
MoonGen Tutorial

Jonas Jelten
Betreuer: Paul Emmerich, Daniel Raumer

Seminar Innovative Internet-Technologien und Mobilkommunikation WS2015
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: jelten@in.tum.de

ABSTRACT
This paper provides a short introduction into the usage of
MoonGen, a high performance packet generation framework
written in Lua. It is based on DPDK which mediates the
hardware access. You will learn how you can interact with
the MoonGen API to craft and send custom packets, gather
statistics and verify received data. Communication between
tasks running in parallel is demonstrated. The usage of
hardware features like queues and rate control is illustrated
and explained. You will see that MoonGen is simple to use
for many load generation use cases.

Keywords
networking, MoonGen, tutorial, howto, Lua, Linux

Version
This is the tutorial version v1.0.

1. WHAT’S MOONGEN?
After reading this tutorial, you will be able to use MoonGen
to benchmark and test your network setup in any way you
like. You’ll learn the concepts, the architecture and basics
of the MoonGen API.

MoonGen [2] is a software based packet generator frame-
work, designed for easy use and high speeds at 10Gbit and
more. Executed on common hardware, it can be used for
just load generation in benchmarking applications, or to
check the response validity for error detection by execut-
ing custom code for each packet without expensive special
hardware. This way, firewalls, network address translation
and quality of service setups can be tested and verified to op-
erate correctly even under enormous load. Sub-microsecond
latency and packet drops can be measured and checked if
they match the expected behavior in benchmarks.

MoonGen is based on Data Plane Development KitDPDK [1],
which is granting direct hardware access via DMA, thus al-
lowing the LuaJIT [6] machine to interact with the network
interface at maximum speeds. In order to use MoonGen,
you should have a basic knowlege of Lua, for example from
a quick tutorial at
https://learnxinyminutes.com/docs/lua/ [4].

2. SETUP
MoonGen is intended to run on any GNU/Linux distribu-
tion. This guide was created on Ubuntu 14.04.

To install, clone the git repository from the upstream url
at https://github.com/emmericp/moongen [5], then follow
the prerequisite requirements and installation directions in
the README file.

After you built the project successfully, try if you can ex-
ecute ./MoonGen and get the usage information printed. If
that works, you may continue with the tutorial.

3. ARCHITECTURE
In principle, MoonGen is a high-level frontend for DPDK.
DPDK provides a low-level API for hardware access, packet
generation and response processing, mainly designed for data
plane development [1]. MoonGen’s core is a convenient lua
wrapper for that API. To use it, you create custom lua files
containing code instead of config files: This allows much
more flexibility for any measurement application you intend
to conduct.

The entry point for all the custom code is a control script,
containing a master function. It is called by MoonGen,
should set up the interfaces and request the desired settings.
Internally, configuration is then passed to dpdk, which per-
forms the actual hardware setup.

This control script can spawn new tasks as separate LuaJIT
VMs. That way, packet generation, receive measurements,
verifications, etc. can easily be implemented apart and exe-
cuted in parallel.

After packet fields are composed in some task, they’re passed
to dpdk which crafts the payload and sends it out of the de-
vice. Data received from the hardware is mediated through
dpdk to the lua script which can then do any verification
and processing.

The running tasks can only communicate through the Moon-
Gen API, for example via pipes and namespaces, as tasks
are separate Luajit VMs in a different address space.

A graphical representation of the just described data and
control flow can be seen in Figure 1. Only the custom scripts
(“Userscript”) are visible to the user, which then communi-
cates with the config or data api with the hardware device.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

41 doi: 10.2313/NET-2016-07-1_06



Figure 1: MoonGen architecture [2]

4. USAGE INTRODUCTION
After successful compilation of MoonGen, the invocation is
very simple:

./MoonGen yourscript.lua [yourargs...]

yourscript.lua is your lua file is the entry script. It must
contain a function master(...) which then performs the
device setup, described in Section 4.1. Once this is done,
worker tasks can be spawned as explained in Section 4.3,
which then perform their duty to generate packets (Sec-
tion 4.2), receive and count them (Section 4.4), communicate
with each other (Section 4.6) or do whatever is appropriate
for your use case.

4.1 Device setup
Before a NIC (network interface card) can be used, it must
be taken away from the Linux driver so that dpdk can use
it. The Python script deps/dpkg/tools/dpdk_nic_bind.py
can detach PCI devices and set their driver to e.g. igb_uio

or vfio-pci to use them with MoonGen.

Modern network interfaces have hardware features that al-
low a huge speedup by parallelization: They have send and
receive queues, around 32 to 128 each (depending on NIC
model) which allow to prepare sending out packets in paral-
lel or assign received packets already on hardware by custom
filter rules like hashing protocol header fields. This comes
in handy for multicore processing, as the queues can be as-
signed to processors or threads independently [3].

In MoonGen, the queues are used independently and are
usually requested in the entry point script. The devices are
aquired and set up, queues registered and then, for example,
used to send some packets.

local device = require "device"

function master(txNum)

-- use specified NIC number with

-- no listening and one transmission queues

txDev = device.config{

port = txNum,

rxQueues = 0,

txQueues = 1,

}

device.waitForLinks()

send(txDev:getTxQueue(0))

end

To interact with an allocated queue, it is fetched from the
device object by calling queue = txDev:getTxQueue(nr) or
getRxQueue. You’ll see this in Section 4.2.

To use the receive filter configuration mentioned earlier, con-
figure the device upon creation. When calling device.config,
set rssNQueues = N to the number of queues where pack-
ets shall be placed in. This enables automatic hashing by
IPv4/6 and TCP/UDP headers to place same-header pack-
ets (from the same “flow”) into the same queue selected from
0 to N-1.

The optional rssFunctions parameter controls which of the
hash functions are enabled. If you don’t specify it, all sup-
ported hashes are enabled. You can create a list of meth-
ods you want to use out of RSS_FUNCTION_IPV4, .._IPV6,

.._IPVX_TCP, .._IPVX_UDP:

local device = require "device"

txDev = device.config{

port = 0,

rxQueues = 4,

rssNQueues = 4,

rssFunctions = {

device.RSS_FUNCTION_IPV4,

device.RSS_FUNCTION_IPV4_TCP,

}

}

4.2 Packet generation
To compose the data to send, a memory buffer is required
first. As packets are sent out asynchronously, the buffers
where you are crafting them must be allocated indepen-
dently, in a buffer array. The array manages many alloca-
tions of same-sized packets, maintained in a memory pool.
When the data was actually sent out, the allocated buffer
can be freed from the array.

In such a buffer, most data will stay the same though, so the
skeleton is defined via a function previously. It’s important
to set up the default values of the packet in this function for
the memory pool and not in the generation loop. Otherwise,
performance problems will arrise.

In this example, the most simple-stupid way is used to man-
ually set up an ethernet header in a char buffer.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

42 doi: 10.2313/NET-2016-07-1_06



local dpdk = require "dpdk"
local memory = require "memory"

function send(queue)
local mem = memory.createMemPool(function(buf)

local data = ffi.cast("uint8_t*", buf.pkt.data)
for i = 0, 11 do

data[i] = i -- fill in mac addresses
end

data[12] = 0x12 -- set type to ethernet
data[13] = 0x34

end)
local bufs = mem:bufArray()
while dpdk.running()

bufs:alloc(60) -- size of each packet
-- ⇑ sets up each packet with the function above
-- ← here, single packets could be modified
queue:send(bufs) -- schedule sending

end
end

To simplify crafting of packets, the raw buffer can be casted
into easy-to-use protocol header objects. Those conversions
are defined in lua/include/proto/ for all kinds of protocols,
for example getIP6Packet() or getUdp4Packet().

local mem = memory.createMemPool(function(buf)

buf:getEthernetPacket():fill{

ethSrc = txDev, -- use device mac

ethDst = "00:01:02:03:04:05",

ethType = 0x1234,

}

end)

If you want to implement a new protocol packet format,
please copy and adapt the template file provided in
lua/include/proto/newProtocolTemplate.lua.

To change some data for single packets, perform your oper-
ation after allocating the buffer array and before enqueuing
the send-out. You can change any data of the packet and
again use the convenience casts for implemented protocols.
To configure the hardware transmission rate of a queue, use
queue:setRate(Mbit/s).

If you need to to pause the LuaJIT VM for some time period,
call the dpdk.sleepMillis(time) function.

The following send function will only transmit data for 10
seconds, then it terminates. It creates UDP on IPv4 packets
with a randomized source address.

local timer = require "timer"

function send(queue)
queue:setRate(100) -- hardware rate in Mbit/s
dpdk.sleepMillis(1000) -- wait one second
local mem = memory.createMemPool(function(buf)

buf:getUdp4Packet():fill{
pktLength = 124,
ethSrc = queue, -- device mac
ethDst = "10:11:12:13:14:15",
-- ipSrc will be randomized
ip4Dst = "10.13.37.1",
udpSrc = 4321,

udpDst = 1234,
-- payload = \x00 (mempool initialization)

}
end)

local bufs = mem:bufArray()
local runtime = timer:new(10) -- 10 seconds

while runtime:running() and dpdk.running() do
bufs:alloc(250)
for _, buf in ipairs(bufs) do

local pkt = buf:getUdpPacket()
-- select a randomized source IP address
pkt.ip4.src:set(

parseIPAddress("10.0.42.1")
+ math.random(235))

end
bufs:offloadUdpChecksums() -- harware checksums
queue:send(bufs)

end
end

4.3 Running parallel tasks
While running, MoonGen often needs parallel tasks: To send
and receive packets, to create and write out statistics and
counters or to do response verification. To achieve this,
“slave” tasks are spawned.

The function used for this is dpdk.launchLua("funcname",

arg0, ...), which spawns a single slave task as a new Lu-
aJIT VM. The task can then execute any code within the
called function. Arguments are passed, this allows you to
access e.g. the devices or queues within the task. The slave
tasks can also be created dynamically on demand, although
this should be used rarely to avoid spawning new VMs too
quickly and often.

local dpdk = require "dpdk"

dpdk.launchLua("somefunctionname", arg0, arg1, ...)

dpdk.launchLua("otherfunction", txDev, ipaddr)

dpdk.waitForSlaves() -- wait for child termination

In such a task, contents of every single received packet can
be processed. The data arrives in batches, so the analysis
has to loop over all packets in that batch.

local dpdk = require "dpdk"
local memory = require "memory"

function master(txPort, rxPort)
local txDev = device.config{port = txPort}
local rxDev = device.config{port = rxPort}
device.waitForLinks()
dpdk.launchLua("send", txDev:getTxQueue(0))
dpdk.launchLua("recv", rxDev:getRxQueue(0))
dpdk.waitForSlaves()

end

function recv(queue)
local bufs = memory.bufArray()
while dpdk.running() do

local rx = queue:recv(bufs)
for i = 1, rx do

local pkt = bufs[i]:getUdp4Packet()
print("Packet: " .. pkt.ip4:getString())

end
bufs:freeAll()

end
end

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

43 doi: 10.2313/NET-2016-07-1_06



4.4 Statistics
The stats module allows counting packets for statistics. Af-
ter statistics were gathered, they can be written to stdout

or to some file. The supported formats are "plain", "csv"
and "ini".

To create a new packet counter that is attached to a de-
vice, call local rxCtr = stats:newDevRxCounter(device,

"plain") or newDevTxCounter(..). Information is gathered
automatically by performing queries to the harware counters
of the NIC.

The newPktRxCounter("your counter name", "plain") or
newPktTxCounter(..) can be updated by passing packet
buffers to them via its countPacket(singleBuffer) method.

The newManualTxCounter("your counter name", "plain")

is suitable for counting packets and other data manually. up-
dateWithSize(packet_count, each_size) must be called
to increase the datameter internally.

For all those counters, their :update() method should be
called regularly, as it will show current statistics at runtime.

The histogram module allows gathering statistics about a
frequency distribution.

The next example incorporates the device and package coun-
ters, it just listens for packets on the given hardware port
and counts the occurrences of UDP ports. The packet sizes
are logged in a histogram.

local dpdk = require "dpdk"
local device = require "device"
local histogram = require "histogram"
local memory = require "memory"
local stats = require "stats"

function master(rxPort, saveInterval)
local saveInterval = saveInterval or 60
local rxDev = device.config{

port = rxPort,
dropEnable = false,

}
device.waitForLinks()

local queue = rxDev:getRxQueue(0)
local bufs = memory.bufArray()

-- create the device receive counter
local rxCtr = stats:newDevRxCounter(queue.dev)
-- and the packet receive counter to detect
-- packets that were dropped on the NICNIC
local pktCtr = stats:newPktRxCounter("pkts", "plain")

local hist = histogram:create()
local timer = timer:new(saveInterval)
while dpdk.running() do

-- wait max 100ms for new data
local rx = queue:tryRecv(bufs, 100)
for i = 1, rx do

local buf = bufs[i]
local size = buf:getSize()
hist:update(size)
pktCtr:countPacket(buf)

end
bufs:free(rx)

rxCtr:update()
pktCtr:update()
if timer:expired() then

timer:reset()
hist:print()
hist:save("packet_sizes.csv")

end
end

-- and print statistics, those should be the same.
rxCtr:finalize()
pktCtr:finalize()

end

To use the manual counter, the return value of queue:send()
can be used. Note here that the send call is asynchronous,
but the return value can still be recorded for statistics. As
in the previous example, the finalize() call actually prints
the final result, and updateWithSize prints the runtime sta-
tus every second:

function send(queue)
local mem = ...
local packetSize = 250

-- create manual counter
local txCtr = stats:newManualTxCounter(port, "plain")
local bufs = mem:bufArray()

while dpdk.running() do
bufs:alloc(packetSize)
bufs:offloadUdpChecksums()
local sentCount = queue:send(bufs)

-- register new data: sentCount * packetSize
txCtr:updateWithSize(sentCount, packetSize)

end
txCtr:finalize()

end

It’s also easily possible to collect statistics about packet con-
tents, for example their UDP destination port. The task is
blocked until some data is received. Then, all packet buffers
received are casted to UDP in IPv4 packets, which then
trigger a counter creation, if it doesn’t exist already. This
demonstrates that counters can be created and updated dy-
namically as well.

function recv(queue)
local bufs = memory.bufArray()
local counters = {}

while dpdk.running() do
-- block until some data was received
local rx = queue:recv(bufs)
for i = 1, rx do

local buf = bufs[i]

-- cast the buffer to a known protocol
local port = buf:getUdpPacket().udp:getDstPort()
local ctr = counters[port]

-- create counters dynamically
if not ctr then

ctr = stats:newPktRxCounter(port, "plain")
counters[port] = ctr

end

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

44 doi: 10.2313/NET-2016-07-1_06



-- record the packet
ctr:countPacket(buf)

end
bufs:freeAll()

end

-- for each observed destination port, print stats:
for _, ctr in pairs(counters) do

ctr:finalize()
end

end

4.5 Timestamping
To measure sub-microsecond delays in fiber and copper ca-
bles, MoonGen can utilize hardware timestamping features
from modern NICs. The packets sent are defined in the
lua/include/proto/ptp.lua, the precision time protocol.
You can create a timestamper to use either as a layer 2 (via
timestamping:newTimestamper(txq, rxq) or transfer it as
PTP via UDP in IPv4 with timestamping:newUdpTimestamper.

This example measures the latency between both queues
via hardware timestamping every 0.01 seconds. The queues
have to be connected at the peer side, so the sent packet can
take a round trip.

local ts = require "timestamping"

function timerTask(txq, rxq, size)
-- create the timestamper for measuring
-- between those queues
local timestamper = ts:newTimestamper(txq, rxq)
local hist = histogram:new()
local rateLimiter = timer:new(0.01)
while dpdk.running() do

rateLimiter:reset()
hist:update(timestamper:measureLatency(size))
rateLimiter:busyWait()

end
hist:print()
hist:save("histogram.csv")

end

4.6 Task communication
The simplest inter-task communication API provided by
MoonGen are pipes. For example, you can send rate ad-
justment messages, pass statistics or transfer any communi-
cation that is not performance-critical through a pipe shared
by two tasks. To use, create the pipe in a common context,
for example the master function. This pipe can communi-
cate accross LuaJIT VMs and can send arbitrary data, which
is serialized and unserialized using the “serpent” library.

local pipe = require "pipe"

-- create a new pipe in the parent task
local p = pipe:newSlowPipe()
p:send(0, 13, 37, 42) -- send array
p:send("the cake is a lie") -- send string
-- or send a table
p:send({235, lol = "rofl", subtable = {1}})

-- number of waiting messages
local enqueued = p:count()

-- receiving
local a, b, c, d = p:recv() -- equals tryRecv(10)

local txt = p:tryRecv(100) -- wait time microseconds
-- and return answer

-- pass this pipe when creating another task
-- it can then access it like above.
dpdk.launchLua("somefunction", p)
dpdk.waitForSlaves()

The alternative to pipes are namespaces, which are global
variables between LuaJIT VMs, implemented as lua table.
They are also slow like the pipes from above, as data is
transferred between VMs.

local space = namespaces::get("name") will create or fetch
an already existing global namespace, which can then be ac-
cessed like this:

local dpdk = require "dpdk"

local namespaces = require "namespaces"

function master()

local space = namespaces:get("mine")

space.string = "data!"

space.answer = 42

space.table = { black = "mesa", { 1 } }

dpdk.launchLua("slave"):wait()

end

function slave()

-- can access the same namespace!

local slavespace = namespaces:get("mine")

print("data? " .. slavespace.string)

end

4.7 Traffic patterns
The hardware rate control feature of some NICs can only be
set to a constant rate. To send non-constant traffic patterns
of valid packets, MoonGen fills the gaps between the packets
with invalid data. That way, the sending card is kept busy
and times sends correctly, but devices along the tested way
will hopefully drop the broken packages and process only the
correct ones. The send delay is configured in bytes, which
equals the amount of garbage, as seen in Figure 2. Various
traffic patterns like exponential distributed bursts are easily
possible with that approach.

Figure 2: MoonGen rate control [2]

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

45 doi: 10.2313/NET-2016-07-1_06



A MoonGen packet buffer can be set a waiting gap dura-
tion by buf:setDelay(bytes). On 10GbE one byte would
have a delay of 0.8 nanoseconds. A randomly exponentially-
distributed delay can be generated with the poisson pro-
cess by poissonDelay(average_wait), where the parameter
specifies the average wait time between two packets. The
exponentially-distributed wait time can directly be fed into
setDelay(poissonDelay(..)), this will then be the amount
of garbage sent out between real packets.

function send(txDev)

local mem = ...

local bufs = mem:bufArray()

while dpdk.running() do

bufs:alloc(size)

for _, buf in ipairs(bufs) do

local avg = rateToByteDelay(rate, size)

local delay = poissonDelay(avg)

buf:setDelay(delay)

end

queue:sendWithDelay(bufs)

end

end

5. CONCLUSION
This introduction should have prepared you to achieve any
measurement task in MoonGen. Complete and directly ex-
ecutable examples are shipped with MoonGen in its exam-

ples/ subfolder. This tutorial should have prepared you to
implement your particular test setup and understand com-
plex examples like router.lua. With namespace, you can
try implementing an ARP lookup task that figures out peer
addresses for your packet crafting.

If you encounter any issue while using MoonGen and think
it’s not your or your setup’s fault, please create an issue
at https://github.com/emmericp/MoonGen.git/issues so
the developers can assist you or fix the bug you may have
discovered. We hope you enjoy using this tool and encourage
you to improve it further and adapt it to your needs, as it’s
free software for a reason.

References
[1] Data Plane Development Kit. http://dpdk.org/. Ac-

cessed: 2015-12-05.

[2] Paul Emmerich, Sebastian Gallenmüller, Daniel
Raumer, Florian Wohlfart, and Georg Carle. MoonGen:
A Scriptable High-Speed Packet Generator. In Internet
Measurement Conference 2015 (IMC’15), Tokyo, Japan,
October 2015.

[3] Linux network stack scaling. https://www.kernel.org/
doc/Documentation/networking/scaling.txt. Ac-
cessed: 2015-12-19.

[4] Lua tutorial. https://learnxinyminutes.com/docs/

lua/. Accessed: 2015-12-19.

[5] MoonGen repository. https://github.com/emmericp/

moongen. Accessed: 2015-12-10.

[6] Mike Pall. Luajit. http://luajit.org/. Accessed:
2015-12-05.

Seminars FI / IITM WS 15/16,
Network Architectures and Services, July 2016

46 doi: 10.2313/NET-2016-07-1_06


