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ABSTRACT
In this paper, we analyze database architectures in terms
of their applicability as a data storage for distributed data
in smart spaces. As a concrete example, the paper takes
the Distributed Smart Space Orchestration System (DS2OS)
which acts as a management system for smart spaces and
implements a peer-to-peer network. We develop key require-
ments for a database solution based on the data characteris-
tics of DS2OS. These requirements allow us to analyze rep-
resentatives of database architectures regarding their appli-
cability. We conclude that the simple data models provided
by NoSQL databases are suitable for modeling the desired
data structure. Based on their performance and features,
we propose PostgreSQL, Redis and InfluxDB as suitable so-
lutions for DS2OS.
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1. INTRODUCTION
Smart spaces are real-world spaces with embedded devices
that capture data about their environment and control as-
pects of it [14]. The data that is shared in smart spaces
originates from distributed sources connected to each other.
This offers challenges regarding the storage of data handled
by a common middleware. The Distributed Smart Space
Orchestration System (DS2OS) is such a middleware and
is used as a representative to asses different paradigms for
database management regarding their suitability as a data
storage in smart spaces. This paper starts by introducing
special characteristics of data in DS2OS. Further, it gives
an overview over database architectures. We then develop
requirements to be met by a suitable database solution and
select representatives of each architecture type for evalua-
tion.

2. DATA STRUCTURES IN THE DS2OS
The Distributed Smart Space Orchestration System (DS2OS)
is a management system for smart devices. It was started
in the Ph.D. thesis of Marc-Oliver Pahl [14] and is actively
developed at the Chair of Network Architectures and Ser-
vices at the Technical University of Munich1. The system
contains a middleware for the uniform abstraction of smart
spaces. It targets the heterogenic field of today’s smart de-
vices and makes them manageable by a central software.[16]

1www.ds2os.org

While this paper focuses specifically on the data structure
used in DS2OS, we start by introducing key architecture
components which are necessary for understanding the data
structure. The central element and middleware of DS2OS is
the Virtual State Layer (VSL), a peer-to-peer system built
of so called Knowledge Agents (KA) as its peers [16]. The
VSL is self-organizing in a sense that peers automatically
locate and connect to each other. In addition to that, the
VSL handles synchronization of data between agents. In
a real-world scenario, these interconnected agents run on
computing devices in different physical locations of a smart
space. They provide an interface between a diverse set of
services and the VSL. Services can, for example, manage a
smart device and encapsulate its complexity, collect sensor
data or output information to the user.

One of the major aspects of a system like DS2OS is the de-
sign of a suitable data model for all possible services and
devices. This is especially important to allow for previ-
ously unsupported devices to be introduced into the system.
Therefore, domain-specific data has to be added dynami-
cally.[16] To do so, DS2OS provides a directory of context
models that can be extended by developers. A context model
is a data structure that holds properties of a service and acts
as an interface. A standard context model for services which
are, for example operating a lamp, is desired to be adopted
by many services for lamps to decouple service implementa-
tion from the specific devices. Context models are currently
stored in an XML-format.[15]

The context model of a service is instantiated when a ser-
vice initially connects to a KA. The context models consist
of “hierarchically structured typed key-value pairs (...) with
additional management metadata” [15] and can be thought
of as a tree data structure that allows to address each at-
tribute, similar to files in a filesystem. Figure 1 visualizes
the interconnected agents, their services, the data as well as
sample attributes for a lamp as service S1.

All information depicted in Figure 1 is known to every KA
in the VSL as meta data. However, only the KA that
is directly connected to a service stores the actual data.
Other agents have to actively query the respective KA for
this data by referring to its path in the hierarchic structure
(e.g. /KA1/S1/switchedOn/) which forms a unique identi-
fier. They can also subscribe to an address and be notified
of changes. These notifications are sent by the KA in charge
of storing the data. Storing the data as well as the structure
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Figure 1: Visualization of the DS2OS data structure
known to each KA.

is currently implemented by using the relational database
HSQLDB with a database schema of three tables:

structure : {[ address, type, readers, writers, restriction,
cachedParameters ]}

version : {[ address, timestamp, version ]}
data : {[ address, timestamp, value ]}

The address inside the tree structure references specific en-
tries in all three tables. All addresses are associated with a
semantic data type in the context of the VSL that is inde-
pendent of the type in the database.

The structure table is responsible for storing the complete
structure depicted in Figure 1 and additional metadata like
restrictions and permissions. The version table receives
new entries for every change made to a value, as the data ta-
ble is not updated in case of a value being changed. Instead,
a new entry with a timestamp is added, in addition to the
new version in the other table. The version update via insert
does also happen for all prefixes of the changed address up
to the service level. For this reason, separated tables help to
insert versions for all parent nodes without duplicating their
values. By inserting new versions, the database for DS2OS
has to handle mainly insert operations.

3. DATABASE ARCHITECTURES
Due to new database architectures, the field of database
management systems (DBMS) has been diversified over re-
cent years. While relational databases are prevalent in the
majority of all use cases, unstructured data calls for new ap-
proaches [11]. Not all DBMS can be assigned solely to a sin-
gle architecture type of databases, as many provide features
that are characteristics of other groups. This section pro-
vides a brief overview over current database architectures.

3.1 Relational database
Relational databases are currently the most widespread type
of databases [6], with well-known DBMS like PostgreSQL
and the briefly mentioned HSQLDB used in DS2OS.

Their idea was proposed as early as 1970. With this kind
of databases, data is stored in tables which model relations

in a mathematical sense. Each table models an n-ary re-
lation, by specifying n columns with each storing a certain
type of information for all entries. The column definition
provides the scheme of the table. The data itself is stored
as row entries in form of n-tuples.[3] This design approach
makes relational databases adaptable to many application
domains. They allow to define certain columns as unique
key values and to create references between relations. If
utilized correctly, this reduces redundancy of data.

Relational databases provide powerful querying capabilities
based on relational algebra. Relational algebra defines a set
of operations working on relations. Every output generated
by a query combining relations with their operations is a
new relation in itself. This enables complex nested queries.
It is within the responsibility of the user or an optimizer
integrated into a DBMS to make them as efficient as possi-
ble. The features of relational algebra are implemented by
SQL which acts as a de facto standard query language for
modern relational databases.[5]

Relational databases usually do well in terms of concurrency
and reaction to failures as they provide ACID transactions.
By being ACID compliant, transactions are supposed to ful-
fill the following principles [10]:

• Atomictiy: transaction are considered as a single unit

• Consistency: results are consistent database states

• Isolation: no side-effects among parallel transactions

• Durability: their results are persistent

This is necessary if a series of critical changes is made that
can only be allowed to complete fully or have no effect at
all. While transactions are no inherent attribute of rela-
tional databases, it usually distinguishes them from newer
approaches. Whether or not transactions are needed is sub-
ject to the application domain.

3.2 NoSQL
While relational databases are adaptable to many scenarios,
not all data models fit well with a relational schema. Re-
lational databases are inflexible when the schema has to be
changed due to redesigns in the underlying application. In
addition to that, their sophisticated features, like ensuring
data consistency, add overhead which is sometimes unnec-
essary and critical in contexts of massive amounts of data
being handled. This has become an issue for online services
over the recent years, which are in need of database systems
that can be distributed.[7, 9]

NoSQL databases solve these problems with different ap-
proaches to data organization and an increased focus on
distributability. The term NoSQL does not describe a spe-
cific group of databases, instead, it is a collective term for
systems that break the classic relational approach.[8] With-
out the relational basis, NoSQL databases do not provide
a common query language. In order to improve the scal-
ability, many NoSQL databases abandoned ACID transac-
tions. Subsequently, we discuss the most important types of
NoSQL databases.
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3.2.1 Key-value stores
This kind of NoSQL database models all data as simple key-
value pairs. Values are stored as plain byte-arrays. usually
without a data type specified on the database side. While
this is limiting in terms of data structuring, the storage is
extremely adaptable, as changes to the application do not
require the database to be adapted. It also does not require
null values like they appear in relational models. Complex
queries are not possible due to the lack of interpreted data,
however, because of the flat and simple structure, this is not
needed. Instead, simple get and set commands in conjunc-
tion with unique keys are the only way to read and write
data to the store. Many implementations, such as Redis [6],
work as in-memory databases with optional mechanisms for
saving to a persistent disk. Being in-memory allows them
to have a much faster but, in terms of size, limited storage.
Redis in particular does also support data types.[8, 9]

3.2.2 Document-oriented database
Document-oriented databases are related to key-value stores,
but add a means of structuring to them by allowing to group
key-value pairs into documents. The keys then only have
to remain unique inside the scope of the document. Each
document receives a unique identifier as well. Queries to
fetch data are improved beyond simple get-operations by
also allowing to query documents based on their properties
inside. The values associated with the keys are not opaque
byte arrays like for key-value stores. Documents are allowed
to be nested further and support basic datatypes like lists,
strings and numeric values. The features are similar to the
ones being expressed by JSON syntax which leads to many
document-oriented DBMS using JSON or at least a JSON-
like data format. There is no restriction on the schema of
documents which allows adding and removing entries to and
from, possibly heterogenous, documents. Utilizing the XML
document standard is also possible and allows queries with
XQuery, a query language that aims to fulfill the same role
as SQL in the relational world.[9]

3.2.3 Column-oriented database
This type of databases is similar to key-value stores in a
sense that key-value pairs are stored without any interpre-
tation of the values inside the database. Like for key-value
stores, additional logic regarding relationships and types of
the values is shifted to the application. The main difference
of this database type to key-value stores is that it deviates
from being row oriented in its physical organization. In-
stead, all values of each column are grouped together. This
is beneficial in cases where not all values of a single row
are of interest. Due to grouped columns, their values are
also stored very close in memory. This optimizes the perfor-
mance in cases where all rows and only few columns of each
one are needed, as there will be less page faults and therefore
less slow hard disk access.[9, 8] The concept was initially in-
troduced by Google’s Bigtable and is not limited to NoSQL,
as relational data can also be organized column-oriented.

3.2.4 Graph-based
Graph-based databases are optimized for data which em-
phasizes the relationship between data objects. Their pri-
mary elements for data modeling are nodes and edges which
may be associated with key-value pairs to store additional

properties. Querying relies on different graph traversal al-
gorithms like breadth-first search to find single matching
nodes or depth-first search for shortest paths. While graph
structures can be represented in a relational database, graph
traversal cannot be expressed in SQL which leads to decreas-
ing performance for larger data sets [8]. Examples are social
networks (e.g. Twitter’s FlockDB) or storing location data.

3.2.5 Time series database
This type of database focuses on handling time series data.
This covers all data with one or multiple values being stored
at continuous time intervals while one is still being inter-
ested in past values for processing them. Typical scenarios
in which time series appear are statistical data, logging or
sensor data. A time series is identified by a name, includes
a timestamp and values. This could basically be modeled
by a relational database if it is feasible to create a new table
for each time series. By putting more than one series into
a table, one would have to define the superset of all values
as its scheme and deal with many null values or make the
values opaque to the database which hurts querying. Time
series databases are specifically built for handling this data
efficiently and are especially useful if the amount of data is
very large.[12]

3.2.6 Object-oriented databases
According to the db-engines.com ranking [6], object-oriented
databases are currently among the least used databases.
Their distinct advantage over relational databases is that
they are capable of modeling concepts like inheritance and
polymorphism. This is especially useful if the application
using the database utilizes object orientation as well. There-
fore, object-relational mapping (ORM), which is often used
to translate relation data into objects for usage in the ap-
plication, is not needed, thus, removing an additional layer
of complexity when accessing the database.

However, there are disadvantages which account for the lim-
ited acceptance of object-oriented DBMS. Due to their di-
verse structure depending completely on the domain model
they are used for, they cannot rely on relational algebra and
cannot create new objects by joining existing ones in queries.
In addition to that, they lack a standard query language, like
SQL for relational databases.[2] This kept object-oriented
databases from getting increasing market shares. Instead,
using relational databases and ORM is used by most object-
oriented applications with databases.

3.3 NewSQL
The term NewSQL describes new database architectures,
deviating from the way relational DBMS are implemented.
In contrast to NoSQL databases, they aim to maintain char-
acteristics of relational databases, like SQL as a query lan-
guage, support for the relational model and ACID trans-
actions. At the same time, they provide additional per-
formance, scalability and distributability. This is done by
leveraging modern hardware and deploying improved algo-
rithms which haven’t been available yet, when older existing
DBMS had been designed. NewSQL databases rewrite the
core of the database system from scratch to remove legacy
code that hinders distributability and performance due to
its assumptions being outdated.[8] By rewriting the very ba-
sis of a DBMS, they utilize modern multi-core architecture
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and support clustering in a native way compared to older
RDBMS which are missing these features or had them added
in a much later stage of their product lifecycle.

The main concepts of NewSQL have been introduced by
Stonebraker et. al. [19] in a paper that also introduced the
implementation H-Store that provides ACID transactions
and excels at online transaction processing (OLTP). The pa-
per also points out that a single architecture is not sufficient
in all use cases and that multiple but very optimized DBMS
for each field of application are preferable.

Operating in-memory is often mentioned as a key property of
NewSQL, making relational databases like SAP Hana which
supports this feature also a NewSQL database to some ex-
tent. Other examples are Google Spanner and VoltDB

4. CRITERIA FOR COMPARISON
The differences among the wide variety of databases intro-
duced in Section 3 show that the most suitable choice for a
database depends on the needs of the application at hand.
In order to determine a fitting type or even a concrete DBMS
software for usage within DS2OS, we have to define the cri-
teria that are important for our use case. In the process, we
identify criteria that are quantifiable and can be determined
by measurements, like for example performance values. In
addition to the measurable criteria, there are requirements
which must be fulfilled and other properties that are consid-
ered to be beneficial but may not be fulfilled. We distinguish
these as hard and soft requirements.

General criteria for evaluation without a specific use case
are presented in related work [9, 20] and cover attributes
like scalability, query support, broad data model support
and distributability. These are only partly applicable in our
case, as they are very general or not of importance in our
special case. Nevertheless, ideas for evaluation criteria can
be drawn from related work.

4.1 Hard requirements
H1: The database must be able to store the data presented
in Section 2. It is not necessary to model the same rela-
tional schema. However, the database must support ba-
sic key-value pairs associated with a timestamp. The addi-
tional versioning of data is currently modeled in a separate
database table, however, it would be beneficial to be han-
dled natively (see Section 4.2). The same goes for access
control to certain service data.

H2: As DS2OS is currently written in Java, the DBMS of
choice has to provide an API accessible from this program-
ming language. This does not limit the field to databases
that directly provide Java bindings, as an HTTP API or a
connection via ODBC is also perfectly usable from Java.

H3: The current implementation of DS2OS in combination
with HSQLDB as a database does use transactions. This is
important when data is initially inserted or deleted, as this
affects not only the data entry itself, but also the version
stored in a separate table. Unless the proposed DBMS of
choice eliminates the separation between data, version and
structure completely, further support for ACID transactions

is required. However, a completely different data handling
could in fact lift this requirement.

4.2 Soft requirements
Many of the subsequent properties are either currently miss-
ing or are handled inside the application, because the current
database does not offer support on the particular issue. It is
preferable to have native support for these features instead
of an implementation in Java. However, due to necessary
code changes to the VSL, each of the subsequent require-
ments has to be put into perspective regarding how invasive
it is in regard changes necessary to the DS2OS existing code
base. With both, benefit and code changes considered, a
score (3or 33) indicating its importance is given.

S1: Versioning is currently handled by the application layer
of DS2OS. The relational database schema is designed to
allow storing versioning information for each value. A solu-
tion like this is feasible for a future choice of database, but
a native solution directly integrated within the database is
preferred. We attribute such DBMS additional points dur-
ing the assessment. As the current implementation encapsu-
lates the handling of versions completely within the database
wrapper, there are no further changes to the DS2OS coming
with this feature. Bonus: 33

S2: As the relational HSQLDB does not support being dis-
tributed directly, the distribution of data is handled on the
application layer by the KA in charge of the data. There-
fore, the current implementation of DS2OS provides appli-
cation layer code for notifying peers of changes and ensuring
that only structural data is shared. Many NoSQL databases
provide native support for distribution over multiple nodes
which removes complexity from the application layer. How-
ever, as this is currently directly implemented in the VSL,
the refactoring of the existing code would be rather complex.
Another downside to take into consideration, is that distri-
bution on a database level imposes the usage of the same
database for all agents in the network. Mixing databases
among agents is currently possible due to the handling on a
higher level. Hecht and Jablonski separate distributability
into the support for partitioning data among multiple nodes
and the replication of data [9]. In our scenario, replication
is needed only for structural data. Partitioning has to be
controlled to ensure that values are confined to a specific
agent. Bonus: 3

S3: Access control is currently available and implemented
by storing which agents have read and write access to an
address. The application layer processes data queries from
remote Knowledge Agents and uses the stored information
to grant or deny access. A native support would eliminate
complexity from the agents and simplify the data model.
The desired mechanism is that a KA can query data under
the permissions of a peer. This is a more complex problem
than the one addressed by standard role-based permissions
of most DBMS. Native support on the database side should
also allow querying whether or not permission is given with-
out fetching the actual data. The amount of changes to the
given code basis are considered as being in between those of
the last two requirements, with smaller changes outside the
immediate database wrapper. Bonus: 3
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S4: Besides access control to sensor data through its man-
aging KA, there is currently little additional security, like
encryption of the data, provided. Confidentiality of the data
at rest or even in memory is desirable as the possible dam-
age coming from malicious changes to sensor data in smart
spaces can result in actual physical damage. Encryption for
data in transit is already provided by DS2OS. Bonus: 33

S5: DS2OS allows agents to subscribe to data managed by
another peer to be notified of changes. A support for such
a messaging system directly inside the database is benefi-
cial as it would reduce computational cost for the KA when
processing changes. However, changes to the code outside
of the database wrapper are necessary. Bonus: 3

4.3 Measurable criteria
The subsequent criteria are measurable metrics regarding
the performance of databases.

C1: The insert performance of the DBMS is important, as
DS2OS uses mostly insert requests. Because of versioning,
new entries are written for changing values. In nested data
structures the number of inserts for a changing value is large
as all parents up to the service node get a new version.

C2: One of the aspects a different database can improve,
is the read performance. This is important due to possibly
many services requesting data in a productive smart envi-
ronment. Because of the tree-like structure being stored in
relational database tables, querying a node and all its child
elements results in many different rows to be fetched. The
current database has to rely purely on string comparison of
addresses to filter for the correct entries to return.

C3: Deleting is important to prevent the database from
growing to large. Old versions of data are deleted if the
total number of entries exceeds a certain threshold. This
means that once this threshold is surpassed for an entry, ev-
ery insert does also include the removal of old data. There-
fore both insert and delete commands are highly important
for the new database, while the performance for updates is
negligible.

5. ASSESSMENT OF DBMS
Due to the large amount of existing DBMS, we pick repre-
sentatives for each of the categories introduced in Section 3.
Afterwards, we conduct a preliminary based on hard require-
ments H1–H3 to narrow down the representatives before
comparing them in regard of the soft requirements S1–S5
and the quantifiable criteria C1–C3.

5.1 Selection of DBMS
Table 1 lists representative DBMS for each database type.
The DBMS PostgreSQL, Redis, MongoDB, Cassandra and
Neo4j are picked based on db-engines.com’s DBMS ranking
of popular DBMS [6]. This is reasonable based on the as-
sumption that popular databases are under active and con-
tinuing development as well as field-tested and optimized
to a degree where using them in production can be recom-
mended. In addition to that, all selected databases are open
source to fit into DS2OS which aims to act as an“enabler for
a software maker culture” [16]. Therefore, it is not desired
to introduce a commercial database solution.

Table 1: Representatives of each database type for
further evaluation.

Database type Representative DBMS
Relational HSQLDB, PostgreSQL, VoltDB
Key-value stores Redis
Document-oriented MongoDB, Elasticsearch
Column-oriented Cassandra
Graph-based Neo4j
Time series database InfluxDB
Object-oriented ZeroDB

With HSQLDB, we include the current database of DS2OS
for comparison. VoltDB is included as a in-memory NewSQL
database. Note that NewSQL is not a distinct category as
its representatives can implement any architecture. Elas-
ticsearch is special as it is technically a search engine but
can function as a document-oriented database due to stor-
ing schema-free JSON. It emphasizes on distributability by
offering features like automatic clustering. The relatively
unknown ZeroDB is included due to its unique capabilities
in terms of encryption. InfluxDB is the most prominent
time series database [6] which works in clusters of many in-
stances. Querying can be done in a SQL-like query language
that returns JSON data, with very sophisticated capabilities
regarding time based queries.

5.2 Rating based on hard requirements
With the total of 10 DBMS picked, we can assess their fea-
tures in regard to the hard requirements H1–H3. If one
or more of these requirements are not met, the respective
DBMS is eliminated from further evaluation.

Table 2: Compliance of DBMS with our hard re-
quirements (see Section 4.1).

DBMS H1 H2 H3
HSQLDB 3 3 3

PostgreSQL 3 3 3

VoltDB 3 3 3

Redis 3 3 3

MongoDB 3 3 (7)
Elasticsearch 3 3 (7)
Cassandra 3 3 7

Neo4j 3 3 3

InfluxDB 3 3 (7)
ZeroDB 3 3 3

H1: Table 2 shows that all DBMS are capable of han-
dling the relatively simple data structure of DS2OS. Even
the time-series DBMS InfluxDB is applicable in that regard
as it allows to store strings in contrast to other time-series
databases like RDRTool. Time-series databases, alongside
graph-based databases, are the only ones where special re-
strictions of a concrete DBMS could hinder the modeling of
DS2OS’s data.

H2: No specific type of database is likely to have issues
with being coupled to a Java application. The database
systems listed provide either a Java API or allow access over
the JDBC (Java Database Connectivity) interface. ZeroDB
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is a small exception, as it is based on the object-oriented
DBMS ZODB which can only be used with Python. ZeroDB
mitigates this issue by providing an API server that forwards
queries to the database on behalf of the client.

H3: The requirement for ACID transactions can be lifted if
the DBMS allows for a different approach without the need
for transactions. This is promising in the case of MongoDB,
Elasticsearch and InfluxDB. The column-oriented Cassan-
dra is still in a sense relational and would have to model
the DS2OS data like it is done currently (see Section 2).
Therefore we eliminate Cassandra from further evaluation.

5.3 Rating based on soft requirements
The remaining databases are analyzed regarding the soft
requirements S1–S5. Table 3 summarizes this evaluation.
The bonus values for each soft requirement are given par-
tially based on how elaborate the feature provided by the
DBMS is on the specific regard. Unless stated otherwise, the
information on available features is taken from the product’s
documentation.

Table 3: Compliance of DBMS with our soft require-
ments (see Section 4.2).

DBMS S1 S2 S3 S4 S5 Σ
HSQLDB 3 1
PostgreSQL 3 3 3 3
VoltDB 3 1
Redis 3 3 2
MongoDB 3 3 3 3
Elasticsearch 3 3 3 3
Neo4j 3 1
InfluxDB 33 2
ZeroDB 33 2

The narrow field in terms of score and the highest value of
3/7 indicates that there is no ideal solution that performs
exceptionally well.

S1: The first requirement revolves around versioning of
data. The time series database InfluxDB excels naturally
as versioning is a key concept of this database type. Elastic-
search is the only other DBMS that provides dedicated ver-
sioning features by an internal integer that can be atomically
incremented [13]. For all other database solutions, version-
ing like it is currently done with HSQLDB via a database
table, is the only option.

S2: Distributability, in terms of replication and partition-
ing, is natively supported by three candidates. Redis can
partition its key space. Each of the nodes in the resulting
cluster holds a portion of all keys. Queries for a certain key
can be redirected to the node storing the correct portion.
MongoDB provides a similar mechanism with sharded clus-
ters. This is also the way Elasticsearch handles distribution
of data. Neo4j does also allow to create clusters, but only
in its enterprise version. Based on requirement S2, it is nec-
essary to enforce that certain values are only stored on a
particular host. All three candidates can solve this by us-
ing tags. For MongoDB this is called Tag Aware Sharding.
Elasticsearch supports it as Shard Allocation Filtering.

S3: A permission system is beneficial for DS2OS if it allows
to take the role of another KA when querying data. Both
PostgreSQL and Elasticsearch provide features to query as
a certain database user. The complete permissions of a user
can also be queried separately. Neo4j models permissions
with special edges that can be taken into consideration even
if querying as a different user.

S4: As a database that focuses on security, ZeroDB pro-
vides the most advanced encryption features. It is the only
assessed DBMS that does not even hold decrypted data in
its memory. Other DBMS like HSQLDB, PostgreSQL and
MongoDB provide encryption features for data at rest, but
hold plain data in memory.

S5: A native subscription mechanism is provided by four
of the DBMS. PostgreSQL, Redis and MongoDB all deploy
a mechanism where the database actively published noti-
fications to all client applications on inserts, updates and
the removal of data. Access to this feature is possible from
Java clients in all cases. VoltDB does not have a publish-
subscribe mechanism, but its export functionality can be
used to send live updates to an external application [21].

5.4 Evaluation of measurable criteria
The measurable performance criteria C1–C3 focus on write,
read and delete operations. Due to the consistent versioning,
update operations are hardly used in DS2OS. To narrow
down the field of databases for performance evaluation, we
only consider candidates that earned at least 2 points in the
evaluation of Section 5.3 and the currently used HSQLDB.
The remaining databases are HSQLDB, PostgreSQL, Redis,
MongoDB, Elasticsearch, InfluxDB and ZeroDB.

As existing work on the comparison of databases is sparse,
we use a combination of the existing measurements and our
own experiments. This covers the candidates in a way their
performance can be put into relation. This way, not all
databases are measured together. Instead, we compare the
performance transitively to make a reasonable statement
about the databases.

An existing evaluation based on the Yahoo! Cloud Serving
Benchmark (YCSB) covers MongoDB, Redis and Elastic-
search regarding their performance for insert (C1) and read
(C2) commands [1]. Their execution time for different sizes
of data is visualized in Figure 2 and Figure 3 respectively.

The comparison shows that Elasticsearch lacks in terms of
insert performance compared to the other DBMS, but excels
when reading large data. We also conclude that Redis has
the best overall performance for reading and writing. Due
to limited hardware used for this benchmark, the absolute
values are not comparable to subsequent tests.

To create additional comparison options beside the existing
work, we conduct our own measurements including HSQLDB,
PostgreSQL and Redis. This does help to put MongoDB and
Elasticsearch in perspective, as they have been compared to
Redis. All measurements are conducted on a desktop sys-
tem (IntelR© CoreTM i5-2520M CPU @ 2.50GHz, 8 GB RAM,
Ubuntu 16.04) by using either a Python client with the re-
spective DBMS’ API, or, in case of HSQLDB, a Java appli-
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Figure 2: Insert performance of MongoDB, Redis
and Elasticsearch (adapted from [1])
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Figure 3: Read performance of MongoDB, Redis and
Elasticsearch (adapted from [1])

cation that works like the data access wrapper in DS2OS.
The values shown in the subsequent figures are the average
out of 5 repetitions for each data set size.

The insertion speed (see Figure 4) is measured for different
sizes of data. These inserts show that HSQLDB gets slower
with larger data sets. The amount of data already in the
database did not affect this for any DBMS in our test. As
seen in Figure 2, Redis performs very well for large data.

Both, reading (see Figure 5) and deleting data (see Figure 6),
was measured for different record sizes out of a constant
data set of 100000 elements. For HSQLDB, we observed a
high fluctuation in terms of the performance. Therefore, the
number of repetitions for each selection was increased to 10.
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Figure 4: Insert performance of HSQLDB, Post-
greSQL and Redis
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Figure 5: Read performance of HSQLDB, Post-
greSQL and Redis
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Figure 6: Delete performance of HSQLDB, Post-
greSQL and Redis

We observe that Redis behaves the most predictable and
is linear in regard to the time it takes for increasing data.
Besides the high fluctuation in HSQLDB’s performance, we
observe that Redis does well for small records up to 5000,
as the two RDBMS seem to have an initial overhead. Re-
dis is preferable for reading smaller record numbers while
PostgreSQL is a better overall choice. These differences in
behavior based on the size of the data does not allow to put
all DBMS into an order for each criteria C1–C3.

The newer and lesser known InfluxDB is compared to Mon-
goDB and Elasticsearch by two white papers. The compari-
son with MongoDB is based on a data set depicting monitor-
ing data of 100000 different values. Every value is updated
every 10 s for 6 h which results in a total of 216 million val-
ues. This data is very suitable for time series databases
which leads to InfluxDB outperforming MongoDB by a fac-
tor of 27 when inserting. It is also observed that InfluxDB
needs considerably less disk storage for the data. In terms
of reading data, both DBMS performed equally with Mon-
goDB getting ahead if concurrency is introduced. [18]

A similar benchmark is conducted for Elasticsearch. The
data set has 10000 different values updating every 10 s over
one day which results in a total of 86.4 million values. For
this data, InfluxDB is 8 times faster than Elasticsearch when
inserting it. InfluxDB is also faster on querying by a factor
of 4 which increases for larger data sets. [17] It is important
to note that both papers regarding InfluxDB have been re-
leased by the developers themselves and are likely to have
chosen data sets which are beneficial to InfluxDB’s architec-
ture.
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For ZeroDB, there is no quantifiable information on its per-
formance in regard to other databases. However, due to its
architecture, it shifts encryption to the client as the database
does only handle encrypted data. This way, a single query
needs multiple messages, as clients receive an encrypted tree
structure, decrypt it and resend a more specific query to get
a certain node of the tree. This is repeated until the final
value is retrieved. In combination with the Python wrapper
for data access from a Java application (see Section 5.2),
the DBMS is by design slower than ZODB on which it is
based on. ZODB is able to compete with PostgreSQL for
very large data stores [4].

6. CONCLUSION
We conclude that the area of NoSQL covers a wide variety
of interesting database architectures. In cases like DS2OS
where the data is a large set of equally structured data with
very little relations, lightweight storing mechanisms like the
ones introduced by key-value stores (see Section 3.2.1) or
document-oriented databases (see Section 3.2.2) can be used.
In our scenario, the data structure can be handled by all
categories of databases. By picking popular representatives
for each category we are able to narrow down the field and
pick suitable candidates for introduction into DS2OS.

Based on their performance and the features they imple-
ment in regard to the soft requirements (see Section 4.2),
we suggest three candidates worth of further consideration.

PostgreSQL as a more sophisticated and slightly faster
alternative to the currently deployed HSQLDB. As a
RDBMS, it can be introduced with very little changes
to the current system.

Redis as a simple key-value store that is very fast on large
insert blocks and scalable due to its simple schema-
less data storage that inherently supports distributed
systems. It is proposed instead of the slightly faster
HSQLDB as it is more compliant to the soft require-
ments

InfluxDB as a highly performant solution that implements
the versioning as a central concept and looks promis-
ing for future improvements as it has barely reached
version 1.0 as of now.
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