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ABSTRACT
The visual representation of data is a powerful tool to aid
scientific research and publications. Graphics can be used
to illustrate the findings in an accessible way and help ex-
plore the meaning of experiments by displaying the data
intuitively. Data often takes the form of probability distri-
butions, such as the latency distribution of network traffic.
These results can be hard to interpret for the human brain.
Thus it is exceedingly important to aid the viewer with good
graphical displays.
This paper gives an overview of how informative visualiza-
tion can be achieved and how the data can unfold its story.
Possible ways to deceive the viewer are explored and guide-
lines how to stay true to the data are given. Based on this
knowledge, means to visualize individual data sets as well
as series of experiment data are looked at. Two data se-
ries from the realm of network traffic measurement serve as
example data for the graphics.
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1. INTRODUCTION
The graphical representation is of great importance to ev-
ery publication. Researchers rely on visual data represen-
tation to convey relevant information in publications. Es-
pecially statistical data is hard to understand without the
right means to visualize it. This paper handles the cen-
tral challenges when graphing probability distributions and
highlights good ways to present statistical data accordingly.
Two data sets are used to create the graphics for this paper.
The realtime versus background traffic data set measures la-
tency times in a stress test for high-speed network devices.
The switch under test is tasked to prioritize forwarding the
packets of the realtime traffic flow . The FLOWer concept
utilizes the MoonGen packet generator and OpenFlow pro-
grammable switches to achieve high network traffic with cus-
tomizable packets [5]. MoonGen is presented in the paper
that is also the source of the other test data set [6]. Complex
traffic patterns are generated by the novel packet generator
to stress a software switch. The patterns looked at in this
paper are a constant bitrate (CBR) flow and packets gener-
ated by a Poisson process [6].
The graphing tool used for the displays is the Python library
matplotlib [10] and Seaborn [23], composed in Jupyter Note-
book [15]. The code for the graphics is available in the LRZ
GitLab repository [12].
The first chapter deals with the basic principles of visual

presentation. The foundations of graphical perception are
discussed and guidelines how to avoid pitfalls in the pre-
sentation of data. This is followed by various examples of
how to present univariate data. The cumulative plot, dot
plot and different kinds of histograms are explained. The
sections dealing with the box plot and the violin plot show
how summary indicators and distribution estimates can act
in combination to produce a sound representation of the
data. Finally, we take the step to visualize changing prob-
ability distributions over the course of a series of measure-
ments. Utilizing advanced data representation techniques
like graphic matrices, summary statistics and color makes
the graphic overstep the two dimensions of paper to show-
case multivariate data sets.

2. EXPRESSIVE DATA VISUALIZATIONS

2.1 Motivation behind Graphics: Presentation
and Exploration

The most general term to describe data recorded in a human-
readable fashion is the chart. Charts can take the form of a
table to show numbers directly. If the data sets become too
large to grasp from text alone or when relations in the data
should be highlighted, a graphical chart should be chosen.
Common charting tool like Microsoft’s spreadsheet software
Excel offer a preset number of chart topologies. Pie charts,
bar charts or line charts can be created by a simple click.
This might push users to present their data in a carelessly
constructed display. A good graphing tool should instead
provide users with means to implement their vision of a
good display and help reveal the information hidden in the
data [25]. Examples for powerful graphing tools are the
programing language R [16] and the Python library mat-
plotlib [10], the latter of which is used for the illustrations
in this paper.
The first step when working with data should be to explore
its meaning. Simple plots of the values from each batch or
test series can give a first impression of the underlying dis-
tributions and relations. On that basis, more complex ex-
ploratory plots can be created to explore the facets and char-
acteristics of the data. Once a thorough analysis of the data
has been conducted, the results should be condensed into
a well crafted presentation graphic. All conclusions made
by the analyst should be easily reconstructible by looking
at the graphic. Complete definitions and explanations are
important to support full comprehension of the data [22].
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2.2 Scale and Comparability: Adapting data
to a frame

To bring numbers into a graphic, we have to define the space
they should exist in. The graphic frame is defined by its
axis. On a two dimensional surface of a book page, these
are formed by the horizontal x-axis and the vertical y-axis.
The scales measure the contents of a frame along their axis.
Scales are driven by the data. With nominal scales, data
measures falling into different categories can be differenti-
ated. These categories have no inherent ordering. An arbi-
trary order can be chosen as appropriate and categories are
usually spaced out evenly along the axis. An ordinal scale
enforces total ordering over all possible values. The value
marks should be drawn on the axis in their ascending order.
An interval scale can be applied when a range of values is
looked at. Adding one value positioned at a point on the
axis to another value, the resulting value will be placed at
the position equal to the sum of the added values’ distance
to the axis origin. A ratio scale demands such behavior for
magnitude ratio comparisons between values [25].
Multiple variables can be plotted on the same axis. They
have to share the same unit and magnitude level. The In-
ternational System of Units (SI) describes base classes and
transformation rules for units like length, weight, time or
temperature. From these base classes, composite measure-
ments can be derived to represent an interplay of SI units,
for example volume, pressure or power. Basic categorical
dimensions and scalar values are not part of the SI system
and are therefore called dimensionless measurements [25].
Choosing the scale greatly influences the perception of the
data. It can be a good idea to choose the axes whose bound-
aries extend slightly beyond the minimum and maximum of
the data. Including zero is beneficial, because it serves as a
good baseline and point of orientation for the viewer. If the
data demands an origin different from zero, the reasoning
behind the new baseline should be made clear. If multiple
graphics show similar data it can be wise to choose the same
scale to facilitate comparison between them [22]. The frame
lines can be adjusted to reflect properties of the data. Crop-
ping the frame lines to extend only to the maximum and
minimum values produces a so called range frame. Ticks
along the frame line can not only be used to present a reg-
ular spacing of the data, but also to mark single values or
special properties of the data, like quartiles [20]. Report-
ing too much information through the frame however might
clutter the display and confuse the viewer [22].
All data should fit nicely into the frame. Choosing an over-
sized scale to incorporate large values can obscure small
features of the distribution. Splitting up the graphic into
multiple figures to show each cluster individually should be
considered. An alternative approach would be to re-express
the scale [21]. Moving from a linear to a logarithmic scale
can be a good choice for rapidly growing data. Thereby,
multiplicative distances between data points turn to addi-
tive and ratios to differences. The most common log base
is 10, but the base most appropriate for the data should be
chosen. Scale breaks may be chosen to avoid wasting blank
space between values. Two tilted lines breaking a scale line
should be used to indicate a partial scale break, the line re-
sumes with at a higher value. Values must not be connected
across scale breaks. A full scale break can even change the
resolution of the scale. A full vertical line at each of the
breaking ends should indicate a shift in scale [2].

When all the scaling work is done, the shape of the graphic
itself has to be chosen. The proportions of the display should
orientate themselves in relation to the data. Regression dis-
plays might benefit from a square frame, because the graphic
is split in two equally large sections along the 45◦ line. Ver-
tical displays imply stark growth, while horizontal frames
facilitate the impression of change over time. In general, it
is more pleasant to watch a graphic wider than tall. The
proportions can be chosen accordingly. Following the Clas-
sical ideal of ancient Greece, aesthetic can be determined
by the golden section with height a = 1 and the width

b =
√
5+1
2
≈ 1.618 [20]. The common aspect ratios in media

can be a reference, too. The ratio 4 : 3 ≈ 1.333 leans more
towards the square. The modern standard TV resolution
16 : 9 ≈ 1.778 is closer to the golden section. The cinema
ration 19 : 10 = 1.9 is almost twice as wide as it is tall.
The graphics in this paper will use the 16 : 10 = 1.6 ratio,
because it is the standard that comes closest to the golden
section.

2.3 Graphical Perception
The effect of a visual display is determined by the viewers
perception of its content. Great data sets have no merit
when the observer cannot make out its meaning. Values
should be presented so that they can be judged effectively.
Weber’s law suggests that the contrast in magnitude of two
physical values is not perceived by their absolute difference.
Instead, the human brain distinguishes their ratio. Two line
segments A and B that are not aligned are read as “line A is
30 percent longer than line B” instead of “the difference in
length between between A and B is 2 centimeters”. There-
fore displaying values that differ in ratio is important when
they do not align to a common base [2].
Steven’s law establishes a metric for how judgment of mag-
nitudes differ from reality. The perceived scale p(x) = cxβ

is skewed by a constant c and a power β to the magnitude
x. When testing for the judgment of lengths, mild error fac-
tors β of 1 ± 0.1 have been estimated. For area, this error
becomes more severe to levels of 0.6 to 0.9. It only gets
worse for volume with average β of 0.5 to 0.8. Ratio judg-
ment therefore become increasingly skewed for unintuitive
attributes [2].
Cleveland assigns graphical elements to a hierarchy of graph-
ical perception tasks [2]. Graphical elements that can be
judged more easily should take precedence in graphical de-
sign and elements further down the hierarchy should only be
chosen once the limits of better attributes have been reached.
The hierarchy is divided into 7 levels. Attributes in the same
level do not differ in their quality of magnitude perception.

1. Position along a common scale and axis

2. Position along a identical scales with nonaligned axes

3. Length

4. Angle and Slope

5. Area

6. Volume

7. Color hue, Color saturation, Density of occurrence
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Figure 1: Party seat distribution of the 18th German par-
liament [3].

Tufte introduced the Lie Factor [20] to express how the phys-
ical measure on the graphic surface relates to the numerical
quantities represented.

Lie Factor =
size of effect shown in graphic

size of effect in data
(1)

A lie is induced by a misrepresentation of quantities. A
linear value that is represented by an area has exaggerated
graphical impact in relation to the more fitting line or dot
along its axis. Even bigger perceived lies can be told when
expressing a one dimensional value by volume portrayed
through an additional foreshortened axis. In consequence,
values become hard to decipher and heavily skewed, even
before perceptive error comes into play. The principle to
avoid this kind of lie is to have the number of informative
dimensions depicted not exceed the number of dimensions in
the data [20]. Every graphic property not bound to a data
value introduces the potential of misjudgment.
A value is well represented by an area if it is naturally com-
puted by the product of two values or the the integral over
a line [20]. Compare the histogram to a bar chart. In the
bar chart, the bars extend to a single value and are merely
a figurative representation of a dot value. The histogram,
described in later chapters, on the other hand groups ob-
servations over the bin range on the x-axis and maps their
count to the y-axis [25].
A similar case can be made for pie charts. The viewer is chal-
lenged to compare angle and radian ratios combined with
narrow areas [20]. Data that actually relies on polar coor-
dinates can be visualized with a rose diagram. This type
of graphic is inspired by the wind rose that has been used
for centuries on navigational charts. It is especially use-
ful for data distributed around compass points, for example
wind direction data [25]. An exemption from this principle
could be made to represent data in a familiar real world con-
text [25]. The distribution of seats resulting from the par-
liamentary elections are often presented in a manner resem-
bling the parliament hall. Figure 1 shows the distribution
of the party seats along the traditional political spectrum
from left to right (in this case from “behind”, center-right to
left), as they might actually be located in a sitting of par-
liament [3].
For the construction of graphics, less is often more. Eras-

ing as much non-information carrying elements as possible
makes a graphic more concise. The data-ink ratio measures
the portion of ink that is actually devoted to showing num-

bers. All ink in the graphic should add information to the
graphic that was not there before. This holds especially true
for fancy decoration, extensive grid lines, frames and grid
ticks [20]. Graphics today are mostly generated by com-
puters and the underlying data is often publicly available
as precise digital records. Grid lines lose importance for
plotting and retracing exact data values. It becomes more
essential to show the inherent information than the exact
values [22]. Tick marks and labels can instead be used to
mark important events in the data.
In conclusion, graphics should always meet their purpose to
convey new interesting information. Small and highly la-
beled data sets are often better suited for tables and text.
The graphic designer should bear the basic principles of
graphical perception in mind. Only when information is
accurately conveyed, the design of the data graphic is a suc-
cess.

2.4 Kernel Density Estimate
The key challenge when looking at statistical data is to know
the underlying probability distribution. One way to esti-
mate the distribution function of the data is to compute the
kernel density. The result is a continuous approximation of
the probability function, prominently featured by the violin
plot we expand on later. The kernel is a tool to assess the
target probability function by weighing the samples of the
data. It is formed by a probability measure that should be
similar to the target probability function. In practice, stan-
dard kernel like the ones described below yield good results
even for complex distributions. By taking a sample of n val-
ues xi from the data set, the density function estimate can
be deduced by aggregating the kernel K(x) for each of the
values xi [14]:

f̂(x0) =
1

n

n∑

i=1

Kh(x0 − xi) (2)

A commonly used kernel is the the Epanechnikov kernel, a
truncated parabola

KE(t) =
3

4
(1− t2) − 1 ≤ t ≤ 1. (3)

The standard normal kernel, also called Gaussian kernel [25],
given by

KN (t) = Φ(t) =
1√
2π
e−0.5t2 , (4)

can be more convenient for its smoothness [14].
Additionally, the kernel function is weighted by a bandwidth

factor h such that Kh(t) = K(t/h)
h

. The bandwidth deter-
mines how strong the kernel for each kernel sample influ-
ences a point in the density function. This limits the spread
of the kernel [25]. Choosing a large value for h leads to
oversmoothing, a small h results in an unstable multimodal
estimate [14]. Assuming a normal distribution for the data,
an optimized bandwidth is achieved by the normal reference
rule [18]:

h = 1.06σ̂n−1/5. (5)

Thereby σ̂ denotes the estimated standard deviation and
can be deduced from the sample standard deviation (ssd)
of the data. A more stable choice for data deviating from
the assumed Gaussian distribution is the interquartile range
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Figure 2: Kernel density estimates of priority traffic latency
times with an Epanechnikov kernel and a Gaussian kernel.
The bandwidth has been chosen by Scott’s normal reference
rule. A thinly binned histogram shows the distribution.

IQR of the data set: σ̂ = min(ssd , IQR/1.34) [13]. The
final kernel density function for a Gaussian kernel using the
normal reference rule can then be computed:

f̂(x0) =
1

n

n∑

i=1

e−((x0−xi)/h)

h
. (6)

Figure 2 compares an Epanechnikov kernel and a Gaussian
kernel estimate of a highly bimodal data set. Both estimates
use Scott’s normal reference rule for the bandwidth. The
Epanechnikov kernel fits the peaks of the data more closely,
while the Gaussian kernel applies stronger smoothing to the
extreme values.

3. VISUALIZING UNIVARIATE DISTRIBU-
TIONS

3.1 Cumulative Plot
Measuring a statistical variable raises the question of its
distribution. Discrete variables can easily be visualized by
plotting their values against their respective absolute or rel-
ative frequency in the measurement. With continuous data
this becomes impossible, since each observation might not
be identical to any other observation. The frequency of indi-
vidual continuous values is one and therefore insignificant in
the overall data set. To visualize a continuous distribution
we can use a cumulative plot. The graph lists the range of
values on the x-axis. It starts from zero on the y-axis and
each sample adds one to the vertical axis at the x-position
of its value until all observations are processed. Figure 3
shows such a plot for the relay of prioritized traffic. Two
slopes with an increased amount of arriving packages are
visible at approximately 1µs and 3.7µs and a steady stream
in between. Yet the display only shows the cumulated val-
ues and their intrinsic distribution is not obvious. A different
approach is needed to show the distribution.

3.2 Dot Plot
The most simple solution to show a distribution is the dot
plot. It shows the sample values on a one dimensional num-
ber line. It can be a good starting point to get to know a

distribution [14]. The plot is only sensible for small data
sets. Once the points start to overlap, it is possible to offset
the point in the vertical axis [2], effectively forming a tally
for a region of values on the number line corresponding to
the size of the dot. Figure 4 shows such a stacked dot plot
of a randomized sample of 100 data points in the realtime
traffic data set. Note how the peaks of the bimodal distri-
butions and the sparse values in between are clearly visible.
Still, the display reaches its limit even for relatively few data
points. Would we visualize more samples, the graphic would
become convoluted and confusing.

3.3 Histograms
The concept of the histogram solves this problem. It is most
commonly associated with the visualization of probability
distributions widely used in publications from a wide range
of scientific fields. This concept is also known by the term
frequency diagram [1].
By dividing the range of the data values into intervals called
bins, the number of observations falling into each bin become
countable and bins can be plotted as bars [25]. For mean-
ingful comparability of the bins, especially when bin sizes
are different, it is important to note that the number of ob-
servations in a bin should be proportional to the area of the
bin bar [1]. This ensures that larger bins are not excessively
weighted in comparison to their smaller counterparts [14].
The vertical axis then shows the bin count divided by the
bin width and the total number of observations. This de-
notes the average relative frequency for the bin.
The result is a density histogram, plotting the bin count vj
and the bin width hj in the bin Bj = [tj , tj+1) that covers
the interval between j and j + 1, to the density estimate of
each bin, relative to the sample size n [14]. The area of a bin
then represents its bin count. The unit for the bin height is
therefore in percent per width unit, in this case percent per
nanosecond [8].

f̂(x) =
vj
nhj

x ∈ Bj . (7)

Choosing an appropriate number of bins is the key step to
make a histogram that reflects the data well. A rule of
thump is to use

√
n bins for n samples [24]. The bin width

should furthermore respect a possible granularity of the data
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Figure 3: Cumulative plot of priority traffic latency times
with 3012 observations.
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Figure 4: Dot plot of 8 Gbit/s realtime traffic with vertically
offset dots to avoid overlapping.

and should not be smaller than the smallest difference be-
tween two adjacent values [25]. Choosing the bin width as
an integer multiple of the granularity can also add clarity to
the display [26].
More sophisticated bin count estimates can be derived from
the statistical attributes of the sample data. Sturges [19]
deduces a good number of bins to be k = log2 n. This
was further refined by Doane [4], who recommended k =
3 + log10 n log2 n to account for skewness [25]. To estimate
a good bin width h of a bin, Scott [17] proposes the sample
standard deviation ssd as the deciding factor to calculate
hS = 3.5ssdn−1/3. Similarly, Freedman and Diaconis [7]
suggest using the more robust interquartile range IQR, re-
sulting in about 30% lower bin width than Scott’s for a nor-
mal density [14]:

hFD = 2IQRn−1/3. (8)

The rules should only serve as a general guideline. For pre-
sentational graphics, the bin width should be chosen in a
way that presents the data with a tolerable loss in accu-
racy [2].
The data for the example histograms is taken from the re-
altime and background traffic experiment. The data set has
the following properties:

• Number of samples: 3012

• Minimum value: 832.0

• Maximum value: 3763.2

• Sample standard deviation: 997.62

• Interquartile range: 3635.2− 2265.6 = 1369.6

• Sample granularity: 12.8ns

Figure 5 uses a number of bins that is determined by the
granularity of the measuring hardware, resulting in 229 bins.
The two peaks at the beginning and the end of the data
range are clearly visible. The part in between is made up
of a constant noise of packages coming through at other
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Figure 5: Histogram of priority traffic with a minimum bin
size of 12.8ns determined by hardware granularity.
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Figure 6: Absolute frequency histogram of priority traffic
with the bin size determined by the Freedman-Diaconis rule.

latencies. The histogram of figure 6 applies the Freedman-
Diaconis rule hFD = 2 · 1369.6 · 0, 07 ∼ 15.45 rounded up to
16 bins. The bimodal distribution is still explicitly visible,
but some of the local peaks in the data have been over-
smoothed. The

√
n-rule results in a number of 55 bins in

figure 7. Sturges’ logn only leads to 12 bins. Using the
sample standard deviation according to Scott computes 255
bins, a result heavily skewed by the data’s deviation from
the normal distribution. A minimal histogram in figure 8 of
3 bins shows only the peaks and the noise in between with
differing bin width. Grouping empty or sparsely occupied
bins together can remove clutter from the display. When
grouping bins together, it is important to keep the ratio be-
tween the bars intact and not mask data points that could
be interesting to the reader.

3.4 Box Plots and Violin Plots
A schema [26] is a concise display that shows character-
istic features of a distribution [2]. The box-and-whiskers-
plot [21], or simply box plot, is the most common schematic
plot, featuring the median, the first and third quartile, as
well as a measure to identify values considered normal or
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Figure 7: Density histogram of priority traffic with the bin
size determined by the

√
n rule.
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Figure 8: Density histogram of priority traffic with variable
bin size to only show the peaks.

outliers.
The box plot was initially described by Tukey [21] and re-
fined by Wilkinson [25]. The first step is to outline a thin
box with its lower edge at the 25th quantile (1st quartile)
and the upper edge at the 75th quantile (3rd quartile), form-
ing the hinges of the box. The box is then crossed with a
horizontal line at the position of the median.The whiskers
stretch out from the hinges to the lower and upper fences of
the plot. The position of the fences are determined by the in-
terquartile range times one and half from the corresponding
hinges: whisker range = hinge ± 1.5 · IQR. Values beyond
these fences are treated as outliers and are each marked with
a dot.
Figure 9 shows a box plot of constant bitrate traffic, which
was generated by the MoonGen traffic generator. The me-
dian is closer to the top of the box, indicating a distribution
skewed towards higher values. A single observation exceeds
the normal range of the data with a latency of more than
140µs.
The box plot is best suited for data with a steady unimodal

distribution. Peculiarities such as bimodal distributions are
masked by the terse display of summary statistics. The vio-
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Figure 9: Box plot of latency times at 0.8Mpps CBR traffic.
The schematic features are labeled accordingly.

lin plot adds additional information to the box plot [9]. The
box becomes a thick line and thinner lines extend to the
positions of the upper and lower fences. A circle marks the
position of the median. Then a kernel density estimate is
plotted symmetrically to both sides of the box, resembling
the form of a violin. Outliers are not tagged by any sym-
bols. When comparing multiple violins, the scaling of the
density estimate should be chosen according to the intended
effect of the comparison. By scaling the violins to the same
area or maximum width, the distributions can be compared
effectively. Scaling proportional to the sample size places
emphasis on the differences in data population.
The categorical nature of box and violin plot makes it pos-
sible to arrange the plots for multiple data series on one
axis. A special variant of the violin plot is to make it asym-
metrical [11]. Each side’s density estimate shows a different
subgroup of the data. This enables direct comparison of the
two distributions.
Figure 10 shows the latency measurements for multiple packet
rates in a single graphic. The kernel density graph for the
CBR traffic, that is shown on the left of the box for the
0.8Mpps, reveals the deep valley that was hidden in the
box plot visualization of figure 9. The density estimates are
also easily comparable to the measurements for other packet
rates. The bitrate CBR kernel density estimates form the
left side of each violin and are opposed by the Poisson traffic
type density estimates on the right side. A trend towards a
more gradual slope for the Poisson latencies can be surmised.

4. MULTIVARIATE PLOTS
If we want to look at data varying in more than two dimen-
sions, we have to find find strategies to make all the values
accessible in the two-dimensional space of paper. When eval-
uating series of measurements, a so called small multiple dis-
play can help structure the data. The visualizations of each
measurement are arranged as a matrix. Additional infor-
mation can be encoded by using the vertical and horizontal
axes to vary two different variables, or the series can be al-
loted arbitrarily for categorical or ordered from left to right
and top to bottom for a single ordinal scale. It is especially
important for this display that the design remains constant
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Figure 10: Split violin plot series of latency times from
0.6Mpps to 1.0Mpps CBR and Poisson traffic, scaled to the
same area.

for all sub-graphics. All scales and color schemes have to
be linked, enforcing an identical display for all frames [20].
Figure 11 shows a small multiple for the MoonGen data,
comparing the constant bitrate against the Poisson process
latencies of generated packets on the x-axis and measure-
ments for different packet rates on the y-axis.
A simple way to reduce the dimensions of the data is to con-

flate each measurement to a numerical indicator. Summary
statistics provide a simple solution for expressing a distri-
bution in a single value. Taking the arithmetic mean or the
interquartile range of a sample subset is inevitably associ-
ated with information loss, but trends in the data are still
easily traceable. Figure 12 plots the medians of the CBR
data and accompanies them with vertical lines correspond-
ing to their interquartile range. This effectively produces a
simplified box plot series.
Instead of introducing new dimensions in space, color can

be used to represent a numerical magnitude. A heatmap
features tiles arranged on the grid of a 2D graphic. Each
tile is then colored by a third variable to reveal patterns
in the distribution [25]. In color theory, color space can be
modeled as a cube with the primary colors black, red, green
and blue and the secondary colors white, magena, cyan and
yellow serving as edges. These colors are the extreme coordi-
nates and colors in between can be achieved by interpolating
between the edges. To express a triple of data values, the
numbers need to be normalized to fit inside the color cube
and the result can be used as a color value to be painted on
a graphic. Because color is likely perceived as ambiguous,
graphics should resort to a single color dimension. Using
brightness makes it possible to shade elements continuously,
even without the need to print color. Hue is the spectral
component of color, for example red, green or purple. Eas-
ily distinguishable color schemes are well suited to repre-
sent categorical data. Saturation describes the degree of
pure color, or rather amount of hue, in a patch. This color
dimension transits from fully saturated color to gray with-
out changing the brightness. An easy distinction between
different levels of saturation is not easily possible. An at-
tribute like uncertainty might therefore be well suited to be
expressed by saturation [25].
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Figure 11: A small multiple comparing CBR and Poisson
traffic over the course of four measurements with different
packet rates, indicated in the top right of each row.

Figure 13 uses 55 bins to present the Poisson traffic data for
different packet rates. The color reaches from a light blue
for low frequencies to a dark blue for highly populated bins.
Each packet rate row is normalized in order to give the rows
with lower packet rates and fewer events the same visual
impact as the rows with higher packet rate and therefore
higher event density. The valleys and peaks are visible, but
more smoothing might be necessary for the color histogram
to become a sound data display.

5. CONCLUSION
Creating a good statistical graphic means to iterate many
steps of graphical design, evaluation and redesign. When
confronted with a probability distribution, basic plots like
the dot plot and the histogram can give a good idea of the
data. Bivariate data can be graphed on a scatterplot.
The second step is to take it further and highlight relations
and peculiarities inherent in the data. Kernel density esti-
mates and summary statistics help create concise compar-
isons of data subsets. A third variable dimension can be
used by introducing color, in form of a heatmap or a color
histogram. The analyst is encouraged to experiment cre-
atively. The best way to present the data at hand might not
be found in traditional charting conventions. A good graph-
ing tool aids the analyst on the quest to find the perfect
visualization.
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