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ABSTRACT
Botnets are today the universal tool for malicious activi-
ties in the Internet. They can send out spam messages, host
fairly redundant malicious webpages, perform DDoS attacks
and do much more. Of course, researchers have therefore
been trying to effectively find and shut down botnets as
quickly as possible. The Domain Name System has become
an important part of such botnets, for both the botmas-
ter and the defender. It enables botmasters to either hide
their content servers via fast-flux, but also offers a good
possibility to communicate with the Command and Control
server in the background with the help of Domain Gener-
ation Algorithms. This paper gives an overview on recent
developments in the field of detecting botnets with the help
of the Domain Name System and evaluates the different so-
lutions in terms of required input, practicability, efficiency
and privacy.
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1. INTRODUCTION
Within the past years, the Internet has become a vital part
of the lives of billions of people. Today, there are many
services that are crucial for everyday life and an outage of
servers and services can cause great damage, both monetar-
ily and in terms of reputation. Distributed Denial of Service
(DDoS) attacks initiated by botnets are often responsible
for such an outage disabling a server to answer to any legit-
imate traffic because of too many queries by the attacker.
But botnets are capable of other malicious activities as well:
Their infrastructure can be used to redundantly host con-
tent which can range from spam pages that aim to sell some
replicated products over phishing sites to pages distribut-
ing malware or sending spam or phishing mails. Many large
botnets have been identified or even taken down in the past,
like Torpig [16], Conficker [11] or Mega-D [12]. But never-
theless, as the papers presented here suggest, there are still
a lot of botnets in the Internet that might not have even
been detected yet.

A very important part of the botnet is the communication
structure between the bot and the botmaster. One way to
maintain the communication and receive instructions is the
usage of one or a few so-called Command and Control servers
(C&C server). This is especially important for the first time
after a new host was infected. The question is how to get the
address of that server: If an IP is hardcoded, it can easily

be identified and blacklisted or taken down; the whole bot-
net would be rendered useless. The Domain Name System
(DNS) is a much better way to initialize the communication
because the mapping from a domain to one or more IPs can
be done dynamically. This mechanism, however, is still easy
to stop because now the domain name can be blocked, which
is easily and with little effort achievable. The solution found
by malware developers are Domain Generation Algorithms
(DGA). The bot malware is able to pseudo-randomly gen-
erate a high number of domain names that are all with very
high probability not already registered. The botmaster only
registers very few of these domain names. Nevertheless, all
generated domain names are sent to the DNS server so that
the bot gets to know the current IP of the C&C server. This
complicates the countermeasures to be taken significantly:
Even if a botnet malware is reverse engineered and the pos-
sible domain names are known in advance, it is possible for
a botmaster to modify the DGA very fast or use obfuscation
techniques to cover the DGA [1]. Moreover, even if both the
currently active domain name as well as the current C&C
IP are blacklisted, the malware is able to reconnect to the
botmaster (using another domain and another IP). This can
also not be prevented by just registering all generated do-
mains, because they are simply too many. Therefore, other
detection techniques have to be applied to discover botnet
communication between the zombies and the C&C server.

In addition to the usage of DGAs, which is also called domain-
fluxing, some botnets use the so-called fast-flux technique
to host pages redundantly. A botmaster can never be sure
about how long each bot is online. Therefore, he uses once
again the DNS mapping to rapidly change the returned IP
addresses so that, e.g., phishing pages keep staying accessi-
ble. By monitoring the DNS replies, it is also possible to
find such botnets. However, it is important to note that the
Round-Robin DNS method and Content Distribution Net-
works (CDNs), which are used for legitimate load balancing
of large web sites, also periodically change the returned IPs
for a DNS query. That legitimate traffic has to be distin-
guished from the illegitimate bot traffic.

This paper provides the technical background to understand
the mechanisms to detect botnets with the help of DNS traf-
fic. Then, it gives examples of frameworks that aim to do
that as research has been very active in that area in the
past few years. In total, one paper dealing with fast-fluxing
as well as four papers presenting different systems to detect
DGA-based botnet malware are examined. Additionally, the
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approaches are compared and analysed with respect to re-
quired input, practicability, efficiency and privacy.

In the following Section, we will give a technical background
of modern-day DNS usage as well as the structure of a bot-
net. Section 3 deals with the detection of botnets employ-
ing the fast-flux technique to host content, Section 4 gives
an overview on different approaches to detect DGA botnets
by scanning DNS traffic. Section 5 concludes with a short
summary and final thoughts.

2. TECHNICAL BACKGROUND
In this Section, we describe how modern and large web ser-
vices as well as botnets use the DNS for load balancing and
redundancy. Additionally, a short description of today’s bot-
net structures is given.

2.1 Domain Name System
The main concept of the Domain Name System (DNS) can
be found in the RFCs 1034 [13] and 1035 [14]. In a nutshell,
the DNS provides the mapping service between a domain
name and the corresponding IP. If a client wants to access
a web page, it sends a query to its local DNS resolver re-
questing the IP address of the domain name. If no cached
DNS response is found there, the resolver asks its pre-defined
DNS server for the IP. If it also finds no cached entry for
the name, it initiates a cascade of requests to the required
zone servers according to the domain name. Once the IP or
IPs are found, they are returned to the client, including a
TTL number indicating how long that DNS answer should
be cached without another lookup. If no mapping is found,
a corresponding message is sent to the client as well.

Modern web services with a lot of traffic rely on different
techniques involving the DNS to balance the load and mit-
igate possible DoS attacks [8]. A simple method to dis-
tribute the load is the round-robin DNS (RRDNS) method:
The DNS server loops through a list of possible servers and
returns a different IP for each different request until the be-
ginning of the list is reached again. However, this approach
is only suited for rough load balancing [3].

The second, more sophisticated method is the application
of Content Distribution Networks (CDNs) [10]. The content
distributor is normally a third company which is only re-
sponsible for intelligently providing and distributing content
so that the load is balanced. To achieve that, the content
servers are distributed around the world and the correspond-
ing authoritative DNS server belongs to the CDN. Once it
receives a query, it takes several parameters into account,
including the availability of resources of the CDN and the
distance between requesting client and the possible servers,
calculates the currently best IP match and sends it back to
the client [8]. To ensure an ongoing balancing, the TTL
is low so that a client has to query the DNS server again
quickly. This also means that it is not uncommon that the
same client gets different IPs – maybe even different loca-
tions around the world – each time it queries a DNS lookup.

2.2 Botnets
Beside the botnets with one or more central C&C servers,
there are also P2P-based botnets [4]. However, this paper

focuses on the ones with C&C servers as P2P botnets have a
different communication structure. After a new machine is
infected, it attempts to contact a C&C server to get instruc-
tions on what to do next. Only then, the new bot becomes
an active part of the botnet. If no connection can be estab-
lished, the bot can practically not be used and is worthless.
Different methods have emerged and maybe even combined
to make sure that a connection is established. Just like ordi-
nary web site traffic, one option is exploiting the DNS service
to establish a reliable connection with the help of Domain
Generation Algorithms (DGAs). Bots using DGAs generate
pseudo-randomly domain names and send all of them to the
DNS server. Most of these queries will fail as the botmas-
ter only registers very few of these domains to map to the
C&C IP. This provides a robust communication technique.
Nevertheless, other techniques have also been used already,
for example with the help of social networks: Kartaltepe et
al. report that e.g., Twitter was used as command structure
by using an account that posts Base64-encoded messages for
the bots [9]. Figure 1 shows the layout of a sample C&C-
based botnet. One part of it (Bot 1) could serve as content
hoster, some other part could perform a DDoS attack at
some server. In the background, the C&C server tells the
bots what to do. Of course, it is also possible that the whole
botnet is executing the same order.

The DNS techniques explained in Section 2.1 are employed
by legal web services with the aim of load balancing. A bot-
master who wants to host some content is mainly interested
in availability as he has to expect that each bot could drop
out at any time. This is where the so-called fast-flux method
comes into play [8]: In such a system, the bots act as proxies
redirecting traffic to some central content server. Addition-
ally, the TTL of a DNS query is once again very low and
each time a new DNS query is started, a different set of IPs
of bots is returned. This means that if one bot fails or is
taken down, the whole network is not affected. Moreover,
this quick change of IPs makes it harder to blacklist a small
set of hosts and adds redundancy to the system.

3. FAST-FLUX DETECTION
Botnets can be found by analysing either DNS queries and
responses sent by oneself or by just listening and analysing
generated DNS traffic by others, depending on the situation.
If a botnet uses the fast-flux system to reliably provide some
content with a malicious background, it can be found by ac-
tive queries. The following Section discusses that detection
technique in detail. In that scenario, the DNS traffic be-
tween some client attempting to get to the hosted content
and the DNS server providing the IPs for the different proxy
bots is interesting.

A fast-flux system aims at redundantly providing content
that is mostly illegal – e.g., pages selling replicas, phishing
pages, malware distributing sites – by exploiting DNS ca-
pabilities [8]. In this scenario, the bots act as proxy servers
that redirect any client request to a server in the background
actually hosting the content. A user is directed to these
pages, e.g., by spam mails. As a single bot is much more
likely to fail and suddenly be unresponsive to the botmaster,
it is important for him that he can quickly react on such an
event and provide a client with functional proxies as fast as
possible. This is achieved with the fast-flux technique. The
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Figure 1: Sample layout of a botnet with a central
C&C server in the background.

DNS responses of a domain name with a fast-flux network
in the background have a very low TTL (for example, 600
seconds). Additionally, after each new lookup, a new set of
IPs different to the one before is returned. This way, it is
not a big problem if one or even more proxies fail as there
are enough fallback IP addresses.

This technique has similarities with both the round-robin
system and CDNs. As fast-fluxing is mainly used for illegal
activities and the other ways for legitimate services, it is im-
portant to be able to distinguish between these two groups.
As the RRDNS method usually employs longer TTLs, a dis-
tinction from it can be achieved relatively easily by examin-
ing only DNS responses with a low TTL [8].

In general, the distinction between a fast-flux network and
a CDN is is more difficult. For the sake of load balanc-
ing, the TTL is low there as well. This means that other
parameters need to be used as well. Holz et al. suggest
to have a closer look at three different values: The num-
ber of unique A records (IPs) returned in a series of queries
nA, the number of different Autonomous System Numbers
(ASN) nASN which specify the different network operators
and ultimately the different locations of the servers whose
IPs are used and the number of nameserver records (NS) in
one lookup nNS [8].

In a next step, they tried to calculate a “Flux-Score” for a
domain name by defining a function that is a linear combi-
nation of the mentioned parameters with some weights w1

to w3:

f(x) = w1 · nA + w2 · nASN + w3 · nNS

With the help of a set of benign and fast-flux domains and
a 10-fold cross-validation, they came to the following allo-
cation of the weights: w1 = 1.32, w2 = 18.54, w3 = 0.
If f(x) > 142.38, then a domain is classified as fast-flux, if

f(x) ≤ 142.38, it is considered a benign domain. Using these
values and a set of 128 fast-flux domains and 5803 benign
domains, 99.98% of all domains were correctly classified.

The allocation of the weights clearly shows that the most
distinctive feature of fast-flux networks is that the bots are
spread on a large area, possibly around the world. The rea-
son for that is of course that a botmaster cannot choose
which machines get infected and takes all bots he can get
around the whole world. As CDNs make also use of a
lot of different IPs, the number of returned A records is
a much weaker indicator of a botnet in the background.
Lastly, the amount of different nameserver records plays no
role at all and can be completely disregarded. Empirical
studies showed then that fast-flux domains can have several
thousand different A records and even hundreds of different
ASNs [8].

Once a domain using fast-fluxing is found, several steps can
be taken to mitigate its harmfulness or even to take down
the underlying botnet [8]. A simple method would be to
blacklist the affected domains, e.g., by a firewall. By em-
ploying a database of fast-flux domains, the authors state
that spam filters can be improved as all mails containing do-
mains in the database could be considered spam right away.
In order to further analyse the botnet and eventually take
it down, a cooperation with the Internet Service Provider
(ISP) is required. The bots acting as botnets could be sent
an identifiable request while they are watched to identify the
content hosting server in the background that could also be
the C&C server of the botnet. However, the proxies could
use DGAs to complicate the identification and termination
of the hosting server in the background. We will look at this
method in the next Section.

In conclusion, fast-fluxing botnets can be identified and sep-
arated from legitimate DNS load balancing techniques very
well and with a low rate of failure. However, as Holz et
al. also mention, botmasters might attempt to clone the
behavior of a CDN. But as the availability of bots is never
guaranteed and as the botmaster will always choose avail-
ability to make money over hiding the botnet, botnets will
in our opinion never look so similar to CDNs that they can-
not be detected anymore (even though an adjustment of the
weights of the Flux-Score might be necessary now and then).

As the returned IP addresses for the same host within a
longer period of time have to be analysed, the identification
requires to actively send DNS queries. This might require
resources and could be detected by the botnet. Other sys-
tems to identify fast-flux networks have been proposed as
well, which are largely based on the parameters presented
here [2]. Lastly, it should of course be noted that not all
botnets are used to host content, but do something differ-
ent, like performing a DDoS attack. If that is the case,
fast-fluxing detection techniques cannot be applied.

4. DGA DETECTION
In this Section, we present and evaluate several approaches
that target identifying the communication between bots and
the C&C server while using Domain Generation Algorithms
(DGAs) and the Domain Name System (DNS). First, the
general structure of the different frameworks is explained,
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then, the different approaches are presented.

4.1 General Structure
The initial assumption is always the same: Next to all the
benign DNS queries, there might always be traffic from a
botnet malware that uses a DGA to get the IP address of the
C&C server. This means that the malware creates pseudo-
randomly a large amount of domain names. These domains
have then of course a certain structure (mostly, they are
longer than legitimate domains and consist of a sequence
of letters and numbers). All of these domains are then re-
quested at a DNS server. The botmaster registers only a
small set of these domains for his C&C servers so that most
domain resolutions will fail, only a few will reveal the IP
address of the C&C server. This opens up possibilities to
detect this rather unusual DNS traffic. The frameworks ex-
amined always take similar steps to find that traffic. They
are shown in Figure 2 and described in the following.

Figure 2: General structure of frameworks detecting
DGA-based botnets with DNS monitoring.

DNS Traffic Collection
First of all, the detection framework needs a DNS traffic
input. This traffic can be previously collected from a DNS
server, but it may also be live data while the system is cur-
rently attached to and scanning traffic at a DNS server. It is
common to first test the system offline with some recorded
input and then evaluating if it is possible to let it run live.
This mass collection and analysis of data raises privacy ques-
tions, of course. Some frameworks deal with this issue, some
others do not. The topic will be mentioned again at each
single evaluation.

Botnet Traffic Detection
The next step is the most important one: The identification
of the botnet DNS traffic. Naturally, the most part of the
DNS queries are benign and completely uninteresting for
us. Therefore, some algorithms and/or learning techniques
have to be applied to filter out all the benign queries so that
only the botnet traffic remains. There are a lot of different
methods to identify the botnet queries. The most common
one is the exploitation of the fact that botnet malware using

a DGA sends out a lot of queries that result in a reply stating
that the domain does not exist. As such a reply is relatively
uncommon as typos of users etc. are rare compared to all the
correct DNS queries, this method poses a very good starting
point for further, more detailed filtering.

Botnet Clustering
Normally, a lot of bot traffic of different botnets is found in
the previous step. In order to better analyse them, the bots
are in some frameworks further grouped according to certain
parameters. This provides overview because it is common
that different malware uses different DGAs that have differ-
ent features and can be separated. This way, it is possible
to find out which bots might belong to the same botnet and
if some bots belong to a previously detected botnet or are
part of a yet unknown botnet (or have at least an unknown
DGA).

C&C Detection
After having identified the different botnets, the last step is
to get to know the IP address of the heart of the botnet, the
C&C server. As the bots are known by now, they simply
have to be watched to see which of their DGA-generated
DNS requests are actually successful.

This is only a rough outline of the different frameworks.
There might be more steps involved, like the training of the
framework or anonymization, sometimes less. The different
approaches are now presented.

4.2 Pleiades
The Pleiades system by Antonakakis et al. is a very so-
phisticated framework which uses the “non-existing” resolu-
tion replies from a DNS server (NXDomains) to detect new
classes of DGAs [1]. It consists of two different modules,
the DGA Discovery module and the DGA Classification and
C&C Detection module. The first one is responsible for de-
tecting and clustering botnet queries with the help of NXDo-
mains. The latter one is responsible for generating a model
that helps finding out whether a correctly resolved DNS re-
quest by a previously identified bot was also generated by
the DGA or is legitimate traffic to find the C&C server.

The DGA Discovery module is given all NXDomain traf-
fic collected within a specific time period at a DNS server.
These domains are then clustered in two different ways. The
first way starts by computing different statistical features
of the observed domains. These features are n-gram fea-
tures (the frequency distribution of n-grams for different
n’s), entropy-based features and structural domain features
(like length or number of unique TLDs). Altogether, 33 dif-
ferent values are computed. With the help of the X-Means
clustering algorithm [15], the different domains are grouped.

Based on the assumption that the same malware creates at
least partially the same domain names, the second way is
the creation of a bipartite graph consisting of host vertices
on the one side and NXDomain vertices on the other side. If
a host queried a certain NXDomain, these two vertices are
connected with an edge. After some more improvements of
the graph, the X-Means clustering is applied here as well,
grouping NXDomains that have been requested by a similar
set of hosts.
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To finalize the clustering phase, the two different sets of clus-
ters are now merged by computing all possible intersections
between both sets of clusters. All resulting clusters that are
too small (the authors chose a minimum cluster size of 40)
are dropped. All other clusters are kept for the next steps.
As the authors lay focus on detecting new DGAs, they want
to filter out all domain clusters generated by already known
DGAs. This means that with the help of the DGA Classi-
fier, it is determined if a certain cluster belongs to a known
DGA with a certain probability and if that is the case, these
clusters are dropped as well (but the IP addresses are added
to a detection report).

The DGA Classification and C&C Detection module has two
main purposes: It is supposed to determine if a specific set
of NXDomains likely belongs to an already known DGA and
it is supposed to tell if it is likely that a single active domain
query performed by a host that already sent suspicious NX-
Domain requests also belongs to the botnet communication.
The module takes a list of popular legitimate domains, a
list of NXDomains generated by bots in a controlled envi-
ronment and the newly discovered NXDomains from above
as input.

The identification and comparison of NXDomain clusters is
done with the help of the Alternating Decision Trees learning
algorithm. The module compares each input with all known
DGAs and returns for the most likely DGA a label with its
name together with the probability that this assignment is
correct.

The C&C detection works with Hidden Markov Models.
One model is used per DGA. Before it can be used, it needs
a training with a set of NXDomains generated by the same
DGA. In active use, it is then given one successfully resolved
domain at a time which was requested by a previously clas-
sified bot. The module calculates the probability that this
particular domain name was also generated by the classi-
fied DGA. If it is above a certain probability threshold, it is
branded a candidate C&C domain. The output of this de-
tection module can then be used to maintain an IP blacklist
to block bot communication with the C&C server.

Pleiades was tested within a time period of over two years
observing 187,600 distinct hosts querying at least one NX-
Domain and 360,700 distinct NXDomains in total. Among
other findings, six DGAs have been observed that do not
belong to any known malware. An analysis of the DGA
Classifier revealed that its detection rate lies at 99.7% with
a false positive rate of 0.1%. The C&C server detection is
not that successful: When choosing a false positive rate of
3%, the detection rate is above 91% for five out of six exam-
ined botnets. The detection rate for the last one (Boonana)
is 27.67%. However, these results are still considerably bet-
ter than the ones of previously presented systems above.

Altogether, Pleiades is a tool that is technically very ad-
vanced. The idea to search for DGA botnets by scanning
the NXDomain traffic is implemented very well and the clas-
sification works with a very high detection rate. However,
as the Boonana botnet shows, the detection of C&C servers
– even though it works very well for most botnets – can be
tricked: According to Antonakakis et al., Boonana creates

pseudo-randomly third-level domains while the used second-
level domains are owned by dynamic DNS providers [1]. This
usage of two different domain levels obviously confused the
Hidden Markov Model. The authors state that in a real-
world scenario the detection rate of Boonana can be im-
proved, though. Another consideration the authors make is
that a DGA could deliberately produce a number of domain
names that will never successfully resolve to a C&C IP. This
is especially a problem if the same generator, but with a dif-
ferent seed, is used. That way, the learning process could be
harder for the Hidden Markov Model.

There is no particular statement about Pleiades’ perfor-
mance. However, as it was used in a real environment for
years, we can assume it is fast enough to handle the real-time
DNS traffic. Additionally, no notes about privacy are made.
But as no benign traffic is saved on purpose, privacy issues
are very small for Pleiades. Nevertheless, anonymization of
the data could add more privacy.

4.3 Predentifier
The Predentifier framework by Frosch et al. uses several
passively collected DNS features and training sets to identify
botnet communication [5]. In order to distinguish between
benign traffic and malicious botnet traffic, 14 different fea-
tures of DNS queries and their content in general are used.
By applying the k-Nearest-Neighbor (kNN) technique, the
traffic is classified.

Before the system can be used, it requires a training set of
labeled benign and malicious domains which serves as refer-
ence to distinguish incoming traffic. For each domain, 14 dif-
ferent features are determined and saved. These features are
lexical features of the domain (like the number of digits com-
pared to length of domain), DNS answer-based features (like
the number of returned IP addresses), IP address-based fea-
tures (like the number of different ASNs of the IP addresses),
zone-based features (like the TTL value) and WHOIS-based
features (like the age of a domain). Frosch et al. state that
9 of these features have not been used ever before to find
botnet activity in DNS traffic.

Now, the system is ready to classify new domains. For the
domain of each DNS request, the feature set is determined
and the kNN algorithm is applied to classify the domain.
This works by considering the feature values as a vector,
finding the k nearest neighbours is then done by calculat-
ing the Euclidean distance between two vectors. The new
domain is then added to the group most of the k nearest
neighbours belong to. In order to always be updated on the
current status of benign and malicious domains, the authors
propose to retrain the system every once in a while, so that
the detection rate stays as high as possible. Predentifier
does not employ any kind of clustering afterwards, it can
only distinguish between benign and malicious.

A large part of the paper consists of the evaluation of the
features as well as the whole framework. This evaluation
shows that the application of all the new features signifi-
cantly increases the detection rate (from 58.86% using only
the five already “known” features to 94.19%). So, with the
best choice of k being two, the overall detection rate lies at
roughly 94.2% with a false positive rate of 8.7%.
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The training required by Predentifier must be repeated at
times to keep the detection quality as high as possible which
can be resource-intensive and lower the practicability of the
approach. However, the authors make no statement about
the performance of their system. Moreover, the initial in-
put is crucial for the whole detection accuracy. Even though
the system is flexible and can learn new types of malicious
domains with the help of many different features, if the ini-
tial training set is badly chosen and lacks important domain
groups, the detection rate can suffer.

The authors state that “only DNS answers are stored – in-
formation that is publicly available within the domain name
system” and therefore, privacy is preserved. However, pri-
vacy is still an issue because the training sets still store DNS
answers – even completely legitimate ones – with the IPs
still visible. Storing the pages queried by an IP address can
be secretly used for a wide variety of purposes – from per-
sonalized advertisement to identifying users accessing illegal
pages. This means that the privacy is definitely affected
by the framework. Such issues could be avoided, e.g., by
employing an anonymization of the IPs with the help of
hashing.

4.4 Privacy-Preserving Detection with Bloom
Filters

Guerid et al. designed a framework using the NXDomains
returned to bots, just like Pleiades [7]. The big difference of
their system compared to all other presented is that they put
emphasis on privacy issues. Before any processing for the
botnet detection takes place, the input data is anonymized.
The identification and clustering of bots and their C&C
server is achieved by using Bloom Filters.

The first step of the framework is the anonymization of the
IP addresses of the scanned traffic. This is done by hash-
ing the addresses together with a periodically changing salt.
This hash is subsequently called the “identifier” of the re-
sponse. Then, the NXDomains are cleared of any responses
that are easily identifiable as uninteresting, like queries with
invalid characters or Top Level Domain. Afterwards, the re-
maining queries are sent to the Community Construction
Layer.

The Bots Detection Module, first part of the Community
Construction Layer, creates a Bloom Filter for each host
that appears in the received NXDomains. A Bloom Filter is
a data structure consisting of an array of bits. An input is
hashed by a number of different hash functions and the bit
in position in the array that corresponds to the hash result
is set to 1. By default, it is 0. That way, all NXDomains
queried by a certain host are stored in its filter (this frame-
work here uses only one hash function per filter). If the
filling ratio of the Bloom Filter is below 0.5% or above 10%
(with the total size of the Bloom Filter being 1000 Bits), its
host is dropped because it is considered uninteresting noise
and it is no longer considered for any further processing.

The Bots Grouping Module, second part of the Community
Construction Layer, is called by the Bots Detection Module
and receives all newly collected identifiers and their Bloom
Filters. It calculates how similar each host’s queries are to
each other to group bots by comparing their Bloom Filters.

After grouping, all groups that contain more hosts than a
specific paramater are passed on to the next module. This
also means that any noise is filtered out, for example a host
only with a misspelled, benign domain query.

In a last step, the Malicious Domain Name Detection Layer
is responsible for the detection of the C&C servers. First,
the C&C detection module is called and gets all the groups
created by the Bots Grouping Module. It then creates new
Bloom Filters for each host, this time with all the success-
fully resolved domain names. The filters within each group
are then compared again to find overlapping domains. These
domains are subsequently considered candidate C&C do-
mains. Finally, in the Domain Name Validation Module,
the system finds out if an identified domain could be benign
and has no relations with botnet communication by com-
puting a traffic dispersion indicator. If it is low, it means
that a certain domain does not appear in many different bot
groups which means that it is very likely a DGA domain (as
different DGAs do not produce the same domain names).

Unfortunately, the evaluation by the authors lacks impor-
tant information. No tests were performed to determine
a reliable detection or false positive rate. Moreover, even
though the paper was published in 2013, the DNS captures
used were from 2009 and 2010. We assume that within that
period, the landscape of botnets could have significantly
changed so that the expressiveness of the evaluation is also
questionable. An issue of the whole framework is that it
requires the different bots of the same botnet to query the
same domain names at roughly the same time. With the
current implementation, the different bots could request the
same domain with a larger time span in-between, for exam-
ple more than one hour – as the authors state that they need
a DNS history “of less than one hour [...] to detect malicious
domain names” [7].

Nevertheless, performance-wise, the tool is able to work in
real time as it is capable of processing half a million DNS
queries per second (according to the authors, this is more
than a typical DNS server has to handle). Moreover, the
approach to preserve the users’ privacy is commendable as
there is no necessity to save the IP addresses of the DNS
replies if only the C&C servers are supposed to be discov-
ered. But if we want to identify the bots in the botnets,
we are currently unable to do that with this implementation
(although it would certainly be possible to monitor the IPs
trying to access a previously identified C&C domain).

4.5 Anchor Domains
Gao et al. present a system that uses the correlation with
predefined anchor domains to find new malicious domains [6].
Their system is not specifically designed to find botnets, but
malicious domains in general. However, as their approach is
different to the other ones and as they actually found new
domains that are used presumably for botnet communica-
tion, it is mentioned here. The idea behind their framework
is that it is very often the case that once a machine contacts
a known malicious domain, it is very likely that it wants to
contact other malicious domains at the same time or within
a short period of time. These additional domains are sup-
posed to be found.
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As input, the system requires beside the DNS traffic a set
of known malicious domains A, the anchor domains. Addi-
tionally, a time window Tw must be specified. All domains
that are requested half that time before or half that time
after a malicious domain is queried are analyzed. All the
domains d collected around one anchor domain are called a
segment s. The set S contains all segments. In the next step,
by calculating two values mtf and midf , the TF-IDF (term
frequency – inverse document frequency) metric is applied.
It measures how many times a domain name occurs while
taking into account that there are popular domains that are
uninteresting for us. The term frequency mtf of a domain
d and a segment s holds the number of appearances of the
domain in that segment. The inverse document frequency
midf = |S|/|{s ∈ S : d ∈ s}| mitigates the impact of legit-
imate, well-known domains that are likely queried often by
all hosts. If both values are above certain thresholds Ttf and
Tidf , the corresponding domain is kept. All other domains
are disregarded.

In the next step, the clustering is done with the help of
the X-Means clustering [15] algorithm and the pattern of
co-occurrence with the anchor domain (this means that do-
mains appearing in the same segments may be more likely
grouped than domains not having that in common). After
splitting the segments in more subsegments and applying
two more filters for further improvement of the results, the
clustering is finished and a set of clusters is presented that
should be analyzed in more detail.

In an evaluation of their approach, Gao et al. detected 6890
previously unknown malicious domains, among them also
domains supposedly generated by a DGA. Each anchor do-
main could be expanded to an average of 53 newly detected
malicious domains. Their false positive rate lies at 3.6%.
As each anchor domain can be treated independently, their
approach is easily parallelizable, leading to a good perfor-
mance.

The largest issue of that framework is that it is only as
good as the list of anchor domains it is provided with. Any
malicious domain that stands in no correlation with any of
the anchor domains will never be detected. This is especially
a problem with DGAs, as one of their core feature is to
regularly generate new domains and to never use the old
ones again. So, either the blacklist must be updated very
quickly or such DGA-based malware will never be found.
That is why this approach is not perfectly suited to find
botnets with these DGA-based DNS queries. No specific
measures are taken to protect the privacy and anonymize
the collected input, as well.

5. CONCLUSION
In this paper, we gave an overview on recently published
systems to detect botnets and their C&C servers by mon-
itoring the DNS traffic. This survey shows that there are
many different approaches. Most of them show a high detec-
tion rate for botnets using DGAs or fast-flux techniques of
up to 99.7%. Additionally, the performance of most frame-
works was also proven in a live scenario at large DNS nodes
which makes them actually deployable. Nevertheless, except
for one system, privacy issues are largely disregarded. The
frameworks handle a large amount of data, therefore, they

must take care of the protection of a user’s privacy.

However, the development of botnet malware will never stop
and malware developers will also have noticed the effort
taken to detect botnets – be it by DNS or otherwise. This
means that the development of new malware trying to evade
and trick the different mechanisms presented here will con-
tinue. Therefore, the progress of botnet development must
be closely watched to be able to quickly react on new com-
munication techniques and to develop new frameworks to
stop them.
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