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ABSTRACT
The topic of this paper is to compare multiple IP address
longest prefix matching lookup schemes, especially algorithms
implemented in software. Goals which are key to construct-
ing an efficient lookup algorithm are explained. Different
data structures and their respective approaches to size com-
pression get illustrated. These approaches include a hard-
ware based algorithm called “DIR-24-8” for better reference,
and multiple software based algorithms. Different trie struc-
tures are reviewed in detail. Tests about lookup acceleration
were conducted by the author and are presented and dis-
cussed in this paper.

Keywords
routing, lookup, IP, trie, dxr, poptrie

1. INTRODUCTION
“The datagrams are routed from one internet module to an-
other through individual networks based on the interpreta-
tion of an internet address.” [1] This quote from the IPv4
protocol specification dating back to 1981 still is the core of
our modern Internet as we know, and use, it today.

Nowadays, routers within Internet Exchange Points (IXPs)
are announcing routes to specific subnets, to each other, thus
compiling comprehensive databases of next hops to those
subnets. Once the packets enter an autonomous system,
other routing protocols take over and guide the datagram
to its destination. Oftentimes, there is talk about these
algorithms used to exchange routes, like BGP and OSPF,
whereas the methods of actually using this information is
regularly hidden in a black box fashion. Either specialized
hardware from well-known vendors such as Cisco, Juniper or
Huawei is found inside the datacenters, or just plain general
purpose x86 hardware using an open source Operating Sys-
tem (OS). The almost definitely most used OSs are Linux
and FreeBSD. Both are highly reliable, well tested and de-
ployed in a multitude of places around the world.

This paper aims to give an overview of popular and fast data
structures which are either implemented in the aforemen-
tioned OSs, or are available in specialized libraries. These li-
braries are particularly interesting in combination with mod-
ern high performance packet frameworks such as netmap [2]
or Intel DPDK [3]. As a matter of fact, Intel DPDK does
include an implementation of a modified version of the DIR-
24-8 algorithm which is explained later [4]. The pfSense
router distribution is currently planning to deploy netmap

in combination with a path compressed trie, which also is
explained later [5].

2. RELATED WORK
Various authors published research regarding routing lookup
data structures. Some dating back into the last millennium
others were just recently presented. Since this paper gives
details about the various algorithms, previous research is not
presented in depth at this point.

Gupta et al. [6] developed a hardware optimized routing
algorithm called DIR-24-8. This algorithm is not in use
today in its original form, but a basic understanding is useful
nevertheless.

Nilsson and Tikkanen [7] published a research paper about
dynamic tries and compression techniques which might be
utilized. Their work deeply influenced the lookup scheme of
the Linux kernel [8].

The trie which is used for lookups within the FreeBSD kernel
is described in a book written by McKusick and Neville-
Neil [9].

More recently, specialized library implementations were de-
veloped and presented. The DXR algorithm is described by
Zec el al. [10], which borrows some aspects from the DIR-
24-8 algorithm, but performs better in software.

Poptrie is the fastest software based routing lookup algo-
rithm presented in this paper. It is the only data structure
utilizing specific instructions available in modern CPUs. It
was published by Asai and Ohara [11] in 2015.

3. OPTIMIZATION GOALS
In order to build a fast routing lookup data structure, mul-
tiple factors are important. All of them are direct con-
sequences of the hardware architecture, most notably the
CPU, in use.

If the data structure is too big to fit inside the CPU cache,
main memory accesses are needed. Such accesses introduce
a high latency, during which no work inside the processing
thread can be performed. Therefore the core might idle and
thus waste resources.

Another important element is the number of memory ac-
cesses which need to be performed within one lookup. Even
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if the data structure is small enough to fit into the L3 cache,
getting the data from there might still be expensive. If data
needs to be fetched from the L3 cache, it is better to have
as few of such accesses as possible. Modern cache lines store
64 bytes each, therefore all accesses transfer 64 bytes in one
step. It is more efficient to store more data in the same
cache line and thus utilize the size of a cache line, than to
distributing it across multiple cache lines.

Furthermore, specifics about the targeted CPU architecture
can also be of use, in order to build efficient data structures.
This includes single instructions as can be observed with the
poptrie algorithm. [11]

4. HARDWARE LOOKUP
The vast amount of traffic flowing through datacenters and
IXPs are handled by hardware based routers. Those routers
contain application-specific integrated circuits (ASICs) which
are built to allow fast routing lookups. When reviewing
routing algorithms, it is important to keep the differences of
the underlying hardware in mind, in order to choose which
method fits the given platform best.

4.1 DIR-24-8
The DIR-24-8 is a hardware based routing lookup algorithm,
which was first introduced by Gupta et al. in 1998 [6].

The basic design uses three distinct tables, which are called
“TBL24”, “TBLlong” and “Next Hop”. Routes with a prefix
length of equal or less than 24 bits are completely stored
in the TBL24, prefixes longer than that need to use the
TBLlong. In the next hop table the IP addresses of all the
next hops, which might be used by any route are stored. An
IP address which is to be routed using this scheme is split
into two parts, the first 24 bit and the last 8 bit. The upper
part is used to index the TBL24 which contains 224 entries,
whereby each entry can have two different kinds of content.
Depending on the routes, there might, or might not, be a
route having a prefix length of more than 24 bit, sharing
the first 24 bit with the IP address for which the lookup is
performed. In this case the TBLlong is used. [6]

If no such route exists, the entry’s most significant bit is set
to 0. The 15 least significant bits are then used to index the
next hop table. In this case, the lookup is finished. [6]

Whenever there is a route with a prefix length, longer than
24 bit, the table TBLlong is needed. This is indicated by a 1
in the most significant position of the corresponding TBL24
entry, which then also contains an offset into the TBLlong.
Each of the 256 possible options of the last 8 bit of the
IP address are represented by their corresponding next hop
inside of the TBLlong. As soon as the next hop index is
extracted from the TBLlong and used to index the next hop
table, the lookup is finished. [6]

The DIR-24-8 algorithm is suitable for hardware implemen-
tations for multiple reasons. Oftentimes the next hop is
found using a /24 entry of the routing table. All of these
entries are stored in the TBL24, which furthermore has a
fixed size. Therefore this table can be realized in hardware
with a high-throughput and low-latency link to the CPU.

The other two tables usually are not very large and thus fit
into a reasonably sized RAM.

There exist multiple extensions to this data structure in or-
der to save memory or memory accesses, and thus speed up
the lookup. [6]

5. SOFTWARE LOOKUP
Although a significant part of the Internet’s backbone infras-
tructure is powered by hardware routers, software lookup
algorithms play an important role. As software routers and
general purpose CPUs gain maturity and speed, they may
be viable options in the future.

5.1 Naive
The naive lookup algorithm is quite simple. All of the routes
are contained inside of a list, which is sorted by the pre-
fix length. Longer prefixes are at the beginning of the list,
shorter ones at the end.

Every time an IP address is to be routed, this list is traversed
until the first match. In the worst case, this is the default
gateway. A match is computed as follows:

(IP&(∼ (232−length) − 1)) ⊕ prefix (1)

whereby length denotes the prefix length, & a binary AND
operation, ∼ the one’s complement, and ⊕ a binary XOR
operation. If the result is zero, the route matches and the
next hop is found. In case it is not zero, the next entry needs
to be checked until a match is found.

5.2 Trie
Most modern lookup algorithms use some kind of tree as
their basic data structure. Commonly, this tree is in fact a
radix tree, which is also called a trie. The invariant of a trie
is, that all the child nodes of a node share a common prefix,
which is the key of the node.

Tries can be used is a number of different fashions, meaning
that there is not one single valid basic lookup scheme using
tries. The algorithm presented here is based upon the au-
thor’s intention of simplifying the basic algorithm and the
work of Nilsson and Tikkanen [7].
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Figure 1: Basic trie

Figure 1 shows a basic trie, demonstrating the prefix sharing.
The corresponding routing table if given in Table 1. The
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Node Route Next Hop
A 0.0.0.0/2 1.2.3.4
B 64.0.0.0/2 2.3.4.5
C 128.0.0.0/2 3.4.5.6
D 192.0.0.0/2 4.5.6.7
E 192.0.0.0/3 5.6.7.8
F 112.0.0.0/4 6.7.8.9

Table 1: Basic trie, Routing table

terms “left” and “right” are used to indicate a 0-bit and a 1-
bit respectively. Inside of the trie, a route matches at exactly
the position corresponding with the prefix.

When looking up an IP address, the n-th most significant
bit of the address is used to index the n-th level of the trie.
The trie is traversed using this fashion, until a leaf is found.
Once this is achieved, the route at the leaf might match the
IP address in question, or might not match it. If it does
match, the search is over. If it does not match, the trie
needs to be backtracked upwards again.

For example, if the IP address which is to be looked up
is 128.0.1.24, the algorithm would take the first branch to
the right, and the next branch to the left, reaching the leaf
labeled C. Indeed this route matched the IP address, and
the lookup was successful at this step.

Another example is the address 96.4.5.6, which would branch
left, then two times right, and left again. The leaf which is
found does not contain any route. Since the algorithm did
not reach a leaf which corresponds with a route matching
the IP address, upwards traversal of the trie is needed. As
soon as the node B is rediscovered, the algorithm found the
longest matching prefix and finishes.

It should again be noted, that this is not the only possible
method of making use of a basic trie, but was chosen for
simplicity. For example one simple extension would be to
save the last found route, in order to avoid the upwards
traversal.

5.3 Path compression
When developing a routing lookup algorithm, the size of
the data structure, and the number of memory accesses,
are of big importance. One method to decrease the num-
ber of needed memory accesses is called “path compression”.
Again, different implementations exist, which utilize path
compression in their own way. In the first part, the notation
of the previous section is preserved, and the compression is
influenced by Nilsson and Tikkanen [7]. The second part
describes the approach of FreeBSD.

Path compression allows the data structure to skip interme-
diate nodes which only have one child each.

Figure 2 shows two tries, whereby Figure 2a is a none com-
pressed trie and Figure 2b is the path compressed version,
representing the same data. The routing table correspond-
ing to Figure 2 is given in Table 2. Empty leafs are omitted
for brevity.

So far the change is straight forward, by just adding an
intermediate node, which represents a path of nodes which
would only lead to this subtrie.
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Figure 2: Path compressed trie

Node Route Next Hop
A 0.0.0.0/2 1.2.3.4
B 64.0.0.0/2 2.3.4.5
D 192.0.0.0/2 4.5.6.7
E 192.0.0.0/3 5.6.7.8
F 112.0.0.0/4 6.7.8.9
G 128.0.0.0/5 7.8.9.0
H 136.0.0.0/5 8.9.0.1

Table 2: Path compressed trie, Routing table

The FreeBSD Operating System actually uses such a path
compressed trie as its IP lookup scheme, although in a differ-
ent flavor. In the examples used here, routes could be inter-
nal nodes, whereas in the FreeBSD implementation, routes
are always leafs. [9][12] The same routing table, as above, is
also represented in Figure 3, using the FreeBSD implemen-
tation. It should be noted, that the numbers of the internal
nodes depict bit positions, on which the trie branches. Fur-
thermore, in this representation, two different routes sharing
the same prefix, but having a different prefix length cannot
be handled solely within the trie. As a solution, the nodes
have a list of routes, which are checked in the order of the
prefix length. Longer prefixes get checked first. Internal
nodes can reference leafs, which is useful for the backtrack-
ing, and depicted in Figure 3 as the dashed lines.

Again, an example lookup may help to understand this data
structure. The IP address to be looked up is 96.45.56.67.
For simplicity, let’s split the first octet up into its binary
representation: 9610 = 011000002 This means, that we need
to take a left branch followed by two right branches, and left
branches from there on.

Following these directions reveals the leaf F which does not
match the IP address in question. The algorithm backtracks
one level up, where is encounters a reference to the leaf B. B
in return holds a route which matches the IP address. This
terminates the algorithm.
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Figure 3: FreeBSD compressed trie, Adapted from
the FreeBSD book [9]

Another interesting lookup yields the IP address 168.1.2.3.
Again the binary representation of the first octet is helpful:
16810 = 101010002, which means that the bits 0, 2, and 4
are set. In this case, the zeroth bit gets tested and evaluates
to 1, so the search continues in the right subtrie. The second
most significant bit (position 1) is 0, which means, that the
left branch is taken. A 1 at position 4 means, that the route
H is tested for a match, which is negative. Due to this, the
backtracking process begins. The nodes labeled “4” and “1”,
which get traversed in this order, do not reference any leafs.
The process continues to the root node, which references
a route which does not match. Since the root is already
reached, there is no further node to visit. The lookup was
unsuccessful, and the packet cannot be routed, because the
routing table does not contain a route to this host.

It should be noted, that this rarely reflects the reality, since
almost always a default gateway exists, which can be used
as a last resort.

5.4 Level compression
Although path compression is a pretty good start, for re-
ducing the memory consumption and accesses, level com-
pression can further help to achieve these goals. As the
name already suggests, multiple nodes on the same level
get merged, in order to have more information at the same
memory location.

Saving nodes means, that less pointers to nodes need to be
held, which is good for the memory consumption, and it
also means, that less nodes need to be accessed to find the
desired information, which is helpful to counter expensive
memory accesses. The increased size of a single node is only
a minor concern, because it usually still easily fits inside one
cache line.

A node can be doubled when all of its children themselves
have the same amount of children, and all children split at
the same bit position for path compression.

Figure 4a shows an extended version of the FreeBSD trie
used above. A level compressed version of this trie is given
in Figure 4b. As can be seen, the level compression merges
multiple nodes into a single one. The notation “x/y” of the
internal nodes means, that this node starts comparing bits
at position x for a length of y bits.

The internal structure of the nodes and therefore parts of
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Figure 4: Level compressed FreeBSD trie, Adapted
from the FreeBSD book [9], Nilsson and Tikkanen [7]

the algorithm are dependent on the actual implementation
to be used. The algorithm presented for path compressed
tries still holds for this kind of level compressed trie, with
only minor changes.

Although the FreeBSD trie does not use level compression,
the Linux kernel does. [8] The Linux kernel furthermore
adapts an optimization presented by Nilsson and Tikka-
nen [7]. Using the strict criteria presented in this paper
imposes great cost on the maintenance of the trie. Abstain-
ing from the demand that no child node is empty, but in-
troducing thresholds as to when to double or halve a node
allows for good compression at reduced cost.

5.5 Poptrie
Poptrie is a high performance IP lookup data structure based
upon LPC tries, developed by Asai and Ohara [11]. It incor-
porates both path and level compression, as well as support
for a new CPU instruction commonly found in commodity
hardware, namely “popcount”. This instruction counts the
bits set to 1 in an integer. The data structure is highly com-
pressed in order to fit into lower level caches, compared to
other schemes, which may have to make use of main memory
or the L3 cache.

Poptrie maintains two arrays, one for the internal nodes,
and one for the leafs. An internal node is a struct, which
contains an offset into both of these arrays, and a field of
bits. As usual the IP address is used as the key into the
data structure which is divided into multiple parts, one for
each level. The part of the IP address to be processed at the
moment is used to index the bit field. If the corresponding
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Figure 5: Poptrie illustration(adapted from Asai
and Ohara [11])

bit is a 1, the next step is to use another node, if it is a 0, a
leaf is reached. This mapping is illustration in Figure 5.

In case a leaf is not yet reached, but the trie is further tra-
versed, the bit field is masked, to force the current index and
everything of higher significance to 0. The remaining 1s in
the field are counted. At this point the popcount instruction
can be used to speed this process up. The resulting number
is added to the offset into the array which is saved in the
current node, and thus the next node is found.

As soon as a leaf will be accessed in the next step, the n-
th least significant 0s are counted, whereby n is the current
part of the IP address. Analogous to the internal nodes, this
number is added to the offset and then yields the position
of the searched leaf. The leaf contains the next hop to be
used. This also means, that routes are projected similarly
to DIR-24-8.

Multiple extensions are developed, which further reduce the
size of the data structure and save traversal steps. The
leaf vector extension reduces the number of leafs with the
same content, by introducing a new vector inside the inter-
nal node. Another extension is direct pointing, which works
by using the first x bits of the IP address to index an ar-
ray of internal nodes and next hops. These internal nodes
are anyways traversed for nearly all address lookups. This
reduces the number of steps and memory lookups and thus
increases the performance.

5.6 DXR
The DXR algorithm was developed by Zec et al. [10] in 2012.
It has similarities to DIR-24-8 and the direct pointing exten-
sion of poptrie, but does not build upon a trie itself. Route
projection, as with DIR-24-8 and poptrie is also used, mean-
ing the discrete routes are expanded into ranges within the
continues IP address space.

Three arrays are used inside of the DXR algorithm, which
are called the“lookup table”, the“range table”and the“next
hop table”. The lookup table is indexed using the first n bits
of the IP address, thus having 2n entries. Commonly used
values for n are 16 and 18. An entry can have two different
kinds of content. Either a route with a prefix longer than n
exists, which thus cannot be handled inside the lookup table,

Lookup table Range table Next Hop table

[0] nh 1

[1] nh 0

[2] rt [0],3

[3] nh 2

[4] . . .

[5] . . .

[6] . . .

[0] 0x0000,3

[1] 0x0010,5

[2] 0x0050,1

[3] . . .

[4] . . .

[0] 1.2.3.4

[1] 2.3.4.5

[2] 3.4.5.6

[3] 4.5.6.7

[4] 5.6.7.8

[5] 6.7.8.9

[6] . . .

[7] . . .

Figure 6: DXR data structures, redrawn from Zec
et al. [10]

or such a route is not present. If there is no such route for
a given n-bit prefix, the corresponding entry in the lookup
table directly references an entry in the next hop table. This
can be seen in Figure 6 for the entries 0x00, 0x01, 0x03.

In the likely case, that a route with a prefix length of more
than n bits needs to be handled, the range table is used.
Therefore the lookup table entry contains an offset into the
range table, and the number of entries corresponding to this
lookup table entry. An entry in the range contains the first
IP address of the range, and the next hop responsible for
the IP addresses between this first IP address (including)
and IP address of the next entry (excluding). In order to
find the correct range entry, a binary search algorithm can
be used. An example for a range table is also included in
Figure 6.

According to Zec et al. [10], DXR is, depending on the ex-
act setting, up to 3.5 times as fast as a DIR-24-8 software
implementation.

6. PRACTICAL EXPERIMENT
In the scope of this paper, the naive lookup scheme and a
basic trie were developed and tested. The used dataset was
obtained from the IXP in Amsterdam. Both algorithms were
developed in an address-by-address and a batched fashion.
Furthermore cache prefetching was evaluated. All tests were
preformed on an Intel i5-5200U CPU, and GCC 5.4.0 was
used. This CPU has a cache of 3 MB.

For the naive approach, neither optimization, batching nor
prefetching, did yield any performance speedup. Using plain
C arrays instead of C++ STL containers, and enabling com-
piler optimization, were very effective. These methods re-
duced the time needed to successfully route 100000 addresses
from 10 seconds to 0.2 seconds.

For a basic trie the performance gain is still small, but no-
ticeable. The time to route 10000000 addresses in depen-
dence of the batch size is presented in Figure 7.

A batch size of one indicates the not-batched version of the
algorithm. It can be observed, that the batch sizes 2, 16, and
32 have the best speed. In the end, the best enhancement
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Figure 7: Performance of the basic trie

still is to enable the compiler optimization, which produced
a speedup of factor 3.1.

7. CONCLUSION
Various algorithms for routing lookups and their respective
data structures are described in this paper.

Prominently tries are used for real-world software routing,
while the fastest known algorithm is also based on a trie.
Multiple compression techniques exist such as path com-
pression and level compression, which can help to reduce
the size of the trie. Caches can be used more efficiently this
way, since the memory accesses are cheaper, if the data is
already in a low-level cache.

Apart from tries, the DIR-24-8 hardware based algorithm,
and the DXR algorithm are presented. Both utilize multiple
tables in order to split the IP address into two parts and use
the content of the tables to access a next hop table.

An experiment based upon a naive lookup scheme and a ba-
sic trie implementation was performed. The result showed,
that batching was of no significance for the naive algorithm,
and of marginal use for the trie.
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