
QUIC - Quick UDP Internet Connections

Florian Gratzer
Betreuer: Sebastian Gallenmüller, Quirin Scheitle

Seminar Innovative Internet-Technologien und Mobilkommunikation SS2016
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: florian.gratzer@tum.de

ABSTRACT
QUIC is a transport protocol on top of UDP, developed by
Google. It uses mechanisms of TCP and introduces new
features not used by other transport protocols. QUIC is
optimized to be used for HTTP/2 connections and aims to
reduce the end-to-end latency. QUIC works best (compared
to TCP) for slow connections with high latency. This pa-
per addresses the problems of TCP and the mechanisms of
QUIC are discussed. QUIC packet and frame types are ex-
amined. The performance of HTTP over QUIC is compared
to HTTP over TCP and HTTP + SPDY over TCP. The re-
sults show that QUIC is not better than the other protocols
in all scenarios, but it can outperform TCP under certain
network conditions.

Keywords
QUIC, Quick UDP Internet Connections, TCP, UDP, Layer
4, Google, Transport Protocol, HTTP/2, congestion control

1. INTRODUCTION
These days, the Internet is used for read the latest news or
watching videos on platforms like YouTube. When the page
load time is high, the user experience can become very bad.

In the last years, many approaches were considered to make
Internet surfing faster. Internet Service Providers (ISPs) try
to reduce page load times by increasing the bandwidth and
using faster networking devices. Developers of web browsers
tempt to make their software more efficient. Google’s recent
approach is to reduce the latency in the middle of the OSI
model, namely in Layer 4, called Transport Layer.

Today, TCP and UDP are the most used protocols in the
Transport Layer. While TCP is connection oriented, UDP is
connectionless. Both protocols have advantages and disad-
vantages. TCP provides a reliable connection, but the TCP
three-way handshake increases the latency for establishing
a connection. This can be problematic for short living con-
nections. In contrast, UDP establishes no connection, which
results in a fast, but unreliable data transfer. To unite the
advantages of both protocols, Google is developing a new
transport protocol called QUIC - Quick UDP Internet
Connections [8].

According to Google, QUIC performs better than TCP in
scenarios with high Round Trip Time (RTT) and at least
as good as TCP in most other scenarios [4]. This claim
will be evaluated in Section 10. The most important differ-

ences between TCP and QUIC connections are that QUIC
connections are always encrypted and connection establish-
ment takes 0 RTTs when a server is known by a client and
1 RTT for the first connection to an unknown server. Figure
1 shows the connection establishment of QUIC compared to
the TCP three-way handshake [10].

Figure 1: Connection Establishment of TCP and
QUIC

TCP cannot be used to establish an encrypted connection
within 0 RTT. Consequently, a different protocol is used as
Transport Layer protocol. Therefore UDP is used, because it
is already supported by most devices. Google’s services like
YouTube are already supporting QUIC , as well as Google’s
Browser Chrome [6]. In 2016, QUIC is still in development,
so it is likely that the protocol changes in the near future.
For this reason, Internet drafts of the IETF are used as
sources instead of RFCs. These drafts can be updated or
replaced by other documents at any time [9, 14].

This paper discusses the mechanisms of QUIC compared
to TCP. Moreover, the QUIC packet and frame types are
observed and the performance of QUIC is evaluated.

2. OVERVIEW OVER QUIC
QUIC is a transport protocol built upon UDP, designed to
be used mainly for HTTP/2 [10], but it can be used by
every application layer protocol. It is developed by Google
and aims to reduce the connection establishment latency
[10]. In contrast to TCP and UDP, QUIC connections are
always encrypted and authenticated (see Section 5.7). The
handshake is inspired by the handshake of TLS [5]. QUIC
can be compared to TCP + TLS + HTTP/2. According to
Google, QUIC has a better congestion control compared to
TCP [10]. In Section 10, different scenarios are considered
to evaluate this claim.

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

39 doi: 10.2313/NET-2016-09-1_06



3. PROBLEMS OF TCP
Today, TCP is widely used. It is more reliable than UDP
but nevertheless it has several problems, especially when us-
ing it for HTTP/1.1. When designing a protocol based on
TCP, these problems have to be addressed. To establish
a TCP connection, the TCP three-way handshake is used.
This handshake increases the connection establishment la-
tency significantly. This is not problematic for long lasting
connections, but can decrease the user experience for web
surfing significantly. HTTP/1.1 uses a new TCP connection
for each fetched URL [17].

Another problem is that a TCP segment can only carry a
single HTTP/1.1 Request/Response. Consequently it is pos-
sible that a large number of small segments are sent within
an HTTP/1.1 session. This can lead to a large overhead.

Also, HTTP/1.1 transfers are always initiated by the client
[17]. This decreases the performance of HTTP/1.1 signifi-
cantly when loading embedded files, because a server has to
wait for a request from the client, even if the server knows
that the client needs a specific resource [7].

The last problem discussed in this Section is Head-of-line
(HOL) blocking. It occurs, when a packet is lost and consec-
utive packets arrive at the destination. The receiving host
has then to wait for the retransmission of the lost packet
until it can process consecutive packets, which arrived at
the host without a loss. In scenarios like video streaming, a
small number of lost packets do not have a notable influence
on the user experience. Nevertheless, a TCP receiver has to
wait for the lost packet before it is able to continue playing
the video.

One way to overcome this problem with TCP is to open mul-
tiple connection between the same endpoints. This can work
satisfyingly for a small number of connections, but when too
many connections are opened, the connections tend to oscil-
late between very small and too large congestion windows
when losses occur. This leads to a bad throughput and a
bad user experience.

4. TCP MECHANISMS IN QUIC
Although QUIC uses UDP, many mechanisms are inspired
by TCP. QUIC uses acknowledgments like TCP to inform
the sender, that segments arrived at the receiver. The con-
gestion control and loss recovery of QUIC is a reimplemen-
tation of TCP cubic with additional mechanisms [10]. TCP
Cubic is optimized for high bandwidth networks with high
latency [2]. In this section, the most important mechanisms
of TCP used in QUIC are discussed. More can be found in
the according Internet draft [14]. The mechanisms not used
in TCP are focused in Section 5. QUIC uses a retransmis-
sion timer. Each segment, which is not acknowledged within
this timer is considered to be lost (exceptions are discussed
in Section 4.3).

QUIC also distinguishes between two phases: Slow Start and
Congestion Avoidance. In the Slow Start phase, the conges-
tion window grows exponentially, while it grows linearly in
the Congestion Avoidance phase. A new connection always
starts in the Slow Start phase until a loss occurs. After
a loss, usually the congestion window the Fast Retransmit

mechanism triggers and the connection changes to/stays in
the Congestion Avoidance phase (more details in Section
4.1) [16].

4.1 Fast Retransmit
Fast Retransmit is a mechanism to avoid retransmission
timeouts (RTOs). It triggers, when the sender receives three
duplicate acknowledgments (ACKs) (this threshold is used
in TCP as well as in QUIC) [4, 16]. A duplicate ACK is
an acknowledgment for a segment, which has already been
acknowledged and indicates a packet loss. When a RTO
occurs, the congestion window is set to one maximum seg-
ment size (MSS), while the Fast Retransmit mechanism sets
the congestion windows (and the Slow Start threshold) to a
value dependent on the value it was before the loss. Also,
the connection stays in the Congestion Avoidance phase and
does not start with a new Slow Start as it is done after a
RTO. According to evaluations by Google, over 99% of the
packet losses are recognized by duplicate ACKs and so the
Fast Retransmit mechanism kicks in in most cases [10].

4.2 Tail Loss Probe (TLP)
When a receiver does not receive the last segment of a trans-
mission, Fast Retransmit cannot be triggered, because the
receiver needs to receive (any) segments to identify the loss
and therefore to send duplicate ACKs. To overcome this
problem, QUIC uses Tail Loss Probes (TLPs). Before a
RTO, the sender sends two TLPs containing the last unac-
knowledged segment [4]. The receiver then triggers the fast
recovery mechanism [21].

4.3 Forward RTO-Recovery (F-RTO)
F-RTO aims to avoid unnecessary retransmissions to im-
prove the performance of TCP/QUIC. TCP and QUIC use
two mechanisms to trigger retransmission. As described in
Section 4.1, Fast Retransmit kicks in, when the sender re-
ceives three duplicate ACKs. The second reason for retrans-
missions are RTOs. After RTOs, a sender sets the congestion
window to one MSS and continues with a new Slow Start
phase.

It is possible that a RTO occurs, even without a packet loss
[18]. There are several reasons for spurious retransmissions,
including delay spikes in mobile networks and different pri-
orities of the sent data from the sender and the acknowl-
edgments of the receiver [18]. After reducing the congestion
window caused by delayed (but not lost) ACKs, the delayed
ACKs reach the sender. As a result of the reduced conges-
tion window, the ACKs are not inside the congestion window
and trigger additional spurious retransmissions [18]. QUIC
avoids this problem by not reducing the congestion window
(and the Slow Start threshold) until the sender receives a
subsequent ACK [4].

5. QUIC IMPROVEMENTS
As discussed in Section 4, QUIC’s congestion control is in-
spired by TCP and therefore uses mechanisms of TCP. Ad-
ditionally, QUIC uses mechanisms not used in TCP. Not all
new mechanisms of QUIC are discussed in this paper and
can be found in the Internet draft about QUIC’s congestion
control [4]. All mechanisms are pluggable, so QUIC can be
configured to fit best in different scenarios.

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

40 doi: 10.2313/NET-2016-09-1_06



5.1 Faster Connection establishment
When a QUIC client connects to a QUIC server for the first
time (currently a server is identified by its IP address and
UDP port [6]) it sends an empty, so-called inchoate, Client-
HELO (CHLO) [10]. The server then responds with a re-
jection (REJ) including the server configuration and certifi-
cates [10]. The client uses this information to send another
CHLO (can already contain application data) which is then
accepted by the server (provided the versions of client and
server are compatible) and all consecutively sent data are en-
crypted and authenticated [10]. When the server is known
by the client, this inchoate CHLO is not needed, resulting
in a 0 RTT handshake instead of the 1 RTT handshake for
unknown server. More details about the handshake can be
found in the QUIC Internet draft [9].

5.2 Multiplexing
TCP uses TCP ports and IP addresses (of both endpoints) to
identify a connection, when Multipath TCP is not used. So
it is not possible for a client to communicate with a server
over multiple ports via a single connection. In contrast,
QUIC uses a 64 bit connection identifier (which is randomly
selected by the client) [5]. Within these connections, mul-
tiple streams are used to transport segments. This allows
clients to establish connection mobility across IP addresses
and UDP ports [14]. It is also possible to use multiple ports
for an application, but the application has then to listen to
all these UDP ports, because QUIC uses UDP as Layer 4
protocol. Connection IDs also allow connection migration.
Thus, a connection can stay established, even when the IP
address of one of the endpoints changes.

The support of multiple streams within a single connection
also addresses Head-of -line blocking by sending independent
data via different streams. All streams are identified by a
stream identifier (stream ID) and can be established by the
client or the server. To avoid collisions, the stream ID has to
be even, when the client initiates the stream and odd when
initiated by the server. Each participant has to increase the
stream ID monotonically for new streams [14]. The stream
IDs 0-3 are reserved. QUIC provides flow control on stream-
and connection level.

5.3 Monotonically Increasing Sequence Num-
bers

TCP uses the same sequence numbers for retransmitted seg-
ments. This leads to the problem, that a host cannot dis-
tinguish between original and retransmitted segments. Con-
trary, QUIC uses a monotonically increasing sequence num-
ber for every segment, also for retransmitted ones, resulting
in unique sequence numbers [14]. This helps to estimate the
RTT more accurately, because the RTT can also be calcu-
lated for delayed ACKs. TCP can use an extension called
Timestamps to distinguish between original and retransmit-
ted segments too [22].

User data is transferred within stream frames (see Section
7). This frames also contain sequence numbers, which stay
the same for retransmitted data [6].

5.4 Better Signaling
QUIC has a more verbose signaling than TCP. As focused
in Section 5.3, all packets get a new sequence number, even
retransmitted ones. Therefore every sequence number is
unique, and a receiver can distinguish between an origi-
nal packet and its retransmitted equivalent. As a result,
a sender can calculate the RTT more accurately, because it
can recognize the difference between a delayed ACK and the
ACK of the retransmitted packet.

TCP uses cumulative ACKs. This means that all segments
with a sequence number smaller than an acknowledged packet
are also acknowledged. To reduce the amount of ACKs, only
the packet with the highest sequence number in the receive
window is acknowledged. As a result, the sender has to wait
a whole RTT to notice the loss or to unnecessarily retransmit
received packets [15].

To overcome this problem, TCP has the option to use Se-
lective Acknowledgments (SACKs). SACKs are used by the
receiver to inform the sender, which packets are received, so
a sender can retransmit lost segments. More details can be
found in RFC 2018 [15].

QUIC uses Negative Acknowledgments (NACKs) instead of
SACKs with a bigger range (up to 255 instead of 3) [9]. Neg-
ative Acknowledgments report lost packets directly instead
of implicating it by not getting acknowledged. Although
NACKs and SACKs are different approaches to report lost
packets, the result is comparable. The larger range of QUIC
NACKs compared to TCP SACKs is advantageous for large
receive windows.

5.5 Forward Error Correction (FEC)
QUIC can use Forward Error Correction (FEC) to recon-
struct lost packets [14]. A scheme similar to RAID systems
using XOR operations is used for this purpose. This ap-
proach for reconstructing packets is simple and therefore ef-
fective, but it cannot reconstruct lost packets when multiple
packets are lost within a group. As it will be discussed in
Section 10 this feature can have a negative effect when the
loss rate is low or too high [13].

5.6 Packet Pacing
TCP tries to send data as fast as possible. When data is sent
too fast, losses are very likely. When a loss occurs, and Fast
Retransmit kicks in, the congestion window is decreased.
Then the congestion windows grows again until the next
loss occurs. This can result in a very bursty transmission
[23].

Packet Pacing is an approach to make the transmission less
bursty by not sending at full rate. This has usually a positive
effect in scenarios with low bandwidth, but it can decrease
the overall throughput for fast connections (see Section 10).
Packet Pacing is also used for TCP by some Linux kernels.

5.7 Authentication and Encryption
TCP Headers (and the payload, as long as no other pro-
tocols are used) are neither encrypted nor authenticated.
Conversely, QUIC packets are always encrypted (except for
the public header, see Section 6) and authenticated (includ-
ing the public header) after the connection is established.

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

41 doi: 10.2313/NET-2016-09-1_06



This also includes IP spoofing protection. The handshake
is inspired by TLS. More details can be found in the QUIC
crypto documentation [11].

6. PACKET TYPES AND HEADER FORMAT
QUIC differentiates between two types of packets: Regular
Packets and Special Packets. Special Packets can either be
Version Negotiation Packets or Public Reset Packets. Regu-
lar Packets are divided into Frame Packets and FEC Packets
(see Section 5.5). QUIC packets have two different headers:
an unencrypted Public Header and an encrypted Private
Header. More information about these headers can be found
in the according Internet draft [9].

6.1 Public Header
Figure 2 shows the Public Header of Regular Packets. Spe-
cial Packets also have a Public Header with a slightly diffe-
rent design. The flag field, which is the same for all packet
types is shown more in detail in Figure 3:

Figure 2: QUIC Public Header (Numbers in bits)
[9]

Figure 3: Flag Field in QUIC’s Public Header
(Numbers in bits) [9]

Public Flags: The Version flag is interpreted differently,
depending on the sender of the packet (client or server).
When set by the client, the packet includes the QUIC Ver-
sion field. A client has to set this flag until it receives a
packet from this server without setting this flag. When Ver-
sion is set by the server, it indicates that the packet is a
Version Negotiation Packet.

The Reset flag is set for Public Reset Packets. When both,
Version and Reset are set, the packet is treated as Public
Reset Packet.

The Connection ID Size and Packet Number Size determine
the length of the according header field. The exact interpre-
tation can be found in the according Internet draft.

The last two bits are unused and reserved for future use.
More details can be found in the QUIC Internet draft.

Connection ID: A randomly generated identifier, used to
identify the connection instead of the four-tuple (source IP
address, source port, destination IP address, destination
port) used by TCP.

QUIC Version: This field is only present, when the Ver-
sion flag is set and is used by the client to propose a QUIC
version to be used when establishing a connection.

Packet Number: Used to identify packets. As described
in Section 5.3, each packets gets a unique identifier, even
retransmitted ones.

6.2 Regular Packets
Regular Packets are always encrypted (except for the pub-
lic header) and authenticated (including the public header).
All regular packets have a common Private Header format.
This header starts directly after the Public Header and is
followed by the payload, which has a different format for
Frame Packets and FEC Packets. The Private Header is
shown in Figure 4:

Figure 4: Private Header Format (Numbers in bits)
[9]

Private Flags: The Entropy flag indicates that this packet
contains the 1 bit of entropy in frame packets or the result of
the XOR-Operation of the entropy flag of the other packets
in the FEC group when it is an FEC Packet. The FEC
Group flag determines whether FEC is used and therefore if
the FEC field is present. The last flag (FEC ) is set for FEC
packets.

FEC: This field is used to determine, which packets belong
to the same FEC group. The value in this field is the offset
from the first packet in the FEC group to this packet.

6.2.1 Frame Packet
Frame Packets carry the actual application data within a
connection. The payload is located directly after the Private
Header and formatted as shown in Figure 5:

Figure 5: Frame Packet Format [9]

Type: Specifies the Type of the Frame. The Frame types
are focused in Section 7.

Payload: Payload of the frame, is dependent on the type
of the frame.

6.2.2 FEC Packet
Regular Packets with the FEC flag set are FEC Packets
and contain the result of the XOR-Operation of the Frame
Packets of the same FEC group.

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

42 doi: 10.2313/NET-2016-09-1_06



7. FRAME TYPES
QUIC differentiates between Regular Frame Types and Spe-
cial Frame Types. The frame types are not discussed in
detail in this paper, a detailed list of all frame types and
the values of the field type for the according frame type can
be found in the QUIC Internet draft. Not all frame types
are used in the current implementation (see description of
according frames) [9].

7.1 Regular Frame Types
Regular Frames can either be Stream, Acknowledge or Con-
gestion Feedback Frames.

Stream Frames: Used to send data over a stream and to
(implicitly) create a stream.

Acknowledge Frames: Used to signal that a packet (not
necessarily a Frame Packet) has been received or is missing.
The exact format can be found in the QUIC Internet draft.

Congestion Feedback Frame: Currently not used. De-
signed to provide additional congestion feedback in future
implementations.

7.2 Special Frame Types
In Addition to the Regular Frame Types, the following Spe-
cial Frame Types are specified.

Padding Frame: Used to pad a packet with binary zeros.

Connection Close Frame: Used to notify the commu-
nication partner that a connection is closing. All unclosed
streams within a connection are also closed, when a connec-
tion is closed.

Reset Stream Frame: Used to irregularly terminate a
stream. When sent by the stream creator, the creator indi-
cates that he wants to close a stream. When the receiver of
a stream sends a Reset Stream Packet, he either does not
accept the stream or an error occurred.

Go Away Frame: Used to inform the opposing endpoint
that the connection will be closed in the near future and
should not be used any more. Usually sent shortly before a
Connection Close Frame.

Windows Update Frame: Used to tell the opposing peer
to update the receive window.

Blocked Frame: Used for debugging purposes. Inform the
receiver of a frame that the sender is ready to transmit data,
but is blocked by flow control mechanisms.

Stop Waiting Frame: Used to tell the communication
partner not to wait for packets any more.

Ping Frame: Used to verify, that the opposing endpoint
is still available. A ping frame contains no payload and the
receiver has to answer with an Acknowledgment Frame.

8. QUIC DISCOVERY IN CHROME
Chrome uses TCP to send requests to unknown server. When
a server supports QUIC, it uses the Alternate Protocol Header
in HTTP Responses to inform a client, that it supports
QUIC [12]. For the next requests, Chrome tests which pro-
tocol is faster and uses the faster protocol. It also stores a
list of all server, which support QUIC for subsequent connec-
tion [12]. When a QUIC connection fails (e.g. incompatible
versions of client/server, Firewalls, ...) the host is marked
as broken for a certain time span (currently five minutes),
where QUIC will not be tested again. After this time span,
QUIC is tested again and is marked as broken for twice as
long as before, when QUIC is still unable to establish a con-
nection [12]. When a user does not want to use QUIC (for
any reason), it is possible to disable it manually.

9. SPDY
The performance of QUIC is usually evaluated by compar-
ing the page load time of HTTP/1.1 over TCP, HTTP/1.1
+ SPDY over TCP and HTTP/1.1 over QUIC. SPDY is
discussed shortly in this section.

SPDY (”speedy”) was developed by Google and enhances the
HTTP/1.1 Protocol. In Contrast to pure HTTP/1.1, SPDY
allows hosts to send multiple HTTP/1.1 Requests/Responses
within a single TCP segment. With SPDY it is also possi-
ble to prioritize HTTP/1.1 Requests/Responses. So SPDY
solves one of the problems, discussed in Section 3, but the
other problems can’t be solved by SPDY, because it is still
using TCP.

HTTP/2 is based on SPDY and today it is used more often
than SPDY. As a consequence, the use of SPDY is not longer
supported by Google [3]. As SPDY is not in the focus of
this paper and just used for comparison, it is not discussed
here further. More informations can be found in the SPDY
Internet draft [20] and on the SPDY Chromium project page
[19].

10. EVALUATION
QUIC was evaluated by Google and independent testers.
This Section summarizes their results. The experiments of
Google set the focus on the effect of different mechanisms.
On the one hand, they are made from the developing com-
pany, so they have to be treated with care. On the other
hand, Google can interpret the results best, as they know
the scenario, which QUIC is intended for better than inde-
pendent testers. Moreover they show the impact of different
mechanisms more in detail than other testers. When HTTP,
QUIC and SPDY are compared, HTTP refers to HTTP/1.1
over TCP, QUIC refers to HTTP/1.1 over QUIC and SPDY
is short for HTTP/1.1 + SPDY over TCP.

10.1 Experiments by Google
According to Google’s experiments in 2015, 75% of the con-
nections are connections to known hosts and therefore it
takes 0 RTT to establish this connections. Google assumes
that this is the reason for 50 - 80% of the overall median
latency improvements when comparing TCP and QUIC [4].

Packet Pacing reduces retransmission by 25%. To do this,
the sender does not send at the maxiumum speed. As a

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

43 doi: 10.2313/NET-2016-09-1_06



result the page load latency is reduced for slow connection,
but fast connections suffer from this mechanism. All in all
it does not change the median page load latency [4].

TLP has no effect on the median latency, but it improves
the 95% - quantile of the latency and the YouTube rebuffer
rate by almost 1% [4].

All in all, Google comes to the conclusion, that QUIC per-
forms significantly better for slow connections with high la-
tency and performs as good as TCP for fast connections
with a low latency [6].

10.2 Measurements from the Budapest Uni-
versity of Technology and Economics

A group from the Department of Telecommunications and
Media Informatics of the Budapest University of Technology
and Economics tested QUIC compared to HTTP and SPDY
[7]. Their measurement environment and results are shown
here. The group did a higher number of test, only the most
interesting ones are discussed in this paper.

Measurement Environment: A regular laptop with Google
Chrome and additional tools for measurement purposes were
used on the client side. On the server side, they used four
sample pages, hosted on Google Sites. In their scenario, the
demo pages contained either small (400 B - 8 kB) or large
(128 kB) objects. For each scenario, there was a page with
a small (5) and a page with a large (50) amount of the ac-
cording objects. Between the client and the server, a shaper
server was used in order to change the network conditions [7].
In contrast to the experiments of Google, they do not test
the influence of enabling/disabling different mechanisms.

The following Figures show the Cumulative Distribution
Function (CDF) (y-axis) of the Page Load Times (PLT) (x-
axis) under different conditions [7].

In one of their tests, they showed that QUIC performs sig-
nificantly worse in a scenario with, 50 Mb/s bandwidth, low
RTT (18 ms), a packet loss rate of 0% and 50 objects with a
size of 128 kB. When TCP is used (with and without SPDY)
for HTTP connections, the average page load time is about
2 seconds, while it it higher than 7 seconds, if QUIC is used.
After reducing the bandwidth to 10 Mb/s, the performance
of QUIC is again comparable to the other ones and the aver-
age page load time is about 9 seconds. The result is shown
in Figure 6.

Figure 6: Comparison of QUIC, HTTP and SPDY
under shown circumstances [7]

The reason for the weak performance of QUIC is packet pac-
ing [7]. This mechanisms tries to reduce retransmissions by
sending below the maximum rate possible. In their scenario,
the loss rate is 0%, so packet pacing tries to avoid packet
losses, which wouldn’t be there even when the host sends
at full speed. The researchers argue, that QUIC underesti-
mates the maximum bandwidth and sends at a far too slow
rate [7]. When using a lower bandwidth of 10 Mb/s this
behavior cannot be observed.

A completely different picture is shown, when the loss rate in
the former scenario is changed. Figure 7 shows the effect of
setting the loss rate to 2% in an apart from that unchanged
scanario [7]. HTTP still performs better than QUIC, but the
difference got smaller. In contrast, SPDY performs very bad.
The reason for this is Head-of-line blocking, when sending
multiple HTTP responses via a single TCP segment (see
Section 3).

Figure 7: Comparison of QUIC, HTTP and SPDY
under shown circumstances [7]

Google claims that QUIC performs significantly better than
other protocols when QUIC is used for slow connections with
high RTTs, especially when requesting a large number of
small objects. The researchers used a scenario with 2 Mb/s
bandwidth, a high RTT of 218ms and 50 objects between
400B and 8kB to verify this claim [7]. The results shown
in Figure 8 support Google’s claim. QUIC performs bet-
ter in both scenarios (0% and 2% loss rate). The benefits
are mostly gained by the multiplexing mechanism of QUIC,
which reduce the overhead significantly when sending a high
number of small objects [7]. The group also argue that the
0 RTT connection establishment has a positive effect on page
load time, which has to be mentioned [7].

Figure 8: Comparison of QUIC, HTTP and SPDY
under shown circumstances [7]

The group comes to the conclusion, that QUIC performs
badly under high bandwidth, but outperforms the other pro-
tocols when the RTT is high, especially under low bandwidth

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

44 doi: 10.2313/NET-2016-09-1_06



[7].

10.3 Measurements of the Politecnico di Bari
A group from Gaetano Carlucci Politecnico di Bari & Qua-
vlive in Italy also performed measurements to evaluate QUIC
[1]. Their test environment was similar to the environment
of the Hungarian group, but they used different scenarios.
Details can be found in their paper [1].

In contrast to the testers of the Budapest University of Tech-
nology and Economics, the Italian group tested the influence
of FEC on the loss rate and the channel utilization. They
used scenarios with 3, 6 and 10 Mb/s and a loss rate of 0
and 2% The results are shown in Figure 9.It can be seen
that the loss rate is higher when FEC is enabled.

These results may come as a surprise at first glance. FEC
cannot reconstruction lost packets, when more than one
packet of a group is lost. When using FEC, the sender of the
packet is not informed about the loss after the receiver was
able to reconstruct the packet and so it continues to increase
the congestion window until a packet loss occurs, where FEC
cannot reconstruct the packet. This results in the observed
behavior. Also, the channel utilization is higher, when using
FEC because of the required redundancy, which also has to
be sent via the same channel.

Figure 9: QUIC with enabled/disabled FEC com-
pared to TCP [1]

The group also tested a similar scenario with low bandwidth
and a high round trip time to verify Google’s claims, that
QUIC performs significantly better than TCP under this
circumstances. This study confirms the results of Section
10.2. They used a bandwidth of 3 Mb/s, a (high) loss rate
of 2% and an RTT of 50ms [1]. The result is shown in Figure
10. The y-axis show the throughput in kb/s and the x-axis
shows the time in seconds.

The last interesting part of the evaluation, discussed in this
paper, is the performance of QUIC when it is used in parallel
with TCP with limited buffers. The research group used a
bandwidth of 5 Mb/s and a RTT of 50ms for this scenarios.
Then the used buffers of 13, 30 and 60 kB as bottleneck (with
Tail Drop policy) [1]. Figure 11 show the throughput of the
two protocols when using different buffer sizes. When QUIC
and TCP are used in parallel, QUIC uses more of the buffer
size unless the network is over-buffered (60kB under their

conditions). This is because QUIC uses a smaller congestion
window reduction factor than TCP [1].

Figure 12 shows that QUIC does not only use more of the
buffer, but also has a higher throughput. When the buffer is
large enough, both protocols have a comparable throughput.

Figure 10: Comparison of TCP and QUIC (without
FEC) [1]

Figure 11: Impact of buffer size on QUIC/TCP [1]

Figure 12: Parallel use of TCP and QUIC with lim-
ited buffers [1]

11. CONCLUSION
QUIC is a transport protocol, developed by Google, meant
to be used by HTTP/2 [10]. It is still under development, so
not all mechanisms discussed in this paper are implemented
yet [9, 14]. QUIC uses UDP as Layer 4 protocol, but several
mechanisms used are reimplementations of TCP best prac-
tices. QUIC also has features, which are not possible for
TCP [4]. In contrast to TCP, encrypted QUIC connections
can be established within 0 RTTs.

Google claims that QUIC works at least as good as TCP
in all scenarios [6]. Measurements showed, that this is not
entirely true. QUIC performs better than TCP in networks
with high latency, especially when the bandwidth is low.
The gains come from the 0 RTT handshake and QUIC’s
multiplexing mechanism. However, TCP performs better,
when the bandwidth is high and the latency is low [1, 7].

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

45 doi: 10.2313/NET-2016-09-1_06



Also, QUIC introduces Forward Error Correction, which
is used to reconstruct lost packets instead of requesting it
again. Therefore, redundant data has to be sent. The cur-
rent implementation does not work as well as Google in-
tends, because it increases the amount of retransmissions
(see Section 10.3). The problem with the FEC mechanism
of QUIC is that the sender is not informed about a loss, when
the packet was successfully reconstructed. Also it cannot re-
construct packets, when multiple packets of a FEC Group
are lost. All in all the performance of QUIC is worse, when
FEC is enabled [1].

In 2016, QUIC is used by Google services like YouTube and
Google’s Browser Chrome, but QUIC is still under develop-
ment [1, 7]. When Google wants to establish QUIC on more
server in the future, QUIC has to become better and the
unimplemented mechanisms must be implemented. Some
mechanisms of QUIC are innovative, but the actual imple-
mentation is not sufficient to replace TCP. QUIC has a lot
of potential,but it has to be observed if QUIC can coexist
with TCP in the future or if it can even replace the currently
most used transport protocol.

12. REFERENCES
[1] G. Carlucci, L. De Cicco, and S. Mascolo. HTTP over

UDP: An Experimental Investigation of QUIC. In
Proceedings of the 30th Annual ACM Symposium on
Applied Computing, pages 609–614. ACM, 2015. http:
//c3lab.poliba.it/images/3/3b/QUIC_SAC15.pdf.

[2] CUBIC for Fast Long-Distance Networks. https://
tools.ietf.org/html/draft-rhee-tcpm-cubic-02.

[3] Hello HTTP/2, Goodbye SPDY.
https://blog.chromium.org/2015/02/

hello-http2-goodbye-spdy.html.

[4] IETF93 QUIC BarBoF: Congestion Control and Loss
Recovery.
https://docs.google.com/presentation/d/

1T9GtMz1CvPpZtmF8g-W7j9XHZBOCp9cu1fW0sMsmpoo/

edit#slide=id.gb7abf88bb_0_28.

[5] IETF93 QUIC BarBoF: Protocol Overview.
https://docs.google.com/presentation/d/

15e1bLKYeN56GL1oTJSF9OZiUsI-rcxisLo9dEyDkWQs/

edit#slide=id.g99041b54d_0_124.

[6] IETF93 QUIC video (BAR BOF). http:
//recordings.conf.meetecho.com/Playout/watch.

jsp?recording=IETF93_QUIC&chapter=BAR_BOF.

[7] P. Megyesi, Z. Krämer, and S. Molnár. Comparison of
web transfer protocols.
http://proprogressio.hu/wp-content/uploads/

2016/01/MolnarSandor_2015.pdf.

[8] QUIC, a multiplexed stream transport over UDP.
https://www.chromium.org/quic.

[9] QUIC: A UDP-Based Secure and Reliable Transport
for HTTP/2 IETF Internet Draft. https://tools.
ietf.org/html/draft-tsvwg-quic-protocol-02.

[10] QUIC at 10,000 feet.
https://docs.google.com/document/d/

1gY9-YNDNAB1eip-RTPbqphgySwSNSDHLq9D5Bty4FSU/

edit.

[11] QUIC crypto design doc.
https://docs.google.com/document/d/1g5nIXAIkN_

Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit.

[12] QUIC Discovery.
https://docs.google.com/document/d/

1i4m7DbrWGgXafHxwl8SwIusY2ELUe8WX258xt2LFxPM/

edit.

[13] QUIC FEC v1.
https://docs.google.com/document/d/

1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk/

edit.

[14] QUIC Loss Recovery And Congestion Control IETF
Internet Draft. https://tools.ietf.org/html/
draft-tsvwg-quic-loss-recovery-01.

[15] RFC2018 - TCP Selective Acknowledgment Options.
https://tools.ietf.org/html/rfc2018.

[16] RFC2581 - TCP Congestion Control.
https://tools.ietf.org/html/rfc2581.

[17] RFC2616 - Hypertext Transfer Protocol – HTTP/1.1.
https://www.ietf.org/rfc/rfc2616.txt.

[18] RFC5682 - Forward RTO-Recovery (F-RTO): An
Algorithm for Detecting.
https://tools.ietf.org/html/rfc5682.

[19] SPDY Chromium Project Page.
http://dev.chromium.org/spdy/.

[20] SPDY IETF Internet Draft. https://tools.ietf.
org/html/draft-mbelshe-httpbis-spdy-00.

[21] Tail Loss Probe (TLP): An Algorithm for Fast
Recovery of Tail Losses. https://tools.ietf.org/
html/draft-dukkipati-tcpm-tcp-loss-probe-01.

[22] TCP Extensions for High Performance.
https://www.ietf.org/rfc/rfc1323.txt.

[23] TCP Performance Implications of Network Path
Asymmetry. https://tools.ietf.org/html/rfc3449.

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

46 doi: 10.2313/NET-2016-09-1_06


