
Garbled Circuits

Frederic Naumann
Betreuer: Marcel von Maltitz

Seminar Innovative Internet-Technologien und Mobilkommunikation SS2016
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: naumann@in.tum.de

ABSTRACT
In 1982, Andrew Yao published a paper which described
possible ways of handling Secure Multi-Party Computation,
but only in a very theoretical manner. In the following years,
Yao developed a conceptual implementation approach to this
subject which he titled as ”Garbled Circuits”, although he
never actually published any of his work on Garbled Cir-
cuits but only mentioned and explained the idea behind the
algorithm in several talks. At the time this concept was
presented, it was deemed more of a theoretical concept than
an actual implementation due to the limited computation
power. But over the years, the computational possibilities
grew and actual implementations became feasible.
This paper is set out to explain the function of Yao’s original
algorithm in detail and also evaluate it under various aspects
such as performance and resistance to certain attacks. We
will also talk about improvements to Yao’s algorithm that
have been proposed during the last nearly thirty years, and
finally get into some actual implementation of these algo-
rithms.

Keywords
Secure Multi-Party Computation, Secure Function Evalua-
tion, Garbled Circuit Protocol

1. INTRODUCTION
The general Secure Multi-Party Computation (SMC) prob-
lem is defined as the situation where N parties wish to se-
curely compute the value of a function f(x1, ..., xN), where
each party i delivers exactly one input xi. During execu-
tion, no information about the xi must be leaked to any
party j 6= i, at least no information that can not be derived
from the computation result [20, 4].
A simple example for a two-party application of this problem
is the so called ”Millionaires’ Problem”[20]. In this problem,
two millionaires want to find out who of them is richer, but
neither of them wants the other one to know their exact
wealth. So this problem can be formulated using the termi-
nology introduced above with N = 2 and f(x1, x2) = 1, if
x1 > x2 and 0 else. Yao presented a simple protocol solv-
ing this specific problem in [20], along with the theoretical
foundations for the development of an extended protocol.
A more practical example where SMC can be applied is se-
cret voting [20], whereN parties wish to secretly and securely
host a voting. The result is to be computed in private with-
out a third party that handles the voting evaluation, and
without any party learning how some other party voted.
Yao’s approach to a functional protocol for Two Party Com-

putation is the Garbled Circuit Protocol (GCP), where a
function is transformed into a boolean circuit modelling the
same function, which is then altered in a way that no infor-
mation can be extracted from the resulting circuit. Note
that this protocol has been developed explicitly for Two
Party Computation, i.e. a SMC with N = 2. In the fol-
lowing sections, we will define the basic terms and concepts
that are needed for the protocol, in section 4 we will present
and evaluate Yao’s original GCP, and in section 5 we will
discuss a few modern extensions to the GCP that seek to en-
hance performance and security. In section 6, we will briefly
present a couple of different working implementations for
the GCP, and in section 7 we conclude.

2. DEFINITIONS
This section defines the security terminology we will use in
this paper, it will mostly rely on the terms introduced by
[17].

2.1 Security requirements
When one wishes to evaluate some function f using SMC,
one needs to cover some requirements in order to make the
securely computed function fs a correct secure computa-
tion for f . In [19], Yao introduced the concept of com-
paring a protocol to an ”ideal-oracle” that fulfills the three
requirements listed below, and that a Secure Function Eval-
uation (SFE) is correct if it performs exactly like this ideal-
oracle[17].
The ideal-oracle evaluates a function f with inputs x1, x2
that are delivered by two parties and outputs the value to
both parties without revealing the inputs.

2.1.1 Validity
The most obvious requirement is that the evaluation of fs
must always deliver a correct result just as f would. So
f(x) = fs(x) must hold true for all x for fs to be a valid
evaluation function for f .

2.1.2 Privacy
The privacy definition for the ideal-oracle forces a SFE sys-
tem to prevent any party from learning the other party’s
input like the ideal-oracle would, provided that the proto-
col is carried out correctly. It is interesting to note that
this does only guarantee that there are no unwanted val-
ues leaked during protocol execution and that this privacy
definition does not account for any party trying reverse en-
gineering methods on the result, e.g. an addition could be

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

71 doi: 10.2313/NET-2016-09-1_10

computed privately complying with this definition of pri-
vacy, but a participant would still be able to learn the other
participant’s input by subtracting his own input.

2.1.3 Fairness
A protocol is called fair when it securely computes the func-
tion value and then correctly transmits the output to all
parties that participated in the computation. In contrary,
an unfair protocol is one that refrains from actually sending
the output to all parties, but holds back the information for
certain (or all) parties.

2.2 Adversary Models
In the evaluation section, we will evaluate our protocol with
respect to different adversary models. In SMC, we do not
deal with classic ”Man-in-the-Middle” or side channel at-
tacks. In SMC, we are communicating and cooperating with
a possible attacker, so we need to take into account different
levels of protocol obedience for our possible attacker.

2.2.1 Semi-Honest Adversaries
An adversary is said to be semi-honest, or honest-but-curious,
when it is not willing to deviate from the protocol at any
time but tries to gather as much information about the other
parties as possible by using data that is leaked during proto-
col execution and by the output [17]. For example, in a SFE
protocol a semi-honest participant might try to deduce the
other participants’ inputs from the output, e.g. by assum-
ing a uniform distribution of values and then guessing the
right value with a certain probability. Also, an adversary
that is semi-honest will take any protocol conforming step
that it can take profit from, as long as it doesn’t make the
adversary’s position any worse.

2.2.2 Malicious Adversaries
In contrary to semi-honest adversaries, a malicious adver-
sary will violate the protocol in an arbitrary manner, which
means that the adversary might deviate from the protocol at
any point of the execution to gather information about the
other parties [3]. For example, the corrupt party might send
incorrect values or even no values at all, or simply abort the
protocol at any time [17].

3. BASIC CONCEPTS
3.1 Oblivious Transfer
An important concept needed for the execution of Yao’s Gar-
bled Circuit protocol is Oblivious Transfer (OT). In general,
OT is the problem of sending a single value from a set of
values, without either the sender learning which exact value
from the set was received or the receiver finding out any
other value than the one he actually intended to receive [17].
Formally speaking, we have a set of N values on the sender
side and an index i with 0 ≤ i < N on the receiver side. Af-
ter execution of the protocol, the receiver has learned only
the value of Ni and no Nj where j 6= i, and the sender has
not learned i. This version is known as 1-out-of-N Oblivious
Transfer [17]. A less general version which will be used in
Yao’s protocol is the one for the case N = 2, known as 1-out-
of-2 Oblivious Transfer. A simple protocol for this version
will be presented below.

3.1.1 1-out-of-2 Oblivious Transfer
1-out-of-2 Oblivious Transfer (1-2 OT) is a special case for
the concept described above, where N = 2 and the receiver
may only choose i ∈ {0, 1}. An original protocol version
for 1-2-OT has been proposed by Rabin [16] in 1981, the
protocol presented here has originally been introduced by
Lindell[10]. It is secure against semi-honest adversaries, and
provides an easy understanding which will be needed in the
upcoming protocol execution. In the following section, we
will call the sending party S and the receiving party R.
Assume that S holds a pair of strings (s0, s1) one of which is
to be sent to R. R selects i ∈ {0, 1}, depending on whether
she wants to learn s0 or s1. She then generates a pair of
asymmetric cryptography keys (kpriv, kpub), and in addition
to that another value k⊥ that looks like a public key to S, but
to which R has no private key. Then, R chooses the working
public key to be kpubi and k⊥ as kpubi−1, and advertises them
to S as keys for s0 and s1, respectively. S then encrypts s0
with the received kpub0 and s1 with kpub1 and transmits the
resulting c0 and c1 to R, who will then decrypt her desired
value ci with the corresponding kprivi , which then results
in the correct si. R will not be able to decrypt the ci−1

because she has not generated a corresponding private key
for k⊥, and S will not know which value R has actually seen.
Therefore, the proposed protocol guarantees a working 1-2-
OT.
This protocol is only secure against semi-honest adversaries.
It is easy to observe that one party could obtain additional
information by deviating from the protocol, e.g. R could
just generate two public/private key pairs and advertise both
public keys, then she would be able to receive both s0 and s1.
An OT protocol that is secure against malicious adversaries
will be discussed later.

3.2 Cryptographic Hash Functions
A cryptographic hash function is a one-way function1 where,
in addition to the one-way property, there is also no pos-
sibility to draw conclusions from the way the values are
distributed, i.e. the values of the function are uniformly
distributed over the function’s image space. Also, a crypto-
graphic hash function prevents collisions of hash values. All
hash values have the same length and appear completely
random2.

4. YAO’S GARBLED CIRCUIT PROTOCOL
Until now, we have only defined the problem we want to
solve with the GCP and several concepts we need for the
execution. Yao’s GCP assumes that every function can be
represented as a boolean circuit that only consists of binary
gates (AND, OR, XOR, . . .). This assumption has been
proven correct for polynomial functions.[4] The general idea
of the protocol is to transform the function into a boolean
circuit and then disguising the circuit (garbling) so that one
can not derive any values from the execution (e.g. interme-
diate function values). We will give a short description of
the protocol before describing the protocol step by step.

1A one-way function is a function that is easy to compute,
but hard to invert, so f(x) is easy, whereas f−1(y) is not
feasible with polynomial time effort
2This property is in literature referred to as ”performing like
a random oracle”[17]

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

72 doi: 10.2313/NET-2016-09-1_10

4.1 Short description
Let the two communicating parties be P1 and P2 and f(x1, x2)
the function the two parties want to compute, where P1 de-
livers x1 and P2 delivers x2. First, P1 transforms f into
a corresponding boolean circuit cf . Each gate in cf has a
truth table that details the gate’s output. P1 then turns
cf into its garbled version cg by garbling each gate’s truth
table. Now P1 also garbles his input so that it fits cg and
sends this garbled input over to P2 along with the complete
garbled circuit cg. Now, P2 holds cg and P1’s garbled in-
put, but not the garbling procedure, so P2 does not know
how to transform and where to use her own input. P2 re-
ceives the garbled version of x2 by using 1-out-of-2 Oblivious
Transfer. P2 then computes the garbled circuit cg gate by
gate and outputs the ungarbled result to P1 to complete the
protocol.

4.2 Detailed description
After this brief explanation, we will give a detailed step-by-
step explanation of Yao’s protocol as described in [4] and
[6].

4.2.1 Boolean Circuit Representation
Let f(x1, x2) be the function to be evaluated securely. This
function is transformed into a boolean circuit cf that sat-
isfies ∀x, y : f(x1, x2) = cf (x1, x2), which is assumed to be
possible for all functions, although only proven correct for
polynomial time functions with fixed size input[17, 4].

4.2.2 Garbling the circuit
P1 has now completed the transformation of the function
f into a boolean circuit cf . This circuit consists of binary
gates, and each of these gates has a truth table to compute
the gate’s output. The goal now is to garble these truth
tables and turn cf into the garbled version cg.
To show how the garbling of a gate’s truth table works, we
will look at a logical AND gate, let’s call this gate g&. The
initial truth table for g& is shown in figure 1a3. Then, P1

generates an encryption key for each possible boolean value
at each wire, so in total he generates six keys, two for each
input and output.
Afterwards, P1 encrypts all entries in the output column
(w2) with the help of the corresponding input keys. The
table of garbled values is given in figure 1b4, which also in-
cludes the final garbled value. In the figure, g& is the gate
identifier, which merely serves as a nonce to guarantee that
no duplicate encrypted values[17] appear in the whole cir-
cuit. Also, P1 reorders the entries of the garbled truth table
to further abstract from the original truth table.
The encryption serves two purposes. On the one hand, each
encryption produces a random output since it uses a cryp-
tographic hash function that is assumed to mimic a random
oracle. By doing so, it removes any correlation between
input and output values. Our example gate g& produces
three identical outputs, but all the resulting garbled values
are uniformly distributed and therefore they do not offer any
possibility to gather information about the actual values.
On the other hand, the encryption makes it impossible for

3Here, w0 and w1 are the gate’s inputs whereas w2 is the
output
4The terminology for the keys is as follows: kba means that
this is the key for wa having the value b

w0 w1 w2

0 0 0
0 1 0
1 0 0
1 1 1

(a) Original table

w0 w1 w2 garbled value

k00 k01 k02 H(k00||k01||g&)⊕ k02
k10 k01 k02 H(k10||k01||g&)⊕ k02
k00 k11 k02 H(k00||k11||g&)⊕ k02
k10 k11 k12 H(k01||k11||g&)⊕ k12

(b) After garbling

Figure 1: Truth table for g&

P2 to tamper with the circuit during the evaluation process,
as she will not be able to obtain any additional values than
those she is intended to receive, because she will not get the
keys for the respective inputs.
P1 will garble the complete circuit, gate by gate and pass on
the output values to the next gate, except for the final out-
put gates, which do not need to be garbled as they display
the actual function output which is to be learned by both
participants, so P2 can learn this value.

4.2.3 Transmitting the garbled values
After generating the garbled circuit cg, P1 needs to also cre-
ate a garbled version of his input x1. First, he will transform
x1 into the boolean value which corresponds to the inputs
for the original circuit cf . Then, he will replace each bit in
this boolean value with the key for the corresponding input
to cg. Assume the following example, considering the gate
example g& from figure 1: the first bit of P1’s input is des-
tined for w0 and the value of this bit is 0. Then P1 would
select the corresponding key k00. This replacement is done
for all of P1’s input and finally results in a garbled version
of P1’s input. This value is then sent to P2, along with the
garbled circuit cg.

4.2.4 Receiving P2’s garbled input
P2 now has cg and a garbled version of P1’s input, but still
needs a garbled version of her own input to be able to ac-
tually evaluate the garbled circuit. In the garbling process
described in 4.2.2, P1 has constructed the garbled values for
P2’s possible inputs but does not have knowledge about P2’s
actual input. P2, on the other hand, knows her own input,
but can not determine the keys generated for these input
values.
This is where 1-out-of-2 Oblivious Transfer as described in
3.1 comes into play. For each of P2’s input bits, she engages
in an Oblivious Transfer to receive the garbled value corre-
sponding to her input. In this case, P1 is the sender and
P2 is the receiver, P1 inputs (k0i , k

1
i), where i is the current

wire’s identifier, and P2 inputs either 0 or 1, depending on
the actual input. That way, P2 learns a full garbled version
of her input without either P2 learning more than needed
about the circuit or P1 learning P2’s input, and is then able
to compute the circuit.

4.2.5 Circuit evaluation
Now that P2 has received her garbled input, she can look up
the value for each output wire. Since she has no idea which
table entry they belong to, she has to try the decryption
for all four possible outputs. Provided that the protocol has
been followed correctly by both parties, only one decryption
will work, all others will result in ⊥. The result is then
used as input for the next gate in the circuit, or the output.

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

73 doi: 10.2313/NET-2016-09-1_10

A short example: again, we look at our example gate g&.
Assume P2 has looked up the input keys k00 for w0 and k11
for w1. She then computes H(k00|k11|g&), and by ⊕-ing that
value with the garbled output value from the truth table,
she receives the value for k02

5, which is then carried over to
the next gate and used as input key.
This procedure continues through the complete circuit, until
finally, the circuit outputs the resulting bits to P2 who then
assembles them into the correct output for f . To complete
the protocol, P2 has to output the value to P1.

4.3 Evaluation
In this section, we evaluate Yao’s original protocol with re-
spect to mainly two aspects, security and performance. In
a later section, we will provide improvement proposals that
have been found in recent research for these two aspects.
We will then also evaluate these improvements with respect
to their feasibility.

4.3.1 Security
As mentioned above, Yao’s protocol is secure against semi-
honest adversaries, but not against malicious ones. That
finding is quite trivial to observe. On the one hand, the OT
protocol we introduced is only secure against semi-honest
adversaries, and on the other hand, there exist other points
during execution where one of the parties could gather addi-
tional information by just not following the protocol. There
are various possible attack points for malicious adversaries
in Yao’s protocol, a malicious P1 could generate a corrupt
circuit cg computes a value different from the original func-
tion f , and also, one party could send over corrupt values to
allow for some reverse engineering to get the other party’s
input, for example. The model of the semi-honest adver-
saries is not realistic in a real-world context, as we can not
expect a communicating party that we do not trust with our
input to not take the chance of stealing it by deviating from
the protocol. At least, we need to develop a mechanism to
discover malicious behavior.

4.3.2 Performance
The GCP presented above solves the SFE problem in poly-
nomial time, at least against semi-honest adversaries6. But
there exist SFE problems that demand for the generation of
circuits with possibly over 1 billion gates[7]. Each gate in
this circuit is represented and stored as four output keys (one
for each wire-value combination), each key being a multi-
byte string. Assuming a key length of 160 bit (e.g. with
SHA-1 as hash function), this yields a total circuit size of
about 800 megabytes for the billion-gate circuit. Each P1

and P2 need to keep this circuit stored during execution,
and the complete circuit needs to be transferred from P1 to
P2. This leads to different possible enhancement points for
performance. The first one is optimizing the communica-
tion between the two parties to lower the amount of data
that needs to be exchanged, then we could improve how P2

evaluates the circuit, and we could develop a better way of
constructing the circuit. We will show an example method
for each of these fields in the following section.

5This is possible since ⊕ is self-inverse
6After applying the enhancements proposed in 5.1, this also
holds true against malicious adversaries

5. POSSIBLE ENHANCEMENTS
As we have shown in the previous section, the GCP still
has some weaknesses considering security and performance,
which this section is seeking to abolish or at least improve.

5.1 Security
Here we introduce some solutions from recent research that
attempt to solve these problems. For each of these areas,
there are many different solutions that sometimes take com-
pletely different approaches, but we will limit the explana-
tion and only introduce one protocol version at most.

5.1.1 Securing Oblivious Transfer
In this section, we introduce a protocol to secure OT against
malicious adversaries as described in [1]. This protocol is
based on the Diffie-Hellman[2] assumption: with a given gx

and gy without knowledge of x or y, computing gxy is hard.
The protocol steps are listed below.
Let p be some prime number, g a generator for the group
Z∗p 7 and C some element in Z∗p. Assume that the tuple
(p, g, C) is known to everyone, but the discrete logarithm of
C is kept secret. Also, we have the sender S holding two
strings {s0, s1} and the receiver R wishing to receive si with
i ∈ {0, 1} as in our original OT protocol.
Before the actual OT starts, R needs to generate his public
key. He does so by randomly picking i ∈ 0, 1 and xi ∈
{0, . . . , p − 2} and then calculating βi = gxi and β1−i =
C · (gxi)−1. Then, β0 is R’s public key with xi being the
corresponding private key. We observe that the equation
β0β1 = C holds, therefore it is possible for S to check that
R’s public key is correct. Also, since the discrete logarithm
of C is not known, R can not know the discrete logarithms of
both β0 and β1, but only for the βi that has been generated
to be the working public key with xi being the corresponding
logarithm. In addition to that, S can not find out which βi
R knows because they are randomly distributed8.
S now chooses random y0, y1 ∈ {0, . . . , p − 2}, calculates
α0 = gy0 and α1 = gy1 and sends them to R. In the same
course, S also initializes z0 = βy0

0 and z1 = βy1
1 and sends

r0 = s0 ⊕ z0 and r1 = s1 ⊕ z1 to R. Now, P2 can compute
zi = axi

i and is then able to retrieve si by computing si =
zi ⊕ ri.
Those who are familiar with the matter will recognize a great
similarity to a Diffie-Hellman key exchange which relies on
the possibility for two parties to generate a mutual key pad
without receiving the other party’s key part. To decrypt ri,
R needs to compute zi, which S initialized as zi = βyi

i , but
R does not have yi, only xi, and also αi = gyi . This makes

αxi
i = gy

xi
i = gyi·xi . In addition, recall that βi = gyi and zi

was constructed as βxi
i . This in return makes βyi

i = gx
yi
i =

gxi·yi , which is notably the equal to αxi
i , as multiplication is

commutative over Z∗p. Therefore, R can construct the same
pad as S and decrypt ri.

5.1.2 Better security in garbling process
We also need to secure the actual circuit construction, be-
cause the circuit constructing party could easily generate a

7As our working group is Z∗p, all arithmetic in this section
will be done mod p, so gx is actually short for gx mod p
8They are randomly distributed over the set of all tuples
(x, y) with x · y = C and x, y ∈ Z∗p

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

74 doi: 10.2313/NET-2016-09-1_10

corrupt circuit that, using a simple example, just outputs the
other party’s input (a simple example would be f(x, y) = y).
Therefore, we need to come up with a solution that forces
P1 to construct a correct and non-malicious circuit. An idea
of such a solution is given here, based on [12].
The mechanism we introduce here is called cut-and-choose.
Instead of just garbling the circuit, P1 now generates m gar-
bled versions ci of the circuit, but each of them is garbled
differently, i.e. with different keys for output encryption ev-
ery time. In addition, P1 also computes the corresponding
garbled inputs xi, with 0 ≤ i < m. Now, P1 also generates
a commitment Ci = H(xi) for each 0 ≤ i < m, where H
is some cryptographic hash function. Then, P1 sends all m
circuits to P2, along with the respective commitments Ci,
and also structural information, i.e. which keys have been
used on the respective gates.
P2 then randomly chooses a 0 ≤ j < m and has P1 de-garble
all circuits except for the jth one to inspect the other m− 1
circuits. If any of them is malformed, i.e. does not match
the garbled version, P2 assumes that P1 is malicious and
aborts the execution. If all circuits have been checked and
proven correctly formed, P2 continues to receive P1’s garbled
input like in a normal execution of the protocol. But first,
P2 verifies that P1 did not send a corrupt input by checking
if Cj = H(xj). If so, P2 aborts, else P2 assumes P1 is not
sending corrupt data and continues the protocol.
This example protocol is supposed to give an intuition of
the cut-and-choose concept, the concept can be further im-
proved by choosing a probabilistic approach as described by
Lindell and Pinkas in [11]. Instead of takingm−1 circuits for
proof of correctness, P2 will only check circuit correctness on
m/2 circuits, then compute the other half and take the ma-
jority result of this computation as correct output. Instead
of immediately aborting execution when a corrupt circuit
has been detected, P2 will continue evaluating all m/2 cir-
cuits and then take the majority result. To understand the
reasoning behind this, consider the following example: P1

constructs all circuits correctly, except a single one, where
the output is the actual function value ⊕’ed with P2’s first
input bit. Then, P1 could just observe if P2 aborts the
computation prematurely, thus has encountered the corrupt
circuit, or returns a value, then P1 can also draw conclusions
on P2’s input. A more detailed description of this attack can
be found in [17].

5.1.3 Corrupt inputs
By now, we have ensured that a malicious adversary can not
exploit the Oblivious Transfer phase, and also that the cir-
cuit has been constructed correctly. But an adversary could
still inject corrupt inputs to gain information from the other
party, as shown in this short example:
During the actual OT process, S is not able to find out any-
thing about R’s input, but this does not imply that S does
not have any other way to learn about R’s input. S can send
over the correct garbled value for 0, but a corrupt value for
1. If the requested value was 0, R will continue the protocol
execution, if not, R will notice the corrupt value and abort
due to our secured protocol. But either way, by watching
R’s behavior, S is able to find out which value S requested.
Again, Lindell and Pinkas have come up with a solution
to this security issue in [11]. Assume that S’s input is the
boolean form of x2 with |x2| being the number of bits. To
secure the protocol against leaking information to corrupt

inputs, we have P2 replace each bit of his input x2 by a
combination of XOR-gates that take s new input bits in-
troduced by P2. P1 can now no longer corrupt P2’s input,
but only the new inputs to the XOR-gates. The more new
bits P2 introduces, the more ways she has of constructing
her actual input through the XOR-gates.

5.1.4 Open Problems
Although these measures have abolished a lot of the security
issues of the original protocol, there are still a few remaining
that are yet to be solved for the malicious setting. One of
them is to make sure that P2 returns the correct result of
the circuit computation. By now, P2 could just send P1 a
wrong result for the circuit computation and keep the actual
result to herself, or even send no result at all, or the other
way around, P1 could leave the output encrypted and by
that force P2 to send the output, but then P1 could keep
the result to himself. A unilateral solution for this problem
is yet to be found, some work has been put into at least
making sure that a returned solution is correct.

5.2 Performance
In the last section, we have aimed to provide a more secure
version of Yao’s protocol, now we will try to improve the
protocol’s performance. But first, we need to give a few
thoughts on the terms performance and efficiency. Snyder
states that Yao’s protocol can be executed in polynomial
time, even with the security enhancements made in 5.1[17],
which is comparably performant and efficient by means of
execution time. But nevertheless, as mentioned before, the
protocol is very costly, even quite simple operations on com-
parably small operands demand for the generation of circuits
with possibly billions of gates, which for many cases is too
expensive and therefore makes the use of GCP in this situ-
ation impractical and nearly impossible.
We have in general three possible points in the protocol
where we could try to make the protocol execute more ef-
ficiently. These are optimizing the communication, i.e. re-
ducing the amount of data that needs to be exchanged, op-
timizing the actual execution time of each gate and finally
cutting unnecessary gates from the circuit by finding more
efficient circuit constructions

5.2.1 Optimizing communication traffic
The major cost generator in the GCP is in the most cases the
transmission of the garbled circuit from P1 to P2. Kreuter et
al. [9] have found that calculating the Levenshtein Distance9

of two strings of approximately 500 bytes requires around 5.9
billion gates. These gates are connected by wires, of which
each is represented by four keys. A key can be assumed to
be a multi-byte string, and even if you make the unrealistic
assumption that each key is one byte long, this still results
in the cg’s size exceeding 20 gigabytes (for our Levenshtein
distance example. So, we will first have a look at some
ideas on how to lower the transmission needs. Note that
this section will solely focus on communication optimiza-
tions, which sometimes might come with extra computation
9The Levenshtein Distance, also known as the edit distance,
is the minimum number of basic bit operations (insertion,
deletion, bit flipping) needed to transform one string into
another, and is not to be confused with the Hamming dis-
tance. It is commonly used as a benchmark for two-party-
computation.

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

75 doi: 10.2313/NET-2016-09-1_10

time, but this is acceptable since communication traffic is
making for the vast part of the GCP, because transmitting
data via a network is slower than processing the same data
on a CPU.
The procedure we will discuss here is called Random Seed
Checking and has originally been presented by Goyal et
al.[5]. In detail, this procedure consists of two parts that
each base on the same idea. We recall that the construc-
tion of the cg involves P1 assigning each wire in the circuit
a random value (see 4.2.2). Instead of doing so, we have
P1 choose a random seed and then construct the wire keys
deterministically based on that seed, like a pseudo-random
generator. For the second part of this version, we recall
the cut-and-choose procedure described in 5.1.2 to secure
the protocol in the presence of malicious adversaries, where
P1 would generate m semantically equivalent circuits and
corresponding commitments and then P2 would check the
correctness of m − 1 circuits to prove that P1 is not gen-
erating corrupt circuits. We also discussed the majority
result optimization to that concept, which will be further
enhanced performance-wise here. In this optimization, P1

will not send P2 m full circuits, but only the Random Seeds
that have been generated to deterministically build each cir-
cuit, and also a ”commitment”, that can, for simplification,
again be seen as some sort of Cryptographic Hash Function.
P2 then generates the m/2 circuits to check herself from the
seeds he got from P1

10. After the construction, P2 can check
a circuit’s correctness by checking the corresponding com-
mitment and will then, if the proof of correctness succeeded,
request the remaining m/2 circuits to evaluate and continue
as described before.

5.2.2 Optimizing Circuit Evaluation
After reducing the amount of communication traffic needed
for the exchange of the garbled circuits, we will reduce the
amount of resources needed for the actual circuit execution
with respect to execution time and computational power.
To delimit this section from the following one, in this sec-
tion we discuss improvements to the circuit execution that
can be applied without any changes to the circuit’s internal
structure.
The first approach towards achieving such optimization we
will discuss here is the Fast Table Lookups technique as de-
scribed in [7]11. The idea of this procedure is to facilitate
the gate evaluation for P2 by hinting her on which table en-
try for the next gate to use. In the original protocol, P2

needs to decrypt all four garbled output values to find out
which is the real one (the one value where the decryption
works). In this improved version, P1 appends an extra bit
to each garbled output value. The two extra bits from the
input wires form an index in the range {0, . . . , 3} that points
to the next encrypted value that can be decrypted with the
received input keys. Due to the fact that the table rows are
mixed, this does not constitute a security flaw, since there
is still no way to deduce the mapping of keys to wire values.
Another possible approach for execution optimization is aim-
ing to parallelize the execution. Normally, the protocol ex-
ecution is done in a linear manner, P1 generates the cir-
cuit (or possibly all m circuits when utilizing the cut-and-

10P1 also delivers any needed information about each circuit’s
structure

11The original concept has been postulated in [12].

choose procedure), while P2 is idle, because she needs the
circuits first to start her procedure. The idea of Pipelined
Circuit Execution has been originally presented by Huang
et al. in [7] where they came to the conclusion that it is
possible for P1 to parallelize the execution by sending P2

parts of the circuit as soon as possible, ideally right after
generating them, and P2 will start evaluating them, as long
as there are gates to which the input is available. First,
this reduces the amount of memory needed, since no party
is obliged to store the entire circuit in their memory, but
keeps on evaluating the gates. Additionally, it also reduces
the computation time, roughly according to the following
formula. Normally, the execution consists of the garbling
time (tgarble) plus the time needed for transmitting P2’s
garbled input via OT (tOT) and the time P2 needs to evalu-
ate the garbled circuit (teval), so the total circuit execution
time sums up to ttotal = tgarble + tOT + teval, whereas when
using circuit pipelining, the total execution time will only
be ttotal = max(tgarble, teval) + tOT

12. A major downside
of this proposed procedure is that it is only secure against
semi-honest adversaries per default[17], because it doesn’t
comply with the cut-and-choose strategy proposed in 5.1.2,
as this has P1 generate m circuits that need to be generated
and stored together for P2 to be able to choose a set of cir-
cuits to evaluate, the same also holds true for random seed
checking. Kreuter et al. have developed a solution to secure
pipelined execution against malicious adversaries where P1

has to generate each circuit twice, possibly using random
seed checking, once like he normally would, starting to send
the circuits to P2 right away, and again after P2 has chosen
which circuits he wants to evaluate [9].

5.2.3 Optimizing Circuit Construction
While in the last section, we presented concepts to execute
the circuit faster without actually altering it, we will try to
achieve improvements to the GCP’s resource needs by mak-
ing the circuit construction more efficient. The general idea
of this class of approaches is to significantly reduce the num-
ber of garbled values that need to be generated, stored and
exchanged.
The first approach to this is the trivial strategy of simplify-
ing the circuit and therefore having less gates to be garbled.
The main part of this approach is to remove inefficiencies
from the circuit, i.e. to eliminate partial circuits that al-
ways evaluate to a constant or that can be represented by
fewer gates. While this might sound like a simple and mi-
nuscule improvement, Pinkas et al. [15] have shown that it
is possible to improve Fairplay’s13 performance by 60 %.
Kolesnikov and Schneider[8] have developed another approach
that goes beyond simply reducing the number of gates that
are generated by the function-to-circuit transformation. They
introduce the possibility of replacing a garbled XOR gate
by a standard XOR operation, which they call the free XOR
technique. In the default protocol, P1 generates the garbled
values representing 0 and 1 for each wire at each gate at ran-
dom. When using the free XOR technique, we instead have
the values be generated in relation to XOR gates. This al-
lows P2 to simply execute a single XOR operation for each
such gate instead of the lookup and decryption of values
from the garbled truth tables. The following description of

12At least in the ideal case.
13Fairplay will be introduced in 6.1

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

76 doi: 10.2313/NET-2016-09-1_10

the free XOR algorithm is taken from Snyder[17].
Let k be the length of the garbled values generated for
the circuit. We have P1 generate a secret k-bit integer
K ∈ {0, 1}k. Let G be the set of all XOR gates contained
in the generated circuit, and g such a gate with two input
wires, of which the input values are delivered by the two
gate gin0 and gin1 . Also, let kbini

be the key that corre-
sponds to the input gate gini having the value b ∈ {0, 1}.
Then, set k1in0

= K ⊕ k0in0
and k1in1

= K ⊕ k0in1
for all gates

g ∈ G and replace the gate g with some function that re-
turns kin0 ⊕ kin1 . This eliminates the need to hold garbled
truth tables for all XOR gates and thus reduces the size of
the garbled circuit by |G| · |k|, with k again being the size of
a garbled value in the circuit. A more detailed example of
how to derive the correct output values using the XOR op-
erations is given by Kolesnikov and Schneider in their paper
on free XOR[8].

5.3 Combining different strategies
As we mentioned before, some of the proposed improve-
ments conflict with each other because they are doing dif-
ferent approaches to different fields of problems, and the
respective measures contradict each other. In some cases,
the different strategies don’t interfere with each other, but
other concepts might not be feasible at the same time by de-
fault. In these cases, additional effort needs to be taken to
make the different concepts work together. We already dis-
cussed the possibility of running pipelined circuit execution
together with a cut-and-choose approach, and the necessary
additional computation load in this case about doubles the
effort, as P1 needs to generate each circuit twice. So, be-
fore blindly applying different improvements to an imple-
mentation of the GCP, one needs to consider potential side
effects the enhancements have on each other. For some im-
provements that initially contradict each other, there exist
solutions to make a parallel application of two conflicting
approaches possible, but this requires the development of
additional strategies dedicated to this single purpose. An-
other example where such extra work is needed is combining
Huang et al.’s Fast Table Lookups and the Free XOR tech-
nique[17]. The free XOR technique is not trivially capable
of handling the extra bits appended to the output to directly
determine the next table entry used, and the solution to this
problem presented by Kreuter et al.[9] requires some more
effort and will thus not be discussed here, it is just used as
an example to illustrate the difficulties that come with the
desire to implement multiple enhancement strategies.

6. IMPLEMENTATIONS
Originally, Yao developed his GCP as a theoretical concept,
and for a long time, an actual implementation of the pro-
tocol did not seem possible as the needs in computation
power and memory consumption were apparently too expen-
sive to afford a working implementation. But, as predicted
by Moore’s Law[14], the number of transistors on integrated
circuits and thus the computational power grew exponen-
tially over the years, and so did the possibility of realizing
a computation-intensive protocol like the GCP. So, in this
section we will present some actual implementations. The
principle is similar throughout the different approaches, they
offer the possibility to enter the function to be computed in
a high-level language and compile those to a language dedi-

cated to describing boolean circuits, which are then garbled
and sent.

6.1 Fairplay
When new versions of the GCP are developed, the develop-
ers almost always compare them to the Fairplay [12] imple-
mentation. Malkhi et al. developed the approach in 2004,
and it is considered one of the first ever implementations for
the GCP. Recent implementations use Fairplay as a bench-
mark for comparison, and build upon it. Fairplay imple-
ments the simple cut-and-choose strategy proposed in 5.1.2
to provide basic security against malicious adversaries, and
also uses the Fast Table Lookups technique. It uses its own
Secure Function Definition Language (SFDL) and is com-
piled to VHDL-like Secure Hardware Definition Language
(SHDL) that describes the circuit, which is then output as
a Java object. The sample problems that were used to test
and evaluate the Fairplay implementation can be considered
rather simple: the ”Billionaires’ Problem”, a version of the
Millionaires’ Problem with larger numbers, a bitwise AND
operation, a database search for keyed elements and find-
ing the median of two arrays of size 10. The latter problem
required the construction of 4383 gates and a computation
time of 7.09 seconds[12]. The problems might have been
simple, but Fairplay was certainly a proof of concept for the
possibility of implementing Yao’s GCP.

6.2 Huang et al.
In [7], Huang et al. present an implementation that aims
to achieve a high performance above all. They implemented
various performance enhancements that we have presented
in this paper, such as the Fast Table Lookups, Free XORs or
Pipelined Circuit Execution, which led to astonishing com-
putation speedups, but they only focused on performance,
meaning they did not secure their protocol against mali-
cious adversaries. In contrary to Fairplay, Huang et al.
tested their protocol against more difficult problems and
compared them to the previously best known implemen-
tation solving the respective problem.They used problems
such as the Hamming Distance of 900 bit strings where they
achieved an overall speedup of 4100 times (213 seconds to
0.051 seconds)[7], the Levenshtein Distance of 200 bit strings
which produced the largest computed circuit with over 1 bil-
lion gates, or AES-128. AES had already been implemented
using garbled circuits by Pinkas et al. [15] using Fairplay ’s
SFDL, but Huang et al. follow a different approach by ori-
enting towards the traditional AES code. A complete de-
scription of their AES approach would be beyond the scope
of this paper, though.

6.3 Kreuter et al.
Kreuter et al.[9] again focused on developing an implementa-
tion for security against malicious adversaries. They created
an own language for entering functions, such as Fairplay did
with the SFDL, and also a new compiler that they compared
against the Fairplay compiler and which brought a vast
speedup in generating larger circuits. Snyder labels Kreuter
et al.’s implementation the ”state of the art”[17] when it
comes to providing an implementation of the GCP that is
secure against malicious adversaries, they implemented all
of the aforementioned security enhancements (5.1) and also
all performance improvements (5.2), they also developed ad-
ditional techniques to employ strategies that were originally

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

77 doi: 10.2313/NET-2016-09-1_10

contradicting each other (see 5.3). They evaluated their sys-
tem against typical ”benchmark problems” such as AES or
the Levenshtein distance, as mentioned before, where they
used two 4095-bit strings as input and computed the result-
ing circuit consisting of over 5.9 billion gates in 8.2 hours,
which they compared to Huang et al.’s implementation that
computed the result faster, but is only secure against semi-
honest adversaries.

6.4 Mood et al.
The implementation we will present in this section is slightly
different from the others, as it is written to make using the
GCP on mobile devices possible. Mood et al.[13] wanted
to adapt to the trend of smartphones becoming increas-
ingly popular in 2012 and took the challenge of creating
a GCP port for Android. They used Fairplay ’s SFDL to de-
fine functions and a specialized Pseudo Assembly Language
Compiler (PALC) to compile to Pseudo Assembly Language
(PAL). The PALC was designed specifically for Android de-
vices and provides a significant improvement over a direct
Fairplay port. On Android devices, the problem size is not
only limited by execution time and memory, but in addition
also by Android itself restricting the file size to 4 GB[13].
Mood et al. evaluated their implementation on 2011 made
HTC Thunderbolts, which have 768 MB of RAM, which is
significantly lower than todays Android phones have avail-
able, so it is possible that larger circuits are feasible on to-
day’s Android phones than have been in 2012. In addition
to the usual benchmarking process of evaluating their im-
plementation against various problems, they also developed
an actual Android application where a user can on the one
hand solve the same benchmarking problems as Mood et al.
did and on the other hand engage a password vault where
a password can be encrypted and only unlocked if the two
parties that created the vault enter their password.

7. CONCLUSION
The goal of this paper was to give the reader a firm un-
derstanding of Yao’s GCP and all its basics, along with an
overview of enhancements that have been introduced during
the 30 years since this protocol was first introduced. We
also presented some state of the art implementations that
might be further developed into an actual GCP-based se-
curity framework in the following years, with computation
power still growing, although Moore’s Law might no longer
be applicable[18]. It is to be noted that SFE is an open re-
search field in cryptography, and there is a lot of effort put
into developing new approaches to SFE as well as to further
enhancing the GCP.

8. REFERENCES
[1] M. Bellare and S. Micali. Non-interactive oblivious

transfer and applications. In Advances in Cryptology –
CRYPTO ’89 Proceedings, pages 547–557. Springer,
1989.

[2] W. Diffie and M. E. Hellman. New directions in
cryptography. In IEEE Transactions on Information
Theory, pages 644–654. IEEE, 1976.

[3] O. Goldreich. Secure multi-party computation.
Manuscript. Preliminary version, pages 86–97, 1998.

[4] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proceedings of the

nineteenth annual ACM symposium on Theory of
computing, pages 218–229. ACM, 1987.

[5] V. Goyal, P. Mohassel, and A. Smith. Efficient two
party and multi party computation against covert
adversaries. In Advances in Cryptology -
EUROCRYPT 2008, pages 289–306. Springer, 2008.

[6] C. Hazay and Y. Lindell. Efficient secure two-party
protocols: Techniques and constructions. Springer
Science & Business Media, 2010.

[7] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In USENIX Security Symposium, volume 201, 2011.

[8] V. Kolesnikov and T. Schneider. Free xor gates and
applications. In Automata, Languages and
Programming, pages 486–498. 2008.

[9] B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate
secure computation with malicious adversaries. In
Proceedings of the 21st USENIX conference on
Security symposium, pages 14–14. USENIX
Association, 2012.

[10] Y. Lindell. Secure two party computation in practice.
lecture given at technion-israel institute of technology
tce summer school 2013, 2013.
https://www.youtube.com/watch?v=YvDmGiNzV5E.

[11] Y. Lindell and B. Pinkas. An efficient protocol for
secure two-party computation in the presence of
malicious adversaries. In Advances in Cryptology -
EUROCRYPT 2007, pages 52–78. Springer, 2007.

[12] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al.
Fairplay-secure two-party computation system. In
USENIX Security Symposium, volume 4. San Diego,
CA, USA, 2004.

[13] B. Mood, L. Letaw, and K. Butler. Memory-efficient
garbled circuit generation for mobile devices. In
Financial Cryptography and Data Security, pages
254–268. Springer, 2012.

[14] G. E. Moore. Cramming more components onto
integrated circuits. In Proceedings of the IEEE,
volume 86, pages 82–85, 1986.

[15] B. Pinkas, T. Schneider, N. P. Smart, and S. C.
Williams. Secure two-party computation is practical.
In Advances in Cryptology–ASIACRYPT 2009, pages
250–267. Springer, 2009.

[16] M. O. Rabin. How to exchange secrets with oblivious
transfer. IACR Cryptology ePrint Archive, 2005:187,
2005.

[17] P. Snyder. Yao’s garbled circuits: Recent directions
and implementations, 2014.

[18] M. M. Waldrop. http://www.nature.com/news/
the-chips-are-down-for-moore-s-law-1.19338.
Accessed: 2016-06-20, 10:21.

[19] A. Yao. How to generate and exchange secrets. In
Foundations of Computer Science, 1986., 27th Annual
Symposium on, pages 162–167. IEEE, 1986.

[20] A. C. Yao. Protocols for secure computations. In
Foundations of Computer Science, 1982. SFCS’08.
23rd Annual Symposium on, pages 160–164. IEEE,
1982.

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

78 doi: 10.2313/NET-2016-09-1_10

