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ABSTRACT
In the field of virtualization, network virtualization tries to
ensure mobility and flexibility of virtual machines. One of
the key concepts of network virtualization is virtual
switching, i.e. emulating the behavior of hardware switches
in software for general purpose servers or computers; two
of those virtual switches are Microsoft’s Hyper-V virtual
switch, used in the Hyper-V hypervisor and Open vSwitch
which also supports Hyper-V (among other hypervisors).
In this paper we are going to analyze and compare them
with focus on aspects relevant for performance and
evaluate the functionality and performance aspects of
running Open vSwitch as a virtual switch for Hyper-V.
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1. INTRODUCTION
Network virtualization is meant for datacenters to
consolidate their networks to make them more manageable
and enable ”cloud” technologies. Virtual switches are a
centerpiece of this approach as they begin to include more
and more functionality that was previously reserved to
higher-level devices or software and unify network
hardware across entire datacenters into ”one big switch” [9].

Both for network virtualization and ”traditional” single
machine virtualized environments, the feature set and the
performance of virtual switches integrated into those
physical hypervisors is a crucial point of the entire setup,
especially for VMs communicating internally (e.g. as web
server and database server). Two virtual switches that
have undergone important changes during the last years to
increase their virtual network and on-host functionality
and performance, are Microsoft’s Hyper-V virtual switch
and the open-source Open vSwitch. They are arguably
common software switches on Windows and both take
seemingly different approaches on several aspects of their
virtual switch functionality, so in the rest of the paper we
are going to take closer a look at them

In Section 2.1, we are going to define the concepts of
virtual switches in general and then look at them included
in virtualized networks in Section 2.2. In Sections 2.3 and
2.4, we are going to analyze Open vSwitch and Hyper-V
virtual switch respectively and conclude by comparing
their features and performance in a small benchmark in

Section 3 and have a look at Open vSwitch running on
Hyper-V and (partly) replacing the integrated Hyper-V
virtual switch in Section 3.3.

2. VIRTUAL SWITCHES
Before we compare the virtual switch solutions on
Windows, we will explain what virtual switches are and in
which particular environments they are used.

2.1 Concept
In virtualized environments, virtual machines created and
managed by hypervisors (like VMware ESXi, Microsoft
Hyper-V, Xen or KVM) share the same physical
environment (i.e. they reside on one physical machine)
[20]. To be able to communicate with each other (and with
the network outside of the hypervisor) with the same
protocols that are used in physical networks, the VMs
usually have one or more virtual network interface cards
(NICs) with their own MACs and IPs which are connected
to a port on a virtual switch running on the hypervisor
(usually on commodity hardware [9]) which provides
connectivity to the outside physical network [20]. These
integrated software switches were the first forms of virtual
switches, which, in their early days, usually only provided
very basic functionality and served no purpose other than
extending the physical layer 2 network to the VMs [19].

However, with these early virtual switches, there was still a
tight coupling between the traditional physical network,
the virtual machines, and the hypervisor, which made the
provisioning of new virtual machines cumbersome: In order
to provide proper network connectivity to the VMs, the
configuration had to be done both on the hypervisor
virtual switch and the actual physical network the
hypervisor was connected to [19]. Furthermore, coupling
VMs with physical network segments renders some of the
(theoretical) advantages of VMs, like easy scalability and
mobility useless because of the effort required to
reconfigure the network to redirect the traffic to a virtual
machine’s new physical location. From these circumstances
the concept of virtual networking emerged and with it
came more sophisticated virtual switches [19].

In virtual networks, virtual switches provide a greater part
of the network connectivity for the VMs; actual physical
networks are reduced to carrying tunneled packets between
hypervisors or to the internet [19]. This allows for a
decoupling of virtual networks from physical networks,
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while still being able to provide the same feature set as
physical networks and a high level of flexibility and
modularity [19]. By leveraging the capabilities of modern
virtual switches, complex networks can be designed both
inside a single hypervisor without needing dedicated
network hardware at all, and across multiple hyper-
visors [21].

Figure 1: Illustration of a generic virtual switch.

The main task of virtual switches is still very similar to the
main task of modern Ethernet switches, i.e. processing
Ethernet frames, looking up the destination MAC address
of each frame, forward the frames to one or more
designated ports, all while learning and maintaining a
MAC-to-port forwarding table and avoiding unnecessary
transmissions (i.e. not acting as a hub) [21]. But modern
virtual switches like Open vSwitch and Hyper-V Virtual
Switch are capable of providing features way beyond
simple layer 2 packet switching (e.g. router-like and
firewall-like L3 and L4 packet filtering, network isolation
through VLANs and more) [19]. Fine-grained centralized
control over the virtual switches’ rules even across different
hypervisors is also possible for administrators [19], to be
able to e.g. transparently move a virtual machine to a
different physical host without network traffic getting lost,
by simply assigning the VM to a different virtual port.

Figure 1 shows an example layout of a physical hypervisor
running a hypervisor operating system and two virtual
switches. Virtual switch 1 is an internal switch that
connects VM1 and VM2 and the hypervisor OS, while
virtual switch 2 is an external switch that connects VM1,
VM3, the hypervisor OS and the physical NIC which
serves as an uplink port to the external physical network.
In this example, VM2 has no access to the physical
network and VM3 cannot communicate with VM2.

2.2 Software Defined Networking (SDN)
The Open Networking Foundation describes Software
Defined Networking as a network architecture where the
”control and data plane are decoupled”, effectively
centralizing the network intelligence and abstracting the

network infrastructure from the applications [16]. Virtual
switches are a vital part of SDNs: Whereas in a
conventional network there is a hierarchical tree structure
of Ethernet switches, in an SDN the network ”appears to
applications [...] as a single, logical switch” [16], greatly
simplifying even big network layouts.

The OpenFlow protocol ”structures communication
between the control and data plane” [16]. More specifically,
the use of OpenFlow in an SDN allows ”direct access to
and manipulation of the forwarding (data) plane of
network devices”, like switches (both virtual and physical)
and routers [16], therefore reducing a significant amount of
protocols to a single one. Devices only have to understand
and process OpenFlow instructions [16]. Therefore,
OpenFlow can be compared to ”the instruction set of a
CPU” [16] and enables centralized and platform-agnostic
programmability of networks. This way, OpenFlow can be
used to configure simple L2 switching rules as well as more
complex L3 or L4 routing and firewall rules.

This centralized networking approach enables a more
scalable and flexible network design. For example, in order
to transparently move a virtual machine from one physical
host to another (as mentioned in Section 2.1), an
administrator can simply assign the virtual machine to a
different port on the virtual switch in the control plane,
and the subsequent traffic (in the data plane) travelling
through the actual physical network will reach its new
destination without manually having to adjust different
network hardware.

2.3 Open vSwitch
Open vSwitch (OVS) is a ”multi-layer, open source virtual
switch for all major hypervisor platforms” [19] that can be
used both in commodity hardware and in switch hardware
[13] and was designed from the ground up with virtual
networking in mind. Its design departs from traditional
hardware switches and early software switch
implementations like the Linux bridge which only provided
basic L2 connectivity between VMs and the physical
network. Being an OpenFlow virtual switch, OVS was
designed for ”flexibility and general-purpose usage” [19] to
work on many platforms and hypervisors while possibly
having to share system resources with the hypervisor
operating system and several VMs running on the physical
machine. While OVS was originally designed for UNIX-like
operating systems and hypervisors running on them (like
Xen or KVM) [14], there have been efforts to port it to
Microsoft Windows to run with the Microsoft Hyper-V
hypervisor, which we cover in more detail in Section 3.3.

2.3.1 Architecture
The three main components of Open vSwitch are the
data-path in the kernel, the userspace daemon
ovs-vswitchd and the flow database ovsdb-server, also
residing in userspace. The userspace daemon is mostly the
same across all platforms, while the kernel module is
specifically written for the host OS for performance and
compatibility reasons [19]. Switch-level configuration, like
bridge and interface layouts, are stored by ovsdb-server

[13] (from which ovs-vswitchd pulls its configuration, cf.
figure 2).
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A basic overview of the functionality of OVS can be seen in
Figure 2: A packet from a physical or virtual NIC arrives
at the kernel module, then the datapath module checks
whether a flow for this packet has already been cached. If
the userspace daemon has already instructed the kernel
module what to do with the packet (i.e. the respective flow
has been cached), the kernel module will simply carry out
the specified action (i.e. mostly forwarding the packet to
the specified port(s), but other actions like dropping or
modifying the packet are also possible). If no flow has been
cached, the packet will be forwarded to the userspace
daemon, which will then either process the packet locally
(e.g. by getting the flow from ovsdb-server and then
processing it) or outsource the request to a remote
OpenFlow controller. Subsequently, the userspace daemon
will forward the resulting flow to the kernel datapath,
where the specified action can now be carried out and the
flow can be cached [19]. In Figure 2 the green line (i.e. the
”fast” path) represents the traversal of a packet through
OVS, where a corresponding flow has already been cached,
which is faster than the traversal path of a packet
represented by the red line (i.e. the ”slow” path) where the
corresponding flow has not yet been cached [19].

Figure 2: Open vSwitch architecture based on [19].

2.3.2 Performance optimizations
Traditional hardware switches are specified to achieve a
certain worst-case line-rate performance with dedicated
hardware. For OVS however, resource conservation is more
critical, since the worst-case performance is secondary to
the workload that is running on the user VMs on the
hypervisor, and therefore OVS is optimized for common
case usage [19] while still being able to gracefully handle
worst-case scenarios (like port-scans) e.g. by caching rules.

Caching. Caching takes place in the kernel datapath
module, which is effectively separated from the OpenFlow
processing. This happens transparently for an OpenFlow
controller, which just assumes the packet is going to be
matched against the highest priority flow given in the flow
table [19].

At first, OpenFlow only used so called microflow caching.

This means the kernel cache is a simple hash table
(without a packet classifier, which now resides in
userspace) in which ”a single entry exact[ly] matches all
packet header fields supported by OpenFlow” [19]. Of
course, this leads to cache entries being really specific and
usually, with these specific entries only packets of a single
transport connection were being efficiently forwarded.

Consequently, the microflow caching approach suffers from
a loss of performance in scenarios with lots of short-lived
connections, where many cache misses are produced,
because for every cache miss, the packet has to be sent to
the userspace daemon for classification, resulting in
increased latency [19]. Therefore, the concept of megaflow
caching has been introduced to solve this problem. A
megaflow cache is a flow lookup (hash) table with generic
(or ”wildcarded”) matching [19]. It mostly resembles an
OpenFlow table without priorities. This way, the kernel
can terminate the lookup as soon as one match has been
found. However, to avoid ambiguity, the userspace daemon
is only allowed to install disjoint (i.e. non-overlapping)
megaflows in order not to apply the wrong actions because
of wrong priorities [19]. To be able to match wildcard
header fields while still maintaining a decent level of
performance compared to a full packet classification in
userspace, OVS performs a so called staged lookup: The
hashes of four groups (stages) of the packet header (in
decreasing order of granularity: metadata, like the switch
ingress port, and L2, L3, L4 header data) are calculated
and matched against the megaflow cache incrementally.
The first hash is calculated only over metadata, the second
hash over metadata and the L2 header and so forth [19].
This way, not all packets have to be scanned for L4 headers
(e.g. TCP or UDP ports), even if some flows require it. In
the end, this solution presents a trade-off, because it
requires more hash table lookups than a microflow cache,
but might avoid an expensive trip to userspace for packet
classification. Microflow caching remains as a ”first-level”
cache to match a limited number of packets to their
designated megaflow cache entry [19].

Packet classification. The wide variety of filtering
possibilities offered by Open vSwitch in combination with
OpenFlow [15] (packets can be checked against any
combination, wildcard or range of MAC addresses, IPv4,
IPv6, TCP/UDP header fields, etc.) make packet
classification in userspace a rather expensive task on
general-purpose processors [19]. OVS therefore introduced
a concept called tuple space search classifier both for
kernel and userspace packet classification [19], although in
kernel space there are no priorites and several lookup
tables are consolidated into a single table. With this
approach, several hash tables are created for different
combinations of header fields. For one packet classification
(in userspace), every hash table has to be searched and the
result with the highest priority will be selected as the
resulting flow. Tuple space search classifiers offer
constant-time updates (a single hash table operation) and
their memory usage scales linearly [19].

Further improvements originate from tuple priority
searching, where the lookup code is modified in such a way
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that tuples (i.e. rows of a flow table) are always sorted in
descending order of their priorities. Thus, a lookup can
always terminate once a matching flow has been found,
since every other flow has to have a lower priority [19].

Lookup of IPs and IP ranges (for IPv4 and IPv6) is based
on a trie lookup approach called prefix tracking which
avoids having to scan all IPs. When traversing the trie
(e.g. in Figure 3) starting from the root, the search can be
terminated once the current matching node has no more
leaves (e.g. in Figure 3 for an IP in 10.2.0.0/16, the
lookup can terminate once it reaches the node 2) [19].

Figure 3: Example prefix tracking tree based on [19].

2.4 Microsoft Hyper-V Virtual Switch
The Hyper-V role built into the Windows Server operating
system includes a hypervisor, VMbus (a mechanism to
enable inter-VM and host-to-VM communication, also used
by Hyper-V virtual switch), and, among other components,
a ”software-based layer-2 Ethernet network switch” [5]
called Hyper-V virtual switch [10].

2.4.1 Design
Starting from Windows Server 2012, the Hyper-V virtual
switch also supports third party extensions [17]. Hyper-V
virtual switch (HVS) runs in the management OS (Windows
Server or regular desktop editions of Windows starting from
Windows 8 [10]) and provides three different kinds of virtual
switches [17]:

• An external switch which supports a single physical
network adapter and an arbitrary number of virtual
network adapters, which makes it a comprehensive
switch type, connecting all partitions of the host
machine as well as the management OS itself
(represented by its own virtual network adapter).

• An internal switch which supports the same features
as an external switch except that it doesn’t allow a
phyiscal network adapter to be connected.

• A private switch which only connects virtual network
adapters of Hyper-V child partitions (i.e. virtual
machines). That means both physical adapters and
the management OS (and applications running on it)
can’t connect to this switch type.

This design decision mostly serves isolation purposes and
thus it is not possible to directly connect two physical

network adapters to the same virtual switch. However,
VMs can have multiple network adapters, possibly
connecting them to multiple different virtual switches.

2.4.2 Packet flow through the virtual switch datapath

Figure 4: Hyper-V architecture layout based on [17].

The flow of a packet through the Hyper-V virtual switch
and its extensions works as follows (cf. Figure 4 for a visual
route of a packet) [17, 18]:

1. A packet is first registered at the protocol edge which
prepares it for the ingress data path by allocating a
context area that contains out-of-band (OOB)
information about the packet, like the source switch
port and the origin network adapter.

2. A capturing extension can capture and monitor the
packet afterwards, but it cannot modify or drop it. It
can, however, originate new traffic down the ingress
path (e.g. to submit statistics to a monitoring
application).

3. The following filtering extension is now able to inspect,
modify and drop packets.

4. If there is no third-party filtering extension installed
or enabled, Hyper-V virtual switch will now apply its
built-in ingress policies to the packet before
forwarding it to the forwarding extension: Filtering
based on Access Control Lists (ACLs), DHCP Guard
(to prevent rogue DHCP VM servers), Router Guard
(to prevent VMs from pretending to be routers), and
more.

5. The forwarding extension extends the capabilities of
a filtering extension to the process of actually
choosing a destination switch port for a packet. If
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there is no forwarding extension installed, Hyper-V
virtual switch will choose the destination port based
on its standard (built-in) settings. This is also the
position in the Hyper-V virtual switch data path,
where the Windows implementation of Open vSwitch
operates [12].

6. Arriving at the miniport edge, the Hyper-V virtual
switch will apply its built in port policies (port based
ACLs and Quality of Service, QoS) to the packet and
possibly mirror it (if the respective setting has been
enabled) by adding additional switch ports to the
packet’s OOB metadata information. If at this point
the packet has not been dropped, it will be forwarded
to the egress data path.

7. Along the egress data path, the destination switch
ports are visible to all extensions. The packet now
passes all stations of the ingress data path in reverse
order: The forwarding extension can exclude
destination switch ports from receiving a packet by
removing them from the OOB metadata, then the
built-in egress policies are applied to the packet if
there are no respective extensions installed.

8. The filtering extension can now drop packets based on
the switch destination port. If it modifies the packet,
however, it has to clone it and inject it into the ingress
data path without destination ports. The subsequent
capturing extension can, once again, only analyze the
packet and possibly inject new packets on the ingress
data path.

9. Then the packet arrives at the overlying protocol edge
again and is finally sent to its destination switch ports.

It is possible to install multiple capturing and filtering
extensions per instance of Hyper-V virtual switch, but only
one forwarding extension [17]. Following the ingress data
path, the capturing and filtering extensions cannot see the
packet’s destination switch ports (because they have not
been determined yet). These will later be added to the
packet’s OOB metadata either by a forwarding extension
or by the virtual switch itself, and are visible to extensions
along the egress data path.

Other than writing extensions as native NDIS (Network
Driver Interface Specification, an API to communicate
with network cards on Windows [11]) filter drivers,
software vendors can use existing WFP (Windows Filtering
Platform, a set of APIs that could previously be utilized by
developers to write firewalls or intrusion detection systems
for Windows [25]) filter applications to inspect, modify and
drop packets along the HVS data path [17]. WFP filter
applications operate between filtering and forwarding
extensions [26] and usually run in userspace as opposed to
NDIS drivers [8]. This possibly enables these kind of
network security applications to be transferred from the
VMs themselves to a VM-independent level on the
underlying network architecture.

2.4.3 Hyper-V network virtualization
Hyper-V network virtualization offers a network
virtualization or SDN approach centered around the

Hyper-V platform. Hyper-V virtual networks (HVNs,
identified by a single Routing Domain ID, RDID) ”consist
of one or more virtual subnets” [6] (identified by Virtual
Subnet IDs, VSIDs). Virtual subnets represent isolated
parts within a virtual network, in which VMs within a
virtual subnet have their own client IP addresses (CAs)
and use them to communicate with each other, while the
traffic is transparently transported over the physical
network infrastructure using physical addresses (PAs).
This ensures that one virtual subnet can in fact be
distributed among multiple hosts and subnets on the
physical network infrastructure [6].

Virtual subnets allow inflexible applications, that might
rely on specific IP and general network configurations, to
be brought to the cloud, without having to heavily modify
them, because they can be assigned their own virtual
network that is isolated from the actual network
infrastructure and can thus have IPs that would otherwise
collide with IPs already existing on the datacenter network
(customers can ”bring their own IPs” [24]).

This approach is realized by using NVGRE (Network
Virtualization using Generic Routing [3]) to encapsulate
layer 2 packets into layer 3 packets (cf. Figure 5) and send
them across multiple collision domains in the network [3].
Since this process happens inside HVS, it is transparent for
the VMs.

Figure 5: L2 packet encapsulated using NVGRE
(based on [3]).

The HNV module inside the Hyper-V virtual switch (cf.
Figure 4) now enables extensions to view both the PA and
the CA of an encapsulated packet, as it encapsulates and
decapsulates NVGRE traffic [6]. That means extensions
will receive the encapsulated NVGRE packet on the ingress
path and the decapsulated packet on the egress path
(because the HNV module operates alongside the miniport
edge, cf. Figure 4) or the other way around if the packet is
not received from a tunneled connection, but is to be sent
to one [18].
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3. COMPARISON
Now that we know details about the respective design and
datapath layout of both switches, we will compare them in
the following Sections.

3.1 Design
Open vSwitch follows a more generic design idea, focusing
on the power and programmability of the standardized
OpenFlow protocol acting as an ”instruction set” [16] of the
switch, while the Hyper-V virtual switch enforces a more
traditional, pipelined approach of packet processing,
although in recent versions it can be extended by filtering
and even forwarding extensions (see Section 2.4.2),
basically taking control of the switch forwading logic. The
current built-in ACLs of Hyper-V virtual switch offer
matching for basic header fields (protocol, source &
destination MAC, IP, TCP/UDP ports) [23], while
OpenFlow basically matches almost all possible packet
header fields [15] and offers more actions than the standard
”accept”/”deny” (e.g. forwarding to a remote controller).
Though it is not as straight forward, functionality like this
can be added to HVS through extensions. In fact, in
Section 3.3 we are going to discuss an OpenFlow-enabled
OVS implementation for HVS. Since OVS is Open Source
[14], obviously it can also be extended as such, though it
doesn’t offer dedicated extension support.

Both virtual switches also offer their own take at the SDN
approach, with OVS based around OpenFlow and a
centralized OpenFlow controller (see Section 2.2), and
HVS based on the concept of ”Hyper-V virtual networks”
using NVGRE-tunneled packets to communicate (see
Section 2.4.3).

For a concise, tabular comparison of the features of both
switches, refer to Table 1.

3.2 Performance
The respective design of both virtual switches also impacts
their performance which we will analyze in the following
Sections.

3.2.1 Theoretic considerations
While the caching approach of OVS has already undergone
several changes, culminating in a generic megaflow cache
with a ”first-level” microflow cache (see Section 2.3.2), the
caching policies of the Hyper-V virtual switch are not
thoroughly documented, although there are approaches to
optimize performance for it. The 2012 R2 version of
Windows Server introduced virtual RSS (Receive Side
Scaling) which ”enables network adapters to distribute the
kernel-mode network processing load across multiple cores”
[7] while maintaining cache locality [9] since in the past
there have been problems achieving the full speed of
high-throughput network adapters (≥ 10 Gbps) [22].
Another performance improvement presented is IPsec task
offloading which moves the encryption of network packets
from the VMs (i.e. the CPU) to physical NICs [22]. For
multiple teamed (virtual) NICs, Hyper-V virtual switch
offers load balancing to distribute the load among them as
equally as possible [23]. Dynamic VM queue (dVMQ) is
another feature introduced in Windows Server 2012, which

aims to speed up the HVS performance. It queues up
traffic for (virtual) NICs by hashing the destination MAC
and putting the traffic ”destined for a virtual NIC into a
specific queue” [22] mostly tied to a single core to avoid
unnecessary CPU interrupts by processing the traffic on
random cores.

Overall, OVS has fewer steps in its entire pipeline (cache
lookup, possible userspace packet classification, cache
update, and applying the action specified through the
matched flow, see Section 2.3.1) than HVS, where the
packet has to possibly traverse three extensions twice
(along the ingress and egress path, see Section 2.4.2) in
addition to being analyzed by the switch itself at the
miniport edge. OVS has a more generic caching approach
(megaflow-cache) to ensure decent processing speed, while
HVS introduced a lot of specific, often hardware-related
techniques, like vRSS or dVMQ.

3.2.2 Practical benchmark

Setup. To compare the performance between Hyper-V
virtual switch and Open vSwitch, we tested them to see
how they perform under load. The test machine was
equipped with an Intel Core i5-2500K CPU (4 cores
clocked at 4.1 GHz with no Hyper-Threading). To test
Hyper-V virtual switch we used Windows Server 2012 R2
with Hyper-V as a hypervisor, for Open vSwitch we used
Debian 8.3 jessie (kernel 3.16) with KVM as a hypervisor
(libvirt 1.2.9, QEMU 2.1.2). For both tests we used 2
VMs with Debian 8.3 jessie and kernel 3.16 running as
guests on the hypervisors and both were assigned 1 CPU
core and 1GB RAM each. The virtual network adapters
were provided by the respective hypervisors. As a traffic
generator we used trafgen, and to measure packets on the
second virtual machine we used ifpps, both part of the
netsniff-ng package [2]. Trafgen was used to send as
many empty identical ICMP packets (42 Bytes per packet,
64 Bytes with padding on wire due to Ethernet frame size
requirements) as possible from VM1 to VM2. The reason
we used ICMP and not UDP packets was that those did
not provoke ICMP ”Port Unreachable” replies from VM2,
possibly slowing it down.

Measurement. From the result (cf. Figure 6) we can
observe that in a direct comparison of 10,000,000 ICMP
packets sent with trafgen from VM1 to VM2 in each
scenario, Open vSwitch achieves an average throughput of
764,696 packets per second (pps) or about 0.76 Mpps,
while Hyper-V achieves an average of 554,470 pps or about
0.55 Mpps. Interestingly, HVS’s initial throughput is about
0.1 Mpps higher than that of OVS, but the overall
throughput of OVS is higher. This can probably be
attributed to the caching strategy of OVS, where after
about 1 second the megaflow cache has been set up and
packets do not have to pass the userspace anymore. HVS’s
caching strategy is not documented, but it seems to employ
one nevertheless, given that the initial performance rises,
fluctuates and even slightly drops at 10s, but then settles
at about 0.6 Mpps.

Seminars FI / IITM SS 16,
Network Architectures and Services, September 2016

28 doi: 10.2313/NET-2016-09-1_04



Table 1: Feature comparison
Feature Open vSwitch Hyper-V virtual switch

Pipeline Short, generic, programmable with OpenFlow Long, arbitrary, with 3 extensions
Extensions Open source extensibility Extension API with 3 types

UNIX integration Designed for UNIX-based operating systems n/a
Windows integration Beta port with increased managerial complexity Designed for Windows Server

Caching strategy Megaflow and Microflow cache n/a
SDN approach OpenFlow integration Hyper-V virtual networks with NVGRE

The performance comparison was meant to be carried out
in a very similar environment, and while the hardware, the
VM configuration and VM software were the same during
both tests, the fact that different operating systems and
hypervisors were used (because, unfortunately, as of now,
we were not able to test the Windows version of OVS)
should be taken into account.
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Figure 6: Switch performance comparison

3.3 Open vSwitch running on the Hyper-V
hypervisor

Although OVS does not natively support the Hyper-V
hypervisor, there is an OVS fork with Windows and
Hyper-V support, developed by Cloudbase and VMware [4,
12]. The userspace code was, apart from minor tweaks,
mostly left intact, but the kernel module had to be
rewritten from scratch due to the fundamentally different
architecture of Windows and UNIX-based operating
systems. It was designed as an NDIS filter driver (OVSEXT)
”implemented as a forwarding extension” [12] (cf.
Section 2.4.2) so as to leverage the extension framework
provided by Hyper-V and replace (almost) the entire
built-in switching logic.

In order to make as few changes to the userspace daemon
as possible, the developers opted for an emulation of Linux
netlink sockets under Windows to let a pseudo device
(representing the kernel) communicate with the userspace
[12]. Part of the kernel module has also been optimized by
using zero-copy to only transfer references to the memory
location of a packet to userspace instead of deep copying
the entire packet [12].

In terms of packet flow, the extension behaves like Open
vSwitch: A packet is received by the OVS forwarding
extension on the ingress data path, the kernel module of
OVS will calculate its hash(es) and look for a cached flow.
If there is no such flow, then the packet will be sent to
userspace with an upcall, processed there and sent back to
the kernel module where the new flow will be installed.
Afterwards, the processed packet will be sent ”back” onto
the HVS egress data path [12]. To keep switch ports in
sync between the OVS userspace components, the OVS
kernel datapath and HVS, an additional field name has
been added to HVS ports which is synchronized between
the three components [12].

The inclusion of OVS into Hyper-V as a forwarding
extension extends the HVS pipeline even further and thus
increases the packet processing overhead and adds the
necessity for two basically different virtual switches to stay
synchronized. However, since a forwarding extension
replaces a substantial amount of default functionality of
HVS, we might also see slightly increased performance due
to the megaflow cache. Furthermore, it offers datacenter
operators a possibility to integrate the Hyper-V hypervisor
into their lineup even if their virtual network is reliant on
OpenFlow.

4. RELATED WORK
On the topic of virtual switch performance analysis,
Emmerich et. al. [9] quantitatively analyze the
performance of Open vSwitch compared against other
Linux virtual switches or software bridges in a test
environment, while Pfaff et. al. [19] look at the real-world
performance of Open vSwitch deployed in a commercial
Rackspace datacenter. Since we couldn’t possibly cover all
hardware-offloading features and they are also often
subject to change, information on those can be found at
the respective virtual switches’ websites [5, 14]. A more
in-depth look at the SDN features of OVS (also focusing on
the integration into OpenStack - a comprehensive software
platform for ”cloud computing”) and HVS is given in talks
by Pettit [13] and Williams [24] respectively. The source
code and integrated documentation of Open vSwitch [14]
and the Windows implementation of OVS [4] is also
available. There are, of course, completely different virtual
switches with other internals than the two covered in this
paper. Commercial solutions by Cisco [1] and VMware [21]
might be of particular interest in this case.

5. CONCLUSION
Hyper-V virtual switch has long been the only notable
virtual switch for the Hyper-V platform, but its extension
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support spawned alternatives, deeply integrated into HVS,
and Open vSwitch is among them. While OVS (in its
native UNIX-like environment) has an edge on HVS in
terms of raw performance (as of 03/2016, cf. Section 3.2),
both switches perform well even when faced with several
hundreds of thousands of packets. Naturally, OVS is more
prevalent in Linux-based environments and datacenters,
while Hyper-V and HVS provide several Windows-specific
capabilities. The OVS implementation for Windows
discussed in Section 3.3 tries to bridge the gap between
both worlds, albeit with a slight increase in managerial
complexity (due to having to manage two different
switches). Nevertheless, this approach can help the
consolidation of traditional networks into virtual networks,
since it extends the availability of a common protocol to
another platform.
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