
P4 Compiler & Interpreter: A Survey

Henning Stubbe
Betreuer: Sebastian Gallenmüller, Dominik Scholz

Seminar Future Internet WS2016–2017
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: stubbe@in.tum.de

ABSTRACT
Software-Defined-Networking (SDN) provides new possibili-
ties to configure and manage large scale networks. However,
most SDN control protocols limit the possibilities of this ap-
proach since they only provide a limited set of protocols and
are understood only by a fraction of the available hardware.
The Domain-Specific Language (DSL) P4 was developed to
mitigate this issue. Designed with the intent to allow a
brief description of a switch’s behavior, the aim is to enable
network owners to develop their own application oriented
software for a programmable switch. To be able to execute
the developed description on the hardware either a compiler
or an interpreter is required, which translates P4 into an ex-
ecutable program. In the past two years, since P4 has been
introduced, different tools emerged. This paper will conduct
a survey on the different options available.

Keywords
Compiler, Domain-Specific Languages, P4, SDN

1. INTRODUCTION
With increasing size of network structures the necessity to
simplify the management in these networks increases. The
introduction of Software Defined Networking (SDN), that is
the separation of the function a switch provides into the for-
warding and control plane, worked towards this need. The
forwarding plane, responsible for deciding which rules are
applicable to a packet and then acting accordingly, remains
part of the switch. Contrary to that, the control plane,
responsible for describing and populating the rules the for-
warding plane uses to decide, can be outsourced to a cen-
tral point. This enables simpler configuration options, since
modification of the desired network behaviour requires only
the controller to be updated. The control plane then makes
the change available in the whole network by deploying them
to the forwarding plane. Due to the centralized approach
previously costly problems, e.g. the calculation of a spanning
tree for the network, can be solved more efficiently since the
control plane is aware of the network structure.

A protocol that is used to configure SDN-enable devices is
OpenFlow [11]. This open standard describes a set of prop-
erties the forwarding and the control plane must have as
well as how they should interact with each other. Hence,
it is possible to combine arbitrary hardware adhering to
this standard. Thus network providers gain more flexibility
when combining different hardware into their new central-
ized managed network. The catch on this approach is that

current OpenFlow standard — the OpenFlow Switch Spec-
ification 1.5.1 [11] — only describes a fixed set of protocols
for which rules the forwarding plane has to obey can be ex-
pressed. Those protocols are implicitly defined by the list of
supported flow match fields as described in Section 7.2.3.7
of the specification [11]. This introduces the problem that
custom inhouse solutions that might be desired by network
owners cannot be realized since either a protocol used is not
available or the custom protocol stack is not supported by
OpenFlow.

Bosshart et al. [4] propose to enable network operators to
describe the structure of packets that will traverse their net-
work as well as which rules can be applied to them. This
allows using separated forwarding and control planes while
overcoming the issue of limited protocol support. As the lan-
guage P4 which Bosshart et al. [4] introduce is a high-level
language, tools are required producing a program executable
by the hardware target that should later execute it. Since
those tools have to abstract from the specific hardware to
the hardware independent P4 language they have to cope
with this by either being intended for specific hardware or
other means. In Section 2 this paper will provide an in-
troduction to the concepts and ideas of P4. Subsequently
available solutions with their take on the challenges and im-
plications of the abstraction done by P4 will be addressed in
Section 3. Finally, in Section 4, the paper summarizes the
current state in its conclusion.

2. BACKGROUND: P4
The Programming Protocol-Independent Packet Processors
language — abbreviated P4 — is a Domain-Specific Lan-
guage (DSL) intended to be used for description of the pack-
age processing capabilities of programmable switches. As a
DSL focuses on describing rules that can be applied to pack-
ets. This allows P4 programs to be more concise when speci-
fying the behavior of a switch. Targeting network operators,
Bosshart et al. phrased the design goals of P4:

1. Reconfigurability in the field. Modification of the be-
havior of a switch must remain possible once the switch
is permanently installed. I.e. switch behavior changes,
e.g. by publishing new match-action rule entries as al-
lowed by OpenFlow must be possible.

2. Protocol independence. P4 attempts to make no as-
sumption on which protocols might be used in which
combination. In fact P4 tries to create the possibility

Seminars FI / IITM WS 16/17,
Network Architectures and Services, May 2017

47 doi: 10.2313/NET-2017-05-1_07



to define and integrate new protocols formats when-
ever desired.

3. Target independence. A program written in P4 cannot
require features of special hardware, but instead is us-
able on any hardware for which a runnable translation
of P4 can be created. While P4 imposes requirements
on the capabilities of the hardware in general, it does
not demand the presence of e.g. a fixed instruction set.

Even though P4 is motivated by the inability of OpenFlow
to use custom protocols, it borrows a few concepts to de-
scribe the packet processing. (Bosshart et al. [4] suggest,
that P4 might even be used as proposal how the next ver-
sion of OpenFlow could look like.) Processing of packets is
done by performing actions on the packets based on values of
the header fields. As in OpenFlow the mapping from header
field value tuples to actions to perform is created during run-
time by a control plane, not at compile time. The processing
of packets in P4 can be divided into four major phases:

1. Parsing of the packet. When receiving a packet, it first
must be translated into a representation that can be
processed in the next phases. The parser is based on a
finite state machine generated from the underlying P4
program.

2. Apply match-action table to ingress. The represen-
tation of the received object now entered the ingress
pipeline. In this phase it is possible to match on the
different header fields of the received packet and ex-
ecute almost arbitrary rules on it. Additionally, the
switch can decide which egress pipeline should later
process the packet. For this the P4 program can access
additional information — metadata — e.g. on which
hardware port the packet arrived. If necessary, the po-
tentially modified packet can be resubmitted to enter
the ingress pipeline again.

3. Apply match-action table to egress. Similar to the
ingress pipeline the egress pipeline allows execution of
rules based how the parsed header fields. Note that
neither submission to another egress pipeline nor re-
submits can be used here.

4. Deparsing. To be able to send the packet to the wire
it has to be deparsed based on its current state. In
P414 the deparser is generated automatically from the
parsed object.

Therefore, in order to describe the behavior of a switch in P4
each of these phases must be described. Statements of a P4
programs influence different parts of the processing pipeline.
Which program parts impacts which phase is depicted in
Figure 1. The parse graph required to specify the parser
and deparser in P4 is described by a set of headers that
might occur, a header to start parsing with and conditions
that express which header is expected next in which case.
Figure 2 shows a P4 (version 1.0.3) program which will serve
as example in this section. It first describes the fictional
header type ether_t which consists of an 48 bit long field
called src — the source of the packet — and a second field

Switch Configuration

Pipeline Input

Parser

Match Action
Ingress Pipeline

Buffer

Match Action
Egress Pipeline

Deparser

Pipeline Output

Parse Graph Table Config

Control Program

Action Set

Forwarding Rules

Figure 1: Packet processing as done in P4.

with the same size dst — the destination. Then the header
named ether is declared to be of type ether_t. The parser

lines subsequently instruct the switch to read the outermost
header as ether and treat the rest of the packet as payload
that does not require parsing.

Finally, the packet is added to the ingress pipeline. The
remaining part of the program is used to describe the avail-
able actions, tables where they occur and which header fields
these tables depend on, as well as which tables are part of
which pipeline. The field standard_metadata.egress_spec

describes the port on which the packet should be sent out
after deparsing.

Translation tools are required to execute the program, since
P4 as a high-level language is not executable. Two options
for such a translation exist, either the program is compiled
once or interpreted on every execution. While the former
method allows a broader range of optimizations the latter

header_type ether_t {fields {src: 48; dst: 48;}}

header ether_t ether;

parser start {return ether;}

parser ether {extract(ether); return ingress;}

action forward_ether(out) {

modify_field(standard_metadata.egress_spec, out);

}

table forward {

reads {ether.src: exact; ether.dst: exact;}

actions {forward_ether; drop; no_op;}

}

control ingress {apply(forward);}

control egress {}

Figure 2: Discard or forward packet to chosen out-
going port based on source and destination address.

Seminars FI / IITM WS 16/17,
Network Architectures and Services, May 2017

48 doi: 10.2313/NET-2017-05-1_07



can reduce the time between development and runtime. This
makes interpretation more suitable for the development pro-
cess, and compiling the program preferred for deployment
respectively.

The P4 language specification has different versions, which
are names with a three digit, dot separated version identi-
fier. Increments in the rightmost digit indicate an update
or addition to the last standard. An increase in the mid-
dle digit indicates a larger language change. All currently
known language version identifier have one as the leftmost
digit. Currently the standards 1.0.3 (released 2016–11–03)
is said to be the most common, but the standard 1.1.0 (re-
leased 2016–01–27) is also available. The main features in-
troduced in 1.1.0 were support for types, strong typing and
the ability to state an order in which actions should be exe-
cuted [17, sec. 17.2]. The P4 version 1.2 has currently draft
status. As the current versioning scheme of P4 has caused
confusion the versions P4 1.0.0 up to 1.0.3 are referred to as
P414, since P4 1.0.0 was released 2014–09–08. The draft P4
1.2 is known as P416.

In the slides of Budiu [6] the differences between P414 and
the P416 draft are listed. Additionally the P416 specification
draft [18, sec. 3] briefly outlines which change will occur. A
major change is that, while P414 specified that the deparser
constructed from the given parser, P416 drops this idea and
requires the programmer to specify how the object shall be
deparsed. This change is motivated by the fact, that there
might exist multiple possibilities how the object can be de-
parsed, e.g. IPv4 in IPv6 or vice versa [17, sec. 6]. A second
major difference is that in P416 more targets specific infor-
mation into P4 by suggestion that a separate file should be
used which lists functions provided by the target. Also, one
or more core files are envisioned, that shall provide common
routines and thus can serve as library for other programs.
P416 will also add annotation support and reduce the num-
ber of keywords from more than 70 to less than 40. Accord-
ing to aforementioned presentation [6] it will be possible to
convert a P414 to a comparable P416 program.

3. COMPILER & INTERPRETER
To receive an executable file from a P4 program either a
compiler or an interpreter is required. The next subsections
will discuss open source options available wrapped up by a
subsection dedicated to proprietary solutions.

3.1 Reference Implementation
To make a reference translator available, the P4 Language
Consortium published the P4 compiler p4c-behavioral [14].
It will be discussed in the next section in more detail. For
a couple of reasons p4c-behavioral is now replaced by the
“behavioral model” — bmv2 [13]. The motivation for this
change as well as the properties of bmv2 then follow subse-
quently.

3.1.1 p4c-behavioral
Developed as first reference compiler for P4 p4c-behavioral

which is written in C implements all features of the P4
specification. It takes a P4 program as input and gener-
ates a valid C program based on this input. To do so it
depends on p4-hlir — a program to create a High-Level

Intermediate Representation of P4 according to the source
code given. p4c-hlir [15] is written in Python and provides
a target independent P4 parser. On successful parse the re-
sult is accessible as Python object hierarchy. By utilizing
p4-hlir, p4c-behavioral can focus on generating correct
C code. This code can then be complied for the intended
target. As a result, additional optimization by the C com-
piler is possible. The Apache 2 licensed source code can be
found at [14].

After completion of the implementation of p4c-behavioral
a few issues regarding its design were discovered. It was seen
as hassle to be required to compile twice (from P4 to C and
from C to binary) in order to produce an executable. Fur-
ther the generated C code from p4c-behavioral was deemed
to be hard to understand and thus discouraging people from
looking at it. Finally, the underlying switch model in the old
compiler is fixed and assumes the presence of two pipelines:
one ingress and one egress pipeline. This assumption stands
in contrast to the paradigm of P4 not to require any hard-
ware properties. Hence it motivated a change in order to
fully support P4.

3.1.2 Behavioral Model
Addressing some issues with p4c-behavioral the new so
called behavioral model [13], also called bmv2, was devel-
oped. The behavioral model is, in contrast to the previously
introduced p4c-behavioral an interpreter. To run a P4
program with bmv2, the P4 source code must first be com-
piled to a JSON file which then, combined with the P4 file,
serves as input for the interpreter. The JSON output is gen-
erated by p4c-bm [16] which also can generate program de-
pendent C++ code. This program dependent code is either
an Apache Thrift [1] or an nanomsg [21] based mechanism
to enable communication between the control plane and the
forwarding plane on the switch.

As p4c-behavioral, the new interpreter is released under
the Apache 2 license. It fully supports the P4 specification
and can be integrated into mininet [12].

3.1.3 P4C
The language P4 is developing and the next version P416

will be released in the future. It is written in C++ and
provides different backends. Depending on the P4 input the
program can either be compiled to be used with the bmv2, or
as input for a compiler that can compile C code to eBNF —
extended Berkeley Packet Filter. The code released under
Apache 2 of [19] is currently rated as alpha quality and thus
at the moment is not ready for production.

3.2 P4@ELTE
Similar to the reference implementation of the P4 Language
Consortium the compiler P4@ELTE by Laki et al. [9] is not
focused on a specific hardware target. Instead, the aim is to
provide a target independent compiler. To be able to do so
they identified which functions required for P4 are hardware
dependent and hardware independent respectively. Provid-
ing the independent functions with their compiler the re-
quirements to successfully implement a compiler for a new
target is reduced to describe the hardware dependent func-
tionality. This hardware dependent implementation is also

Seminars FI / IITM WS 16/17,
Network Architectures and Services, May 2017

49 doi: 10.2313/NET-2017-05-1_07



called Hardware Abstraction Layer (HAL). [9] currently pro-
vides one implementation of such a Hardware Abstraction
Layer that makes use of Intel’s DPDK [7] and thus can
be used with any network interface which supports C code
compatible with said library1. For input parsing P4@ELTE
makes use of p4-hlir. The compilation steps are summa-
rized in Figure 3.

Executable
Program

HAL provided
Implementation

Common ”Core”
Implementation

JSON Rep-
resentation

P4 Program

p4-hlir

Core Compiler

C Compiler & Linker

Figure 3: Compilation process of P4@ELTE.

As Laki et al. [8] describe, the approach taken by P4@ELTE
to offload the hardware specific details into a library has
the benefit that the actual compiler implementation is sim-
pler, as determining properties of the target is not neces-
sary. They argue that the modularity introduced by this
separation of concerns increases the maintainability of the
compiler. In addition, the fact that the Hardware Abstrac-
tion Layer is independent of the P4 programs compiled and
thus does not require recompilation if the program changes,
is mentioned as advantage of P4@ELTE.

Reduced performance compared to a hardware dependent
compiler which can make use of hardware specific optimiza-
tions is seen as drawback. In fact, it is difficult to implement
any optimization which introduces a constraint on the pro-
tocol or hardware used since it may not hold in all cases.
The author concludes with the note that implementing the
Hardware Abstraction Layer introduces the difficulty to find
a suitable abstraction that includes as many hardware tar-
gets as possible while avoiding reducing the number of ap-
plicable optimizations. The implementation of P4@ELTE
was released under the Apache 2 license [10].

3.3 P4FPGA
As the name already suggest P4FPGA [24] differs from the
programs mentioned so far regarding the target hardware.
The idea of P4FPGA is to provide a tool that eases the devel-
opment of FPGA based switches. This is done by translating
from P4 to Bluespec System Verilog, a hardware description
language. For this to work P4FPGA integrates as backend
into p4c, thus receiving the intermediate representation gen-
erated from P4 program parsed by the compiler.

While the full P4 language is supported by P4FPGA, the
language P4 itself does not suffice to fully describe how the

1A list of supported network interface controller is main-
tained at http://www.dpdk.org/doc/nics.

resulting system should behave. Wang et al. [24] note, the
runtime implementation is out of scope for the P4 specifi-
cation and hence has to be described by other means. This
implies that e.g. the description of the Memory Manage-
ment Unit must be done by other means. The source code
of P4FPGA, which is released under the Apache 2 license
can be found at [20].

3.4 PISCES
While all previous projects focused on hardware targets, the
work of Shahbaz et al. [22] — PISCES — focuses on software
switches. Bringing to mind that switching between virtual
machines hosted on the same physical machine often also
involves new or custom protocols, [22] argue that there is a
need for an inexpensive way to implement these protocols.
Inexpensive in CPU cycles when executed as well as in time
to develop and maintain. To address this Shahbaz et al.
modified Open vSwitch, introduced by Pfaff et al. [3], to be
usable in conjunction with a P4 program. An important
aspect in these changes is the effort to remove any protocol
dependency — all conclusions based on assumptions how
the arriving packet will look like — from the Open vSwitch
implementation.

One implication of this is that the concept of micro-/mega-
flow caches in Open vSwitch has to be revisited. Micro-
/megaflow caches utilize the idea that flows of packets re-
semble each other in certain field, e.g. source and destination
address, ports, etc. Since it is no longer ensured that IP ad-
dresses or ports fields are present in the header to match on,
the justification of this caching mechanism must be verified.
After reviewing Shahbaz et al. [22] come to the conclusion,
that this matching algorithm does not have to be modified.
It is enough to enable the control plane to manage which
fields of the header shall be used to match on.

As they were not required for the supported protocols, not
all primitives P4 offers were implemented in Open vSwitch
and hence had to be added:

• Since protocols described can have any desired header
format Shahbaz et al. [22] enhanced Open vSwitch
with functions that allow prepending and removal of a
header.

• The incremental checksum modification of Open vSwitch
was augmented to also support explicit checksum com-
putation, if desired by the programmer.

• Comparison of header fields must be expressed as bit-
wise equality test, in Open vSwitch. On the other
hand P4 enables the programmer to request such tests
for fields of arbitrary length. Hence an implementa-
tion of that feature, utilizing the available comparison
function was implemented to provide that feature.

Some of these additions, e.g. the question of how the check-
sum should be computed or if inline editing should be used,
require knowledge about the protocol which the compiler
does not have. To overcome this problem Shahbaz et al. [22]
introduced new annotations that allow the developer in these
situations to inform the compiler which action should be per-
formed.

Seminars FI / IITM WS 16/17,
Network Architectures and Services, May 2017

50 doi: 10.2313/NET-2017-05-1_07



Equipped with the modified code they wrote a compiler to
generate C code, that makes use of Open vSwitchs func-
tionality, from a P4 program. Compiling those two sources
together results in an Open vSwitch derivate with support
for an arbitrary protocol stack.

Removing the protocol dependent optimizations from Open
vSwitch causes in average a longer execution time per packet,
when implementing the same protocol stack as the original
version supported. Trying to be competitive with the orig-
inal Open vSwitch version Shahbaz et al. [22] implemented
optimizations to increase the throughput of PISCES:

• With the annotations to the P4 program the compiler
can now decide when to compute header checksums or
if the use of incremental checksum computation is ad-
vised. By delaying or using an incremental computa-
tion the compiler can potentially reduce the processing
time for the packet.

• When modifying header fields, there are two options.
Either the packet is modified inline before all rules are
applied, or after all rules are applied post-pipeline. If
the modification of the header fields involves changes
of the header size, then it might be beneficial to delay
the modification to avoid superfluous memory opera-
tions. With annotations to the P4 program a devel-
oper can influence when PISCES applies modifications
to packets.

• The PISCES parser makes use of the knowledge which
fields must be parsed to be able to make a forwarding
decision and thus is able to reduce parsing time.

• When modifying fields, Open vSwitch can make use of
the protocol dependence, i.e. it is known which fields
are supposed to remain unchanged and thus do not
need to be checked before applying an action. The P4
compiler does not have this knowledge, but can deduce
from the P4 program which header fields might have
changed and thus need to be checked. This reduction
of checks increases the processing speed.

• By analyzing the program the compiler might be able
to combine certain modification rules into one.

• Open vSwitch uses its domain specific knowledge to
divide its lookup into stages, each stage uses an addi-
tional layer of the ISO/OSI stack for the match. While
the ordering of layers is not inferable from the program,
annotations were introduced that allow to specify an
ordering.

When comparing PISCES to Open vSwitch in an extensive
benchmarking, Shahbaz et al. [22] come to the conclusion
that an implementation of the features of Open vSwitch in
P4 was about 40 times shorter (measured in lines of code)
than the original implementation with almost the same per-
formance. In their conclusion the authors note, that P4 fea-
tures that imply state on the target are not implemented,
e.g. counter, since this would require a larger modification
of Open vSwitchs caching model.

3.5 Proprietary Solutions
Even though P4 is a comparably new language, a couple
of companies exist that offer hardware which can be used
in combination with P4. The lack of accompanying papers
makes it difficult to compare these to the scientific work pre-
sented in the previous sections. Nevertheless, it is worth-
while to mention them here, since they as well provide a
possibility to use P4 on different targets.

3.5.1 Xilinx SDNet
The company Xilinx, Inc. provides SDNet [5], a develop-
ment environment which can be used to manage hardware
sold by them. To compile a P4 program for their hardware
they utilize the p4-hlir to parse the source code and make
use of the returned python object. A mapper built by them
then constructs Xilinx PX code from the result of the pre-
vious step, which finally is compiled to firmware by Xilinx
SDNet. Xilinx PX is a forwarding plane programming lan-
guage which, similar to P4 describes the packet processing
parsing, one match-action table and deparsing.

3.5.2 Netronome SDK
Netronome indicates that they implemented a compiler that
allows execution of programs written in P4 1.0 on Netronome
iNIC devices [23]. Extending this compiler to be P4 1.1
compatible is anticipated as effortless by Netronome, since
expected syntax changes do not influence the optimization
process performed on an intermediate representation of P4.

3.5.3 Barefoot Capilano
A third company providing a P4 compiler for their hard-
ware, called Barefoot Tofino, is Barefoot Networks, Inc. [2].
Barefoot Capilano creates an Integrated Desktop Environ-
ment that includes a P4 compiler to create firmware for their
hardware.

4. CONCLUSION
In this paper a survey on different methods to translate pro-
grams written in P4, a DSL to describe the behavior of pro-
grammable switches, was conducted. Each of the programs
was discussed regarding the translation process, the trans-
lation target as well as unique properties.

Most of the programs available are compilers, but an inter-
preter intended for development of P4 programs exists. The
focus regarding the translation targets are programmable
hardware switches with PISCES as notable exception that
compiles to a customized Open vSwitch. All implementa-
tions support P4 1.0 — the current released version of P4.
Apart from p4c which is intended to be the reference com-
piler for the next major version of P4.

It is interesting to see that many of the available tools use
the frontend provided by the P4 Language Consortium and
hence are able to reduce the effort associated with writing
the compiler and interpreter respectively. Providing said
frontend might reduces the effort required by developers to
support new P4 versions, since provided that the abstract
representation remains the same no changes to the backend
are required. The question how the different projects cope
with the change and how they develop over time might mo-
tivate another survey in the future.

Seminars FI / IITM WS 16/17,
Network Architectures and Services, May 2017

51 doi: 10.2313/NET-2017-05-1_07



5. REFERENCES
[1] Apache Software Foundation. Apache Thrift.

https://thrift.apache.org/, 2015. visited
2016–12–21.

[2] Barefoot Networks. The World’s Fastest & Most
Programmable Networks. Whitepaper, Barefoot
Networks, https:
//barefootnetworks.com/media/white_papers/

Barefoot-Worlds-Fastest-Most-Programmable-Networks.

pdf, 2016. visited 2016–12–21.

[3] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J.
Jackson, Andy Zhou, Jarno Rajahalme, Jesse Gross,
Alex Wang, Jonathan Stringer, Pravin Shelar, Keith
Amidon, and Martin Casado. The Design and
Implementation of Open vSwitch. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15),
Santa Clara, CA, 2015. USENIX Association.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-independent Packet
Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, 2014.

[5] G. Brebner. Programmable Target Architectures for
P4. 2nd P4 Workshop by Stanford/ONRC, 2015.
http://sched.co/4eqF. visited 2016–12–21.

[6] M. Budiu. Migration guide P4. Technical report,
Barefoot Networks, 2016.
https://github.com/p4lang/p4c/blob/master/

docs/migration-guide.pptx. visited 2016–12–21.

[7] Intel Corporation. Intel Data Plane Development Kit
(DPDK), 2016. http://dpdk.org/. visited
2016–12–21.

[8] S. Laki, D. Horpácsi, P. Vörös, R. Kitlei, D. Leskó,
and M. Tejfel. High-Speed Forwarding: A P4 Compiler
with a Hardware Abstraction Library for Intel DPDK.
http://p4.elte.hu/publications/p4-ws-2016.pdf,
2016. visited 2016–12–21.

[9] S. Laki, D. Horpácsi, P. Vörös, R. Kitlei, D. Leskó,
and M. Tejfel. High Speed Packet Forwarding
Compiled from Protocol Independent Data Plane
Specifications. In Proceedings of the 2016 Conference
on ACM SIGCOMM 2016 Conference, SIGCOMM
’16, pages 629–630, New York, NY, USA, 2016. ACM.

[10] S. Laki, D. Horpácsi, P. Vörös, R. Kitlei, D. Leskó,
and M. Tejfel. Retargetable compiler for the P4
language. https://github.com/P4ELTE/p4c, 2016.
visited 2016–12–21.

[11] Open Networking Foundation. OpenFlow Switch
Specification, Version 1.5.1, 2015.

[12] Open Networking Laboratory. Mininet: An Instant
Virtual Network on your Laptop (or other PC).
http://mininet.org/, 2015. visited 2016–12–21.

[13] P4 Language Consortium. Behavioral Model (bmv2).
https://github.com/p4lang/behavioral-model,
2014. visited 2016–12–21.

[14] P4 Language Consortium. p4c-behavioral.
https://github.com/p4lang/p4c-behavioral, 2015.
visited 2016–12–21.

[15] P4 Language Consortium. p4c-hlir.
https://github.com/p4lang/p4-hlir, 2015. visited
2016–12–21.

[16] P4 Language Consortium. Preprocessor for the P4
behavioral model.
https://github.com/p4lang/p4c-bm, 2015. visited
2016–12–21.

[17] P4 Language Consortium. The P4 Language
Specification, Version 1.1.0, 2016.

[18] P4 Language Consortium. The P4 Language
Specification, Version 16 (Draft 2016–12–16), 2016.

[19] P4 Language Consortium. p4c.
https://github.com/p4lang/p4c, 2016. visited
2016–12–21.

[20] P4FPGA Project. P4 Bluespec Compiler.
https://github.com/hanw/p4fpga, 2016. visited
2016–12–21.

[21] A. Roussel, A. Fabijanic, A. Brem, A. Jonsson,
A. Starks, A. Santogidis, A. Degtiarov, B. McCroskey,
B. Zentner, B. Mitchener, B. Bigras, C. Salzenberg,
D. Beck, D. Ochtman, D. Fang, D. Crawford,
D. Socolobsky, E. Chevalier, E. R. Berthing, E. Wies,
F. S. Mathieu, G. Roberts, G. D’Amore, G. Diethelm,
G. Gupta, H. Saito, H. Lieberman-Berg, I. Weber,
I. Pechorin, I. Vachkov, J. R. Dunaway, J. Foster,
J. Ammous, K. Schiess, K. Lein-Mathisen, L. Barbato,
M. Mendez, M. Ellzey, M. Sustrik, M. Howlett,
M. Drechsler, M. John, M. Koppanen, N. Desaulniers,
N. Hillegeer, N. Soffer, Örjan Persson, O. Timperi,
P. Colomiets, P. Kapyshin, R. Brunno, R. Sciuk,
R. Killea, R. G. Jakabosky, S. Avseyev, S. Kovalevich,
S. Nikulov, S. Velmurugan, S. Strandgaard, S. Mihai,
S. Atkins, S. McKay, S. Wallace, T. Besset, T. Peters,
V. Guerra, Y. Luo, and Z. Boszormenyi. nanomsg.
http://nanomsg.org/, 2016. visited 2016–12–21.

[22] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster,
N. McKeown, and J. Rexford. PISCES: A
Programmable, Protocol-Independent Software
Switch. In Proceedings of the 2016 Conference on
ACM SIGCOMM 2016 Conference, SIGCOMM ’16,
pages 525–538, New York, NY, USA, 2016. ACM.

[23] J. Tönsing. P4/PIF + C Programmable Intelligent
NICs: Requirements and Implementation Notes. 2nd
P4 Workshop by Stanford/ONRC, 2015.
http://sched.co/4epr. visited 2016–12–21.

[24] H. Wang, K. S. Lee, V. Shrivastav, and
H. Weatherspoon. P4FPGA: High-Level Synthesis for
Networking. 2016.

Seminars FI / IITM WS 16/17,
Network Architectures and Services, May 2017

52 doi: 10.2313/NET-2017-05-1_07


