
Diving into Snabb

Dominik Scholz
Betreuer: Paul Emmerich, Daniel Raumer

Seminar Future Internet SS2016
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: scholzd@in.tum.de

ABSTRACT
Virtualization techniques are widely deployed in modern
computing applications and in recent years became more in-
teresting for the field of networking. Network Function Vir-
tualization (NFV) is used to replace dedicated hardware so-
lutions for networking appliances like switches, routers and
packet filters, with software implementations based on vir-
tualized commodity hardware. Today’s network providers
plan on replacing their backbone infrastructure with this
approach to cope with the increasing demands for band-
width and mobile communication, the Terastream project of
Deutsche Telekom, aiming to deploy a cloud based network
with NFV, being a lead example. While this approach re-
sults in reduced hardware cost and manifold simplifications
achieved through the virtualization, both for developing and
deploying services, it poses new challenges to comply with
complex constraints of mobile networks, primarily achiev-
ing carrier grade performance for network appliances, even
when running within virtual machines.

The Snabb virtual switch is a packet processing framework
that exploits novel design approaches to fulfil and solve the
mentioned requirements and problems, resulting in it being
a prime solution for NFV.
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1. INTRODUCTION
Network Function Virtualization (NFV) [4] has become an
increasing trend in recent years, applying the concept of
virtualization, the dynamic sharing and aggregating of re-
sources [30], which is already deployed in various comput-
ing fields today, to the functionality of networking appli-
ances. Specialized hardware solutions have manifold prob-
lems, requiring separate middle boxes for each networking
task like routing, packet filtering or DoS protection which
not only increases the cost but also the complexity of the
system when purchasing technology from multiple vendors.
Because of the advances of commodity hardware, allowing
to perform networking operations on common x86 hardware
with almost equal performance compared to proprietary so-
lutions [14], this can be overcome conveniently by providing
virtualized software solutions instead.

The NFV architecture is illustrated in Figure 1. The NFV
Infrastructure (NFVI) is based on virtualized commodity

Figure 1: Overview of the Network Function Virtu-
alization Architecture (image taken from [49])

hardware, while the different functionalities previously of-
fered through dedicated hardware solutions are instead pro-
vided by Virtualized Network Functions (VNF) based on the
underlying computing, storage and networking framework.
The goals of this approach are to guarantee the same require-
ments in regard to performance, reliability, stability and se-
curity, while improving the manageability. This is achieved
by completely separating the software from the underlying
hardware and providing dynamic and scalable services which
can be flexibly deployed to the network [27]. However, sev-
eral technical challenges have to be overcome, primarily im-
plementing high performance virtualized networking solu-
tions that are portable to allow integration with hypervisors
from different vendors [9]. Furthermore, network services
can have complex requirements, for instance in regard to
maximum delay.

The use cases for NFV technology are manifold, but are par-
ticularly interesting for today’s telecom core networks [49,
27]. The market situation for network operators has changed
in recent years: the demand for mobile communications and
Voice over IP (VoIP) has increased, while fixed access lines
loose importance [34]. Furthermore, the overall demand for
mobile communication and wireless bandwidth is still in-
creasing exponentially, predictions claiming a 10 to 50 fold
increase until 2020 [8, 11]. This puts pressure on the network
operators to supply scalable and flexible networks which can
only be accomplished with a shift to IP-based networks.
Deutsche Telekom announced plans to replace their back-
bone network in the future with a cloud enabled IP network
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based on NFV [11] with the Terastream project. By using
virtual machines instead of specialized devices and following
the “simple - lean - differentiated” [11] approach, the Teras-
tream project aims to not only cope with the increasing de-
mands, but also to reduce complexity and faster deployment
of future applications to the customers [11].

Virtual switches are used to virtualize the underlying hard-
ware, for instance, offering virtual Network Interface Cards
(NIC) for each network application that make use of one ac-
tual NIC [41, 40]. This layer of virtualization has to guaran-
tee the requirements mentioned previously for packet switch-
ing and manipulations, primarily carrier grade performance
and interoperability for instance with different hypervisors.
The Snabb 1 virtual switch [3] is a framework which deploys
a novel architecture and exploits virtualization techniques
to allow high performance packet processing in user space.
Its functionality and goals resulted in a cooperation with
the Terastream project to extend Snabb with a dedicated
module for NFV, allowing to create VNFs within virtual
machines [46]. Therefore, we summarize and explain the
core architecture and implemented features of Snabb to un-
derstand its compatibility with NFV.

The remainder of this paper is structured as follows. We
introduce Snabb, its novel approach in regard to design and
architecture, and how to develop and use programs based
on this framework in Section 2. The gained insights are
compared to other proposals and existing solutions for pro-
cessing frameworks and NFV in Section 3. In Section 4 the
performance of Snabb is demonstrated and briefly analysed
by evaluating two programs in a measurement environment.
We conclude with a summary in Section 5.

2. SNABB
Snabb [3] is an open source, high-performance networking
framework developed by L. Gorrie since 2012. The project’s
goal is to offer network administrators, Internet service providers
and in general operators that have to process large traffic
volumes beyond 1GbE software solutions for existing hard-
ware networking appliances [26]. The virtual switch is im-
plemented for modern Linux operating systems, leveraging
commodity x86 hardware and Intel NICs [28] running solely
in user space [40].

Therefore, Snabb combines new approaches in its core ar-
chitecture to allow developing of efficient networked applica-
tions, which will be illustrated in Section 2.1. The intuitive
and easy to use Application Programming Interface (API)
as well as code excerpts of sample applications are detailed
in Section 2.2.

2.1 Design and Core Architecture
Researchers have demonstrated several bottlenecks of con-
ventional packet processing applications and network stacks
in recent years [17, 7, 13], which are in general being avoided
and replaced with new techniques by modern high-perfor-
mance packet processing frameworks (cf. Section 3). Snabb
combines these with new approaches to offer fast performing
and easy to use network functionalities. The basic paradigm

1Formerly known as SnabbSwitch

is to focus on simple, small and commodity-targeted solu-
tions instead of complex, large and proprietary ones [5].

The following Sections illustrate the core conceptions that
apply these guidelines. The general concept introduced in
Section 2.1.1 is also used by other state of the art process-
ing frameworks and not specific to Snabb. A selection of
techniques that have not been widely used in networking
applications before and are introduced with Snabb are illus-
trated in Sections 2.1.2-2.1.4.

2.1.1 Kernel Bypass: Ethernet I/O
Various research has shown that using the existing network
stack of the kernel, or in general performing networking
within the kernel, is not advantageous for a multitude of
reasons, including interrupts and context switches for every
packet when being passed from the hardware to the kernel
and later on to the user space application [17, 7, 13]. There-
fore, the trend is to move the complete application to user
space, bypassing the kernel. While this achieves the raw
performance of the Ethernet device, which can be signifi-
cantly increased compared to legacy applications [19, 18],
it also means that everything that is usually done by the
kernel and its inherited features and security measures and
guarantees have now to be taken care of in user space.

Kernel bypass networking, which allows to focus on imple-
menting exactly the features beneficial for the application, is
a core concept not only chosen by Snabb, but several high-
performance packet processing frameworks [17, 16]. The
primary idea is to write all low level functionality, the inter-
action with the hardware, from scratch. Snabb does so for
modern Intel NICs. Instead of communicating with the de-
vice via the kernel and its drivers, the PCI device is bound
directly to Snabb and configured by writing respective values
according to the NICs specification using Memory-mapped
I/O (MMIO), allowing direct I/O operations. Via Direct
Memory Access (DMA) the NIC is allowed to directly ac-
cess reserved memory regions to read and write packets. In
particular, two ring-based FIFO structures for transmission
and reception descriptors, storing the addresses of packets
to be transmitted or received, respectively, and actual mem-
ory for packets are mapped. As the NIC can only operate
with physical addresses, huge pages, which offer contiguous
physical memory blocks of 2 MB or 1 GB, are used for these
memory regions [25].

2.1.2 Implemented using LuaJIT
While it is a common approach for packet processing frame-
works to focus on the hardware-near C or C++ as primary
programming languages and respective established compil-
ers, Snabb uses the lightweight scripting language Lua and
the just-in-time LuaJIT [39] compiler instead. Lua is an easy
to learn, high-level programming language that has been
used in various fields including game development, image
processing and robotics [29] for many years. The follow-
ing illustrates reasons why the use of LuaJIT over another
programming language is beneficial for a networking frame-
work.

Firstly, the simple and fast Foreign Function Interface (FFI)
allows to easily integrate and work with C libraries [16].
Therefore, Snabb can conveniently make use of low-level
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functions and data structures. Secondly, LuaJIT, which pro-
duces target specific machine code for instance for x86 and
ARM architectures, is a trace based compiler that gathers
profiling information during runtime to compile parts of the
application in an optimized way [48]. The control-flow is
analysed in detail by inspecting whole program paths “to
capture the smallest set of execution traces that are repre-
sentative of the dynamic behavior of the application. Do-
ing so, a trace-based compiler can focus all of its optimiza-
tion budget on a tiny, yet very important part of an ap-
plication” [40]. Instead of an one time optimization during
traditional static compilation, the just-in-time compiler can
adapt the machine code for the current traffic flow or other
events, even unexpected ones [40]. These concepts are well
researched in the field of compilers [6] and are now applied
to networking applications.

Because of these reasons, even low-level code like the driver
is written in Lua. Performance evaluation has shown that
the results are promising as LuaJIT can outperform appli-
cations written in C [35]. The long term goal of Snabb is
to drop all references to C functions and structures despite
the easy integration with the FFI module and replace them
with system-call libraries and assembler libraries written in
Lua [5].

2.1.3 Virtualization
Virtualization offers the possibility that real resources can
be shared and aggregated amongst multiple virtual applica-
tions, optimizing their usage. Furthermore, multiple users
using the same physical resource can be isolated to guaran-
tee no interferences and provide security [30]. Applied to
virtual machines, networking has to be performed in a fast
but also flexible manner, for which only the former applies
to hardware NIC virtualization. The Snabb NFV module
aims to accomplish both by combining single root IO virtu-
alization (SR-IOV) [32, 12, 36] and a novel virtio technology
for the software layer, vhost-user [46].

As Paolino et al. [40] illustrate, Snabb used the pa-ravirtualized
I/O framework virtio to connect the kernel-base virtual ma-
chines (KVM) with the network controller. This framework
is composed of the front end driver virtio-net executed in
the kernel of the guest, a backend driver and the emulator
module vhost-net, running on the underlying kernel of the
host, causing all traffic to go through the virtualized appli-
cation and the virtual switch. As in this scenario the packets
have to pass the kernel of the host, significant overhead is
generated by inevitable costly context switches.

vhost-user was implemented to circumvent the host kernel
and therefore allow direct communication with the virtual
machine. By using Unix domain sockets, with this method in
combination with QEMU/KVM, the virtual switch can di-
rectly access the shared data structures in the guest’s mem-
ory space. This allows the transmission and reception of
packets without copy operations or context switches, provid-
ing carrier grade performance, while also offering flexibility
as this is accomplished without specialized drivers. Initially
specifically designed for Snabb and its vhost-user App 2 for

2https://github.com/SnabbCo/snabb/tree/master/src/
apps/vhost

integration with NFV, Virtual Open Systems has included
it in its QEMU release and is now adopted by other virtual
switch implementations [40].

The Snabb NFV program exploits these techniques, allowing
networking with QEMU/KVM, integrated with or without
the OpenStack plugin Neutron at high packet rates [46].

2.1.4 SIMD Offloading
The calculation of, for instance, checksums as they occur
in multiple protocols of the ISO/OSI model is a tedious
and CPU consuming task, which is why modern NICs al-
low them to be offloaded to the NIC and calculated in hard-
ware, significantly increasing the performance. Frameworks
have started using this approach to improve their perfor-
mance [16]. However, this comes with the downside that the
offloading feature is dependent on the hardware, requiring
differing configuration for every NIC, if it even is supported
at all.

Snabb uses a different approach as it does not want to be
restricted to proprietary hardware features. It makes use
of Single Instruction Multiple Data (SIMD) instructions of
modern computer architectures. These allow for instruc-
tion level parallelism as one instruction leads to the paral-
lel execution of one instruction in multiple functional units.
On x86 instruction set architectures the performance of the
Advanced Vector Extension (AVX) SIMD instructions has
been continuously increased in recent years [23] and is ex-
pected to be further improved in the future. Furthermore,
SIMD offloading is not depending on the hardware of the
NIC, significantly reducing the implementation effort, but
also allowing it to be used for other tasks that are usually
expensive, like copying of packets [21].

Generalized, the effort of Snabb is to prefer the CPU for
tasks over the likes of proprietary NIC features like offload-
ing or Zero-Copy (ZC). With technologies like Intel’s Data
Direct I/O (DDIO) [1] the data can be directly loaded into
the L3 cache of the CPU from which it can easily be accessed
and worked with. Even subsequent data copies are cheap,
making it possible to use instruction level parallelism over
specialized hardware features [5].

2.2 Frontend and Usage
The previous Section illustrated the design approaches of the
underlying architecture. Following, the high level architec-
ture and Application Programming Interface (API) which is
used by an programmer to develop applications and com-
plete programs are explained.

2.2.1 High-Level API
As already illustrated in the previous Section, Snabb is pri-
marily written in LuaJIT. Scripting languages in general,
and Lua in specific, are designed to be easy to learn and
use. Using this language not only for the core functional-
ities but also the end user API allows to write scripts for
new programs in an uncomplicated manner. Furthermore,
existing features can be understood with less effort and time.

Snabb provides each functionality as a so called “App” in
reference to modern App Stores [24]. Their intent is to be
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the software counterpart of typical hardware appliances for
networking, like an I/O interface, repeater, but also more
complex networking devices like switches or routers. Hence,
one App represents a specific network function.

Each App has one or more input and outputs links. The
typical workflow of an App is to pull packets from an input
link, process them according to the scripted task of the App
and then push them to an output link. The processing can
be anything that translates to actual machine code. These
small network functions can then in turn be combined via
links, from one App’s output to another one’s input, to form
more complex ones. A link can be compared to an Ethernet
cable connecting real network devices. In software it is a
ring-based structure used to store the packets between suc-
cessive network functions [22]. Via this network of separate
functions, existing Apps can be reused or, because of the
modularized nature, exchanged with new ones [24]. This
overseeable and easy to maintain approach allows for the
creation of complex network functions based on a network
of Apps, all doing a specific task, fitting the NFV approach.

Packets themselves are represented simply by an variable
sized array of bytes. This allows to easily work with the data
contained as more specific representations, for instance an
Ethernet header can be built on top of it [22]. Furthermore,
compared to more complex data structures like the sk buff
structure used by the Linux network stack, no overhead is
created as no additional data, aside from the raw bytes, are
stored.

2.2.2 App and App Network Samples
To better illustrate the concepts presented in the previous
Section, selected code snippets3 of the core API functionali-
ties of Snabb Apps and App networks are shown and briefly
explained in this Section.

Listing 1 shows the pull() function of the Repeater basic
App4. The purpose of this function is to continuously re-
peat all packets in the same order received from the input
link back to the output link. As described earlier, push()
is responsible to transmit processed packets back into the
network of Apps. In this example, packets are read from
the input link and stored in a table (lines 3 sqq.). Then, all
gathered packets are replayed back to the output link (lines
7 sqq.).

This general concept of receiving packets, performing ar-
bitrary processing on them and finally transmitting them
via outgoing links, like it is with real hardware network de-
vices, is performed by every App of Snabb. Creating an
actual program, consisting of a network of these functions,
is demonstrated via the packetblaster program5, shown in
Listing 2.

The program is used to generate streams of packets, either
based on a pcap file or by synthesizing packets with rudi-

3All code snippets are only excerpts from the mentioned
sources, shortened and modified for the sake of clarity
4https://github.com/SnabbCo/snabb/blob/master/src/
apps/basic/basic_apps.lua
5https://github.com/SnabbCo/snabb/blob/master/src/
program/packetblaster/packetblaster.lua

1 function Repeater:push ()
2 local i, o = self.input.input, self.output.output
3 for _ = 1, link.nreadable(i) do
4 local p = receive(i)
5 table.insert(self.packets, p)
6 end
7 local npackets = #self.packets
8 if npackets > 0 then
9 for i = 1, link.nwritable(o) do

10 assert(self.packets[self.index])
11 transmit(o, packet.clone(self.packets[self.index]))
12 self.index = (self.index % npackets) + 1
13 end
14 end
15 end

Listing 1: push() function of the Repeater basic App.

1 function run (args)
2 local c = config.new()
3 [...]
4 if mode == ’replay’ and #args > 1 then
5 args = lib.dogetopt(args, opt, "hD:", long_opts)
6 local filename = table.remove(args, 1)
7 config.app(c, "pcap", PcapReader, filename)
8 config.app(c, "loop", basic_apps.Repeater)
9 config.app(c, "source", basic_apps.Tee)

10 config.link(c, "pcap.output -> loop.input")
11 config.link(c, "loop.output -> source.input")
12 [...]
13 end
14 [...]
15 pci.scan_devices()
16 for _,device in ipairs(pci.devices) do
17 if is_device_suitable(device, patterns) then
18 nics = nics + 1
19 local name = "nic"..nics
20 config.app(c, name, LoadGen, device.pciaddress)
21 config.link(c, "source."..tostring(nics).."->"
22 ..name..".input")
23 end
24 end
25 [...]
26 engine.configure(c)
27 if duration then engine.main({duration=duration})
28 else engine.main() end
29 end

Listing 2: Configuration of the App network in the packet-
blaster program

mentary configuration options on the fly. The main run()
function illustrates the general structure of a complete net-
work of functions. The primary task is to generate a con-
figuration for Snabb, containing the definition of the App
network, used PCI devices and more. As shown in lines
7 sqq., the program consists of a PcapReader, Repeater and
Tee App. The output of the PcapReader is connected with
the input of the Repeater (line 10), which in turn is con-
nected to the Tee App (line 11). This App multiplexes the
packets to multiple outgoing links, each connected to one of
the discovered PCI devices (lines 15 sqq.) as LoadGen App.
After the network is configured, the configuration is passed
to the Snabb engine and started (lines 25 sqq.), executing
the program.

Based on this concept various complex programs have been
developed, ranging from the rumpkernel App6, a complete
NetBSD TCP/IP routing stack, to snabbnfv 7, a module for
Network Function Virtualization.

6https://github.com/anttikantee/snabbswitch/tree/
rumpkernel
7https://github.com/SnabbCo/snabb/tree/master/src/
program/snabbnfv

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

34 doi: 10.2313/NET-2016-09-1_05



3. RELATED WORK
In addition to the problems induced with virtualizing the
hardware, as explained in Section 2.1.3 for the NIC, various
performance critical bottlenecks for packet processing frame-
works have been assessed. Garcia et al. [17] identified that
the allocation of resources on a per packet basis and serial-
ized traffic access are major impediments. Furthermore, the
differentiation of user and kernel space implicates multiple
copy operations of the packet and costly context switches.
They propose improvements to cope with these bottlenecks.
Firstly, resources should not be allocated during runtime,
but instead preallocated whenever possible. To make best
use of the underlying hardware, the whole processing path
from receive and transmit queues to applications should be
parallelized, whereas each separate path processes a batch
of packets at once, reducing per packet overhead. Modern
memory mapping techniques in combination with DMA al-
low for packet processing with zero copy operations.

Multiple frameworks that exploit these features to speed up
packet processing have been developed. The Intel Dataplane
Development Kit (DPDK) packet processing framework [2]
provides drivers and software libraries for Intel based archi-
tectures to bypass the data plane of the kernel. It uses opti-
mized data structures implemented in a lockless manner in
combination with techniques like memory preallocation and
batch processing to speed up processing performance [45].
Furthermore, hardware features of modern Intel NICs are
used to offload, for instance, the calculation of checksums to
hardware, saving valuable CPU time. One application that
is based on the DPDK is the packet generator MoonGen [15].
While focusing on crafting packets and utilizing novel tech-
niques for sub-microsecond timestamping and precise rate
control mechanisms, it shows similarities with Snabb in the
usage of LuaJIT as front-end scripting language. Packets
are generated with Lua scripts, whereby each packet can be
separately modified in a flexible way to generate complex
streams of traffic. Measurements have shown that Moon-
Gen is capable of saturating a 10 GbE link with minimum
sized packets using only one CPU core [16].

The PF RING ZC (Zero Copy) [38] packet processing frame-
work, developed by ntop, focuses on custom drivers and vir-
tualization. The drivers can be used as replacement for ex-
isting kernel drivers, or to bypass the network stack entirely.
The Zero Copy technique allows the NIC to directly access
memory that the KVM can access, too, removing the over-
head normally induced when copying data from the NIC to
the kernel and then to user space. This allows for packet
processing at 10 GbE even within virtual machines [38].

Specifically aimed at NFV, Martins et al. [33] introduce
ClickOS, a platform for virtualized software middleboxes for
high performance scenarios with the same goals in regard to
flexibility, scalability and performance as NFV. ClickOS uti-
lizes hypervisor virtualization, in particular para-virtualized
VMs with the Xen hypervisor, because of its low delay and
high throughput. The Click modular router [31] is an archi-
tecture intended for creating flexible and configurable soft-
ware routers at runtime [42] and is used as programming
abstraction for ClickOS as it already provides a broad range
of networking elements that can be used to create middle-
boxes, while also being extensible. Instead of running Click

in user space or as kernel module, whereas each middlebox
is executed within a Linux virtual machine, ClickOS makes
adjustments to the Xen hypervisor and implements its own
virtual machines based on Click. Briefly explained, each
“VM consists of the Click modular router software running
on top of MiniOS”[33], whereas MiniOS is a minimized oper-
ating system provided by Xen project. Furthermore, utility
functions to administer these ClickOS VMs are provided.
Extensive and manifold performance analysis of the authors
has shown that ClickOS yields the execution of hundreds of
middleboxes executing VNFs on commodity hardware, while
maintaining low delays. In certain scenarios, a throughput
of up to 27.5 Gbps can be reached [33].

Newer versions allow ClickOS to run on top of the packet
I/O framework netmap [43], which includes its own virtual
switch. Pinczel et al. [42] analysed the performance of a
prototype when mapping the proposed architecture of fu-
ture 5G networks [37] to machines running ClickOS based
on netmap. While their model demonstrates good flexibil-
ity, Click imposes some limitations in regards to isolation,
imposing potential security issues. Furthermore, while the
confined programming environment of Click guarantees high
performance, integration of third party libraries for the im-
plementation of more complex scenarios is not possible be-
cause of restrictions when handling packets, accessing mem-
ory or performing I/O operations [42].

4. PERFORMANCE EVALUATION
Snabb provides sample applications itself and even more
contributions by the community are accessible in other de-
velopment branches. In the following Sections two appli-
cations were tested in a testbed environment and the re-
sults are compared with similar tests of other processing
frameworks found in the literature. The measurements were
executed in the Baltikum testbed, using a server equipped
with a Supermicro X9SCL/X9SCM8 motherboard, an In-
tel Xeon E3-1230 v2 CPU clocked at a maximum of 3.3
GHz and an 8 MB L3 cache9, Dual channel 16 GB ECC
DDR3 SDRAM clocked at 1333 MHz and two 82599ES 10-
Gigabit SFI/SFP+ NICs10. As operating system the Grml
Live Linux 2013.02 image with Linux kernel version 3.7 was
used. All measurements were performed with the newest
release of Snabb, 2016.03 “Tamarillo”11, unless stated oth-
erwise.

4.1 Traffic Generation: packetblaster
While it is not the primary intent of Snabb, it is able to
create and send traffic streams based on pcap files or com-
pletely synthesized packets via the packetblaster program
introduced in Section 2.2.2. As this program is mainly used
to test and benchmark other Snabb Apps and programs and
therefore should not interfere with such, the packet cre-
ation process is different than for other packet generators
(cf. Section 3). Instead of allocating and modifying ev-
ery single packet that is sent, only a few packets are created
and written into the transmission queue of the device. When

8http://www.supermicro.com/products/motherboard/
Xeon/C202C204/X9SCM-F.cfm
9http://ark.intel.com/products/65732

10http://ark.intel.com/products/32207
11https://github.com/SnabbCo/snabb/releases
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transmitting a packet, the LoadGen App does not invalidate
the buffer, which would free and remove it from the queue,
but instead resets the pointer to the DMA memory, basi-
cally instructing the NIC to send these packets in an endless
loop [20]. This allows the program to generate traffic of mul-
titudes of 100Gbps while only utilizing a small percentage of
the CPU. However, this comes at the cost of customizability
of the traffic stream. Per default, packetblaster, when syn-
thesizing packets, only allows to change Ethernet addresses
and the size of IP packets.

The measurement was done with the packetblaster program
running on the server while the CPU is clocked at 1.6 GHz.
The application is instructed to generate as much traffic as
possible, crafting minimum sized 60 byte packets12 using
default values and sending them via the two available PCI
devices. The output shows that packetblaster does so with
10 GbE line rate, reaching the full 14.88Mpps that are the-
oretically possible for each of the links. Analysing the CPU
utilization with the profiling tool perf reveals that the pro-
gram used only one CPU core to do so, however, at a load
of 100 %, which would contradict the statement that only
a fraction of the CPU is used. This is because the program
exploits busy waiting mechanisms13, exhausting the CPU at
all times to avoid the execution of other tasks which would
cause costly context switches. Disabling this mechanism and
repeating the experiment over a period of 10 seconds with
the program pinned to only one CPU core using taskset re-
sults in approximately 90 million CPU cycles used per sec-
ond, equalling a utilization of only 5.6%.

For comparison, the dedicated packet generator MoonGen
(see Section 3) is able to saturate a 10GbE link using one
fully utilized core with customized packets, whereas each
successive packet can be uniquely modified [16]. However,
it has to be noted that both applications have different pur-
poses: MoonGen aims to generate as much traffic as possible
with the given ressources, while Snabb’ packetblaster is pri-
marily used to test other applications during development
and therefore should generate the traffic with the least effort
possible.

4.2 Lightweight 4over6: lwAFTR
A more complex program is the implementation of the light-
weight 4over6 (lw4o6) architecture [10] lwAFTR. Because
the Deutsche Telekom plans to use IPv6-only for their fu-
ture backbone infrastructure, better tunnelling architectures
and protocols that cope with existing problems are neces-
sary to allow efficient encapsulation of IPv4 traffic in IPv6-
only networks. This particular solution utilizes 4over6 and
NAT. Previously, the primary problem was that keeping the
state of the NAT at a centralized point (AFTR) resulted in
problems regarding the scalability of the system, because it
has to be done per flow. lw4o6 solves this by moving the
NAT functionality to the client-side network function (B4)
responsible for tunnelling the traffic [10]. The AFTR part
only has to maintain a binding of “the [B4’s] IPv6 address,
the allocated IPv4 address, and the restricted port set” [10].
Therefore, the implementation lwAFTR is a good example

12The 4 byte Frame Check Sequence of the Ethernet frame is
appended by the NIC, resulting in a 64 byte frame

13See the busywait variable in the file core/app.lua

to demonstrate the application area of NFV development
with Snabb.

Simplified, the push() function of the App encapsulates all
IPv4 packets coming from the internet and decapsulates all
IPv6 packets received from the B4 clients. Neglecting the
tasks of handling ICMP packets in a special way or binding
lookups in the case of hairpinning [47], the primary opera-
tions are memory accesses to copy data when prepending or
removing the tunnelling headers, which is a common bottle-
neck in high-performance packet processing frameworks [17,
45]. The authors claim a performance of 4 Mpps for 550
byte packets resulting in a throughput of 17Gbps on two
Intel 82599ES NICs and one core of an Intel XEON CPU
clocked at 2.4GHz [5].
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Figure 2: Performance of lwAFTR when encapsu-
lating IPv4 packets

The measurements involved the most recent version of
lwAFTR14 on our test device, clocked at 3.3 GHz. Using
another server running the packet generator MoonGen, IPv4
traffic of 550 byte packets matching the binding table with
one respective entry was generated and sent to the server
running the lwAFTR program. The resulting transmission
IPv6 packet rate of the application is illustrated in Figure 2
for different reception IPv4 packet rates. It is clearly visible
that the device is able to process all incoming packets until a
reception rate of approximately 2.1 Mpps. At this point, the
reception rate is approximately 8.4 Gbps with a respective
transmission rate of 9.0 Gbps, matching the performance
claims presented in [5] mentioned in the previous paragraph.

5. CONCLUSION
In this paper we have introduced the packet processing frame-
work Snabb and its novel design approaches that follow
the trends of network function virtualization. It utilizes
main-streamed techniques to circumvent common bottle-
necks when performing networking operations, for instance
bypassing the existing network stack entirely. This can be
achieved with DMA and customized NIC drivers. How-
ever, instead of using proprietary hardware-based features of
modern NICs, like offloading as other frameworks choose to,
Snabb uses AVX SIMD instructions to fully utilize the CPU
instead, having the advantage of being independent from

14Commit 2191c16 of https://github.com/mwiget/snabb/
tree/lwaftr_starfruit
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the used NIC. Furthermore, Snabb uses the trace-based Lu-
aJIT just-in-time compiled scripting language based on Lua
as primary language, both for back- and front-end program-
ming. Studies have shown that this approach generates op-
timized code for networking functions on x86 architectures,
while the aspect of being an easy to learn and use scripting
language eases the development. Because of optimized virtu-
alization techniques, Snabb is eminently for NFV. The novel
vhost-user virtio implementation allows packet processing
with zero copy operations within virtual machines. These
features of the underlying architecture guarantee high-performance
processing of packets, while the front-end hides these aspects
and provides an easy to use API.

While the project is rather young 15 and the code basis
could therefore be considered to still be immature, Snabb
enjoys an active community because it is completely inde-
pendent of vendors, free of license fees and entirely open
source. Its activity stretches from mailing lists over websites
like reddit to regularly published development blogs, yield-
ing in optimized communication and cooperation amongst
projects and developers [26]. The main author publishes a
new release every month, steadily extending and improving
the core functionality by valuable contributions so that all
other developers can incorporate these effortless into their
programs [44].

This plays hand-in-hand with the concepts of Apps and pro-
grams as a network of Apps. Because of the unified and sim-
ple pull and push API of Apps, existing Apps can be reused,
while new functionality can be implemented quickly. These
small modules, created potentially by many different devel-
opers, can then be combined via links to form the complete
network. This allows for high use- and reuseability, resulting
in a large variety of existing programs.
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