problem of Key Escrow.

7. EVALUATION
This paper presented a solution for different key infrastruc-
tures. At last these mechanisms will be compared and rated
based on our requirements. The first must-have can not
clearly be fulfilled by any mechanism. The transmission of
keys must always be done in a secure way, whether using
encryption or manual techniques. Solely the Fair Encryp-
tion and the auto-recoverable cryptosystems directly refer
to this problem, as they send the encrypted private key to
the central entity. Therefore this requirement will be seen
as a challenge, which must be solved by other means.
1. CPKI
The first two mechanisms used in a centralized key infras-
tructure fulfil all must-haves, but not all other requirements.
They fail in 1, 3 and 5. Since the keys are solely generated
centrally 2 is not required. Further the keys can only be ex-
changed by requesting such a change, but there are no major
changes required in the system. All in all this technique ful-
fils most of our requirements, but the required infrastructure
makes it highly impractical and hence limited useful.
2. Fair Encryption
The Fair encryption fulfils all must-haves, since a valid proof
requires the usage of the public key. This protocol fails in 1
and 5. Especially the non-interactive proof executed solely
by the users of the system makes this protocol convenient.
The only drawback is the usage of the Pallier cryptosystem,
which is not supported by every system. Therefore this can
be integrated into any system, but only with mentionable
effort, which makes this method a possible but not the best
solution.
3. Auto-Recoverable Cryptosystem
The Auto-Recoverable Cryptosystem also fulfils all our must-
haves. Since it is possible to increase the number receiv-
ing entities, all of the optional requirements can be fulfilled.
Since it also does not require any specific encryption it can
be integrated into any system. Since the protocol itself is
more than 15 years old, the protocol should be investigated
for possible flaws before using it.
4. IBE
The next protocol is the usage of IBE properties. This Es-
crow mechanism is similar to the first two mechanism, since
it uses the centralized generation to escrow the key. So it
actually does fulfil all must-haves, but fails in 1, 3, 5 and
6. Changing keys is complex, since the system is based on
identifiers. Further it is a completely different infrastructure
than the common PKI, which makes it incompatible.
5. CARIBE
The IBE based protocol CARIBE solves several problems of
this IBE scheme. It is conform to all our must-haves and
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also achieves more optional properties than IBE. It only fails
with 3, since the distribution of the keys on different entities
solely leaves the problem of compatibility.
6. RIKE
This problem can be solved by the last protocol RIKE, which
complies all must-haves, but fails with 1. It gains the com-
patibility by using an existing PKI, which leaves the problem
of a single entity controlling the keys.

8. CONCLUSION
Key escrow in a nutshell is a very complex topic. Not only
that most studies try to get rid of key escrow instead of
improving it, but modern key escrow often relies on a lot as-
sumptions. On the other hand most key escrow mechanisms
can be integrated in every key scheme and is therefore highly
usable. Any presented algorithm can be integrated in a pub-
lic key infrastructure, which is the common cryptosystem.
A suitable solution for a PKI system, would be the inte-
gration of RIKE in combination with CARIBE. Most men-
tioned problems would not appear in this line-up and the
solely drawback is the management of the different entities
and keys.
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