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ABSTRACT
Availability and quality of service are important aspects of
the Internet, as it relies on many independent components
being able to communicate. This is why the stability of the
Internet and the ease of acquiring informations through it
can be jeopardized by even small incidents, accidental or
not. As a result, a lot of work is done in order to improve
the availability, robustness and general quality of networks.
A very promising area is to make networks more flexible
by supporting different communication mechanisms (such as
the use of protocols that are cryptographically more resis-
tant), thus making the network more tolerant to censorship
and hardware failures. The ability to use many different
protocols brings with it an allocation problem: how much
should be sent via which protocol in order to achieve max-
imum satisfaction? In this paper, we will look at heuristic
techniques to answer that question.
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1. INTRODUCTION
Nowadays, computer networks such as the Internet are the
core of modern communication and are essential to many
aspects of everyday life. There exist a lot of factors that
explain our societies dependence on them, but two impor-
tant ones are certainly its widespread availability (how easy
of access and robust it is) and its performance (how quickly
data is transferred compared to other mediums, be it latency
or bandwidth wise). The robustness, which is a factor for
the availability of networks is of particular interest to us, as
the communication can quickly come to a stop or be severely
hindered by incidents: physical (for example the sectioning
of a fibre glass cable), accidental (such as a Danish police-
man confusing DNS censoring tables and locking the access
to about 8000 websites for many users [19]), political (as seen
in the example of the Egyptian government blocking access
to different social networking services like Twitter or Face-
book [20]) or economical (Internet Service Providers (ISP)
throttling certain applications or protocols in order to reduce
unwanted traffic). Increasingly, different actors are trying to
have an influence over the information flow on the Internet
to suit their own needs, such as the ISPs or governments in
the examples earlier, but application developers are adapt-
ing to this situation and try to circumvent these restrictions
by using various techniques like encryption, dynamic port

assignment and port hopping.

In this paper, we will have a closer look at a peer-to-peer net-
work called GNUnet, it is a framework that proposes peer-
to-peer functionality for any implementing applications.
GNUnet is focused on network security and on improving
connectivity. Network security is important, as it is focused
on avoiding disruptions, outside interferences or guarantee-
ing the anonymity of peers. Connectivity has two sides in
the context of GNUnet, one in restricted environments (like
inside a firewall or using ISP filtered traffic) where the focus
is on avoiding the restrictions and enabling the network to be
more efficient, and the other in infrastructure-less (adhoc)
networks, where there are different kinds of restrictions, such
as the relative instability of the transport medium. In or-
der to master these restrictions, GNUnet supports multiple
transport mechanisms, as this offers the possibility of using
the mechanism that proposes the best possible performance,
connectivity and censorship-resistance for each pair of peers.
This gives us very good robustness, as the flexibility makes
the network resistant to the blocking of ports and other hin-
drances: if for example TCP on port 2086 is blocked by the
ISP, the program can just switch to a HTTPS connection.
GNUnet has several additional properties: the user can limit
the used bandwidth and, as it is a framework, it is used for
a wide array of applications that have their own QoS re-
quirements that should be respected. A file-sharing service
would for example privilege higher bandwidth while a VoIP
program would prefer a lower latency. Between these two ex-
treme examples lie many applications with varying service
requirements, such as electronic commerce, video conferenc-
ing and online gaming. All these applications require the al-
location of enough bandwidth for satisfactory performance.
Because of the limited network resources and the different
abilities of the supported protocols, it is obvious that some
kind of conflict appears when one tries to decide who gets
what share of the bandwidth and via which protocol. To
solve the conflict of applications with different QoS values
that compete for the limited bandwidth in the context of
multiple transport mechanisms with different performances
is the objective of the Resource Allocation Problem (RAP)
in a decentralized network, which we will look at in this
paper.

It is important to differentiate the routing problem in net-
works and the RAP: the routing problem is situated on the
Network Layer of the OSI reference model while the RAP is
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located on the Transport Layer. This means that the rout-
ing problem is focused on routers, bridges or switches and is
trying to find optimal ways from a user to another or how to
avoid congestions. The RAP supposes that this problem is
already solved and uses its results in order to decide which
user should use how much bandwidth and protocol in order
to attain maximum QoS.

In optimization, there are many ways to find the best solu-
tion to a given problem, but they can broadly be put into
two categories: exact techniques and heuristic techniques.
Exact approaches are used when the search space is rather
small or the problem has a special structure so that not ev-
ery solution needs to be tested. Heuristic procedures are
used when the search space is very big and it would take
too long to come up with an exact solution; this is why
in most real-life problems heuristic methods are privileged,
because the trade-off between solution quality and computa-
tion time is critical. Operations Research (OR) is a vast field
of study that is focused on optimization, simulation and rep-
resentation of many real life problems; it is a field that has
existed for a very long time and has been known to produce
very good techniques to solve many large instances of NP-
problems to near optimality. This is the reason this paper is
focused on OR techniques, as they seem very promising for
the problem at-hand.

So as not to ”reinvent the wheel” each time one tries to solve
a problem, it is practical to map it to known problems that
are treated in the literature. For example, if we wanted
to solve a Vehicle Routing Problem, which is a generaliza-
tion of the well-known Travelling Salesman Problem (TSP)
where there is more than one salesman, we could simply de-
cide to form as many ”clusters” of cities as we have vehicles,
and solve the resulting TSPs using techniques that are well
known-and-used.

The rest of the paper is organized as follows: Section 2 de-
scribes the RAP formulation and its relationship to Opera-
tions Research, Section 3 describes the principles of heuristic
optimization and their applicability to the RAP followed by
the conclusion in Section 4.

2. THE RESOURCE ALLOCATION PROB-
LEM IN DECENTRALIZED NETWORKS

In our problem, we will study a peer-to-peer network such as
figure 1, where a certain amount of computers are connected
to each other directly or indirectly in different kinds of net-
works, such as Wide Area Networks (WAN) or Local Area
Networks (LAN) etc... We will abstract from the routing
proceedings of the network and consider its topology given,
which is why we will only take them into account in form of
such measurable metrics like latency, maximum bandwidth
and the amount of hops necessary to reach a peer. In the
context of our problem, the network is still considered dy-
namic, which means that the attributes change over time,
or peers could come and leave.

While one could imagine that solving the general problem
for the entire network by exchanging information between
the peers would yield better results, it would be unwise to
do that for the following reason: In a peer-to-peer network,
other peers are not always to be trusted, as they could be

feeding false information into the network in an attempt to
render the global best solution useless. This issue is a variant
of the Byzantine Generals Problem [13], where one has to
try to calculate an optimum using conflicting informations.
To solve this problem is computationally expensive which
is why, in our paper, every peer will try to solve his local
optimal solution without exchanging information with his
neighbours.

2.1 The Resource Allocation Problem
It is useful to examine how peers communicate with each
other in order to understand the problem further: We will
call a transport mechanism to designate a protocol or method
to transmit data between different peers with specific prop-
erties or constraints. An address specifies precisely how to
reach a particular peer and includes the transport mecha-
nism (for example, TCP) and the specific network address
(for example, 1.2.3.4:5555). A peer may be reachable un-
der many addresses and even if two addresses use the same
transport mechanism, they are considered separate in our
problem, as the performance might be different. For exam-
ple, TCP may be used to communicate with a peer via an
IPv6 link-local address, an IPv6 global unicast address or
an IPv4 address. Our algorithm must then choose between
three different addresses for this peer.

Moreover, every peer-to-peer application that runs on the
members of the network has certain preferences that need
to be respected in order to give the user a maximum satis-
faction. For example, a peer-to-peer video chat application,
such as Skype, would need small latency and enough band-
width to allow video communication.

Figure 1: The RAP in a decentralized network.
We are looking at the network from the perspective of A,

who is in contact with 5 peers via WAN or LAN. Each one
of the peers can be reached via different transport

mechanisms.

The next step in the explanation of the problem is the ob-
jective function, what we are trying to achieve when in front
of this problem. In certain contexts, the words ”fitness func-
tion”are used instead of ”objective function”, they both refer
to a quantification of solution qualities that are used to com-
pare two different solutions. The idea here is that we try to
maximize the used bandwidth in such a way that maximizes
the quality of service to the user, hence that suits the ap-
plication preferences best. Obviously, none of the outgoing
connections via a mechanism can exceed that mechanisms
capacity. The output of the optimization process is a set of
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mechanisms and the assigned bandwidth per mechanism in
order to maximize the objective function.

With p ∈ P a peer from the set of peers, m ∈M the metric
from the set of metrics (where a larger value means a better
performance) and t ∈ Tp a transport mechanism from the set
of transport mechanisms for a peer p, we have: The per-
formance preference for each peer is expressed using values
fp,m. There is no unit, the value is completely application
specific and only the ratio between the various fp,m mat-
ters. qt,m specifies the current quality rating for the metric
m using the mechanism t. Our objective is to maximize

∑
m∈M

∑
p∈P

∑
t∈Tp

fp,m · qt,m. There are also some more aspects to

the allocation problem that are not in the focus of this paper,
like the fact that peer-to-peer networks tend to function bet-
ter when many peers are in contact with each other, which
is why that could be present somewhere in the objective
function.

In short, our problem includes:

• A focus on the RAP (how much to communicate via
which transport mechanism), we will not talk about
the routing problem (how to reach a user), which is
why we will look at the network from a user-to-user
perspective.

• A peer-to-peer network where users communicate data
with each other.

• A problem from the perspective of a peer, as in a peer-
to-peer network nobody manages the data flow.

• Potentially many transport mechanisms to communi-
cate with a peer.

• Preferences for each application used by a peer, which
have a big importance for the objective function.

2.2 Theoretical Background
At first, we will prove that our problem is NP-hard, which
means that for every peer that is added, the additional com-
putation time required to find the solution to the bigger
problem is non-polynomially greater than for the smaller
problem. At first, we will examine the Knapsack Problem,
a well known problem in theoretical computer science. Ac-
cording to [4], we are given a set S = a1,a2, . . . ,an−1,an a col-
lection of objects, s1,s2, . . . ,sn−1,sn their sizes and
p1, p2, . . . , pn−1, pn their profits and a knapsack of capacity
B. The goal is to find a subset of objects whose total size is
bounded by B and whose profit is maximized. This problem
is known to be NP-hard. It is obvious that our RAP con-
tains many instances of this problem: for each network type
(WAN, LAN etc...), we have a collection of objects (namely
all the transport mechanisms available for each peer at ev-
ery bandwidth possible), their sizes in comparison with the
limited resource (the bandwidth) and their profits (namely
the profit function, which is a function of the bandwidth and
other aspects of the network). In this way, we have shown
that our RAP is NP-hard.

The Resource Allocation Problem in a decentralized net-
work (RAP) is a special case of a Multi Commodity-Flow

problem (MFP), which is a standard problem in the liter-
ature. The Resource Allocation Problem (not in a decen-
tralized network!) is an optimization task where one wants
to map a limited amount of resource to a number of tasks
for optimizing their objectives. The complexity of this prob-
lem is obviously related to the functions that calculate the
amount of use generated by the resources for each task. In
practice, commodities may represent messages in telecom-
munications, vehicles in transportation or product goods in
logistics. The RAP has a variety of applications, includ-
ing product allocation [21], resource distribution [3], project
budgeting [9], software testing [22], processor allocation [2]
and health care allocation [12], just to name a few. For a
deeper overview of the subject, the reader is referred to [18].

Multi commodity-flow problems are characterized by a set
of commodities to be routed through a network at a mini-
mum cost, as can be seen in figure 2. The MFP is defined
on an undirected graph G= (V,E) with an assignment of
non-negative capacities to the edges, c : E → R≥0 . A
MFP instance on G is a set of ordered pairs of vertices
(s1, t1),(s2, t2), . . . ,(sk, tk) (not necessarily disjoint). Each pair
(si, ti) represents a commodity with source si and target ti.
The objective is to maximize the amount of flow travelling
from the sources to the corresponding destinations, subject
to the capacity constraints [17]. There are different flavours
of the problem, like the fractional MFP where for each com-
modity (si, ti) a non-negative demand di is specified. The
objective is to maximize the fraction of the demand that
can be shipped simultaneously for all commodities, as seen
in figures 3 and 4. When, in the context of a MFP, the
capacity of the edges is set to be infinite and the objective
is not to maximize the amount of flow, but the use that is
generated from the flow, we obtain a Resource Allocation
Problem again. As long as the function that maps the flow
to the utility of the flow is linear, then the problem is of the
same complexity class as the MFP.

Figure 2: A MFP

Figure 3: The solution to the MFP for commodity
1
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Figure 4: The solution to the MFP for commodity
2

As we can see, the RAP in decentralized networks which
we are treating right now is a special case of the MFP. We
have the case of having only one source and many targets, of
having a network that has some very specific capacity con-
straints (such as the fact that only one transport protocol
can be used for each peer) and of having a cost function
that is relative to the bandwidth reaching the peers and
the quality metrics. It is very difficult to model this as a
MFP, but it is possible by solving a new MFP for each of
the subproblems, and comparing the values of the objec-
tive function. To illustrate that, we have in figure 5 the
structure of the aforementioned peer-to-peer network as a
MFP, and in figures 6 and 7 how to solve it repeatedly in
order to figure out a solution for our RAP. This means we
have amount of transport mechanismsnumber of peers MFPs
to solve. Even though the amount of computation needed
to solve this is enormous for bigger instances, we can see
that the problem structure is the same for the subproblems
of the RAP and the MFP.

Figure 5: The RAP as a MFP

The optimization process can take place in several different
ways, such as Integer-Linear Programming (ILP), which in
the literature has been known to produce the best results for
the MFP. In ILP, the exact solution of the problem is found
out. This has its advantages, as using the best solution is
the one that promises the best performance and quality of
service for the peers. But finding the best solution is often a
relatively long process; As we are in the context of a dynamic
network, where application requirements and network states
change very often, all the while the package transmission
time is of the order of a few hundreds milliseconds, it does
seem very interesting to shorten the optimizing in order to
lengthen the actual transmission of data.

Figure 6: The first decomposition of the RAP as a
MFP

We are supposing the LAN has 100 Mbit/s capacity, and
the WAN 20 Mbit/s capacity

Figure 7: The second decomposition of the RAP as
a MFP

This is where Operations Research (OR) comes in handy,
as it is a discipline that is bent on solving complex com-
binatorial problems in a limited amount of time. Often in
OR, the optimal solution is extremely difficult to calculate
because of the size of the search space (like is the case for
NP-problems, such as ours). But, as OR has its roots in
the practical, a ”good” solution that is calculated quickly is
usually completely satisfying. A solution that is computed
in half as long as the optimal solution and that maximizes
the objective function to 80 % of the optimal solution can
be extremely interesting in our case. This is why, in this
paper, we will look at four different metaheuristics from OR
and see how they could be applied to suit our purposes and
compare them.

3. METAHEURISTICS
Before speaking about metaheuristics, we must define a few
important aspects that will help us in the following expla-
nations. At first, it is worth noting that we are in front of
a combinatorial optimization problem, as we must find an
optimal resource allocation from a finite set of possible allo-
cations. But it is capital to devise a way to ”navigate” from
a solution to another one. This is called the neighbourhood
structure, as we are defining what solutions are considered
neighbours and by which operator we can go from one solu-
tion to the next. We propose an operator where we differ-
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entiate solutions by the peers that are communicated with,
the used transport mechanism and the amount of bandwidth
assigned through this mechanism. The operator to navigate
through solutions would be x kB/second more or less on
any transport mechanism to any peer (with x ∈ N∗). Obvi-
ously, this operator can bring us infeasible solutions (where
many transport mechanisms are used to communicate with
a peer or other constraints are not respected), which is why
we must always keep an eye out for them before applying
the operator). We can also use a different step, resulting in
a changed search space (for example if we use a step of 5x
kB/second, the search space would be 5 times smaller). This
means our neighbourhood can be defined as ”the set of all
solutions that are reachable by changing the bandwidth with
any transport mechanism by x kB/second”. This neighbour-
hood structure obviously has its flaws, as it is impossible to
switch transport mechanisms directly: one must first follow
the neighbourhoods of solutions to a point where there are
no transport mechanisms for a peer, and only afterwards one
can start analysing another one.

To get back to metaheuristics, they usually take a solution
as an input, which in our case, is the peers we are commu-
nicating with, their transport mechanism and their assigned
bandwidth. The starting solution can be far from optimal,
it is just needed to have a point in the search space where
we can start improving.

3.1 Improvement heuristics
Improvement (Hill Climbing) heuristics are heuristics that
take a solution as input, modify this solution by performing
a sequence of operations on the solution and produce a new,
hopefully improved solution. At all times the heuristic has a
current solution and it modifies this solution by evaluating
the effect of changing the solution in a systematic way. If
one of the changes leads to an improved solution, then the
current solution is replaced by the new improved solution
and the process is repeated. The input solution might come
from any source, but it appears that the better the starting
solution, the quicker the optimum will be reached. As we
are still in the domain of classical heuristics, we usually only
consider the neighbourhood of our current solution.

The problem here is that while we are only considering direct
neighbourhoods, the search will probably get stuck within a
local optimum, as can be seen in figure 8. This means that
there are no more better solutions within the direct neigh-
bourhood, while there might still be a better solution some-
where out there if one were to consider a wider neighbour-
hood (using a different kB/second step). To escape these
local optima, metaheuristics can search the solution space
in a broader way and are, on the long run, almost always
better than classic heuristics. We can discern between meta-
heuristics that have a population of solutions that are being
iterated upon and metaheuristics that iterate upon a single
solution. Simulated Annealing and Tabu Search are in the
latter category while Genetic Algorithms and Ant Colony
Optimization belong in the first one.

3.2 Tabu Search
Tabu search (TS) is another popular search technique pro-
posed by Glover in 1977 [8]. Since then, it has been widely
used for solving CO problems. Its name is derived from the

Figure 8: Graphical representation of a Hill Climb-
ing Algorithm - downhill climbing from an initial
solution to a local optimum
X is the solution space and F(x) is the value of the objective
function for that particular solution.

word “taboo” meaning forbidden or restricted. TS, like SA,
allows for exploring the search space “intelligently” in an at-
tempt to escape the trap of local optima. There are many
variants of TS that all have their specificities and operators.
Nevertheless, there are two main attributes that all variants
of TS have.

1. They all allow the current solution to deteriorate, as
opposed to normal Hill Climbing algorithms,

2. Every TS uses a short term memory called a tabu list,
in which moves that have been recently visited dur-
ing the search are recorded. Moves in the tabu list are
considered prohibited by the search and cannot be vis-
ited again for a certain number of iterations. The idea
is to avoid the problem of cycling, meaning that the
search may be trapped within the boundaries of a cer-
tain neighbourhood region, oscillating among solutions
that have been previously visited, as illustrated in the
next figure. By prohibiting recently visited moves, the
algorithm is forced to explore new areas of the search
space in an attempt to escape local optima.

Figure 9: The Problem of Cycling

It is also sometimes fruitful in TS to make use of an intensi-
fication and/or a diversification mechanism. Intensification
tries to enhance the search around good solutions, while
diversification tries to force the algorithm to explore new
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search areas, in order to escape local optima. For example,
intensification can be performed by encouraging solutions
that have some common features with the current solution.
On the other hand, diversification may be enforced by ap-
plying a penalty in the objective function, at some stage of
the search, to solutions that are close to the present one [5].
Some variations of TS also exist in the literature, for exam-
ple Probabilistic TS assigns a probability to neighbourhood
moves, such that some attractive moves that lower the so-
lution cost are given a higher probability, while moves that
result in a repetition of some previous state are given a lower
probability [7]. Also, a Reactive TS was proposed by Bat-
titi and Tecchiolli [15] in which the size of the tabu list is
adapted dynamically during the search, according to the fre-
quency of repeated moves. Another variant by Cordeau [11]
proposes a possibility of looking at infeasible solutions in
order to navigate the search space more intelligently.

The latter variant is the most interesting one for our RAP, as
the neighbourhood structure has a lot of infeasible solutions
in it: navigating them intelligently would be a huge benefit
for the runtime of a metaheuristic. TS has the advantage of
having a reasonable computation time and to offer very high
quality solutions. Many Combinatorial Optimization prob-
lems in the literature have been solved to near-optimality
with TS and in very interesting runtime. The problem is
that TS often lacks robustness: the efficiency depends on
several factors that can alter parameters which are problem
specific. TS is nevertheless apt to handle dynamic problems,
as it is relatively quick and we can alter solutions“on the go”
and keep on optimizing each time the problem is updated.

3.3 Simulated Annealing
The theoretical foundation of Simulated Annealing (SA) was
led by Kirkpatrick et al. in 1983 [16]. SA is a well-known
metaheuristic search method that has been used successfully
in solving many combinatorial optimization problems. It is
a stochastic relaxation technique that has its origin in sta-
tistical mechanics. The Simulated Annealing methodology
is analogous to the annealing processing of solids. In order
to avoid the less stable states produced by quenching, met-
als are often cooled very slowly which allows them time to
order themselves into stable and structurally strong low en-
ergy configurations - This process is called annealing - This
analogy can be used in combinatorial optimizations with the
states of the solids corresponding to the feasible solution, the
energy at each state to the improvement in objective func-
tion and the minimum energy being the optimal solution.
SA involves a process in which the temperature is gradually
reduced during the simulation. Unlike Hill Climbing, SA is
a global optimization heuristic based on probability there-
fore is able to overcome local optima. However, although
it yields excellent solutions, it is very slow compared to a
simple hill climbing procedure. When solving a Resource
Allocation Problem using SA, we start with a certain feasi-
ble solution to the problem. We then try to optimize this
solution using a method analogous to the annealing of solids,
as can be seen in figure 10: A neighbour of this solution is
generated using an appropriate method, and the value of the
objective function of the new solution is calculated. If the
new solution is better than the current solution in terms of
increasing the use of network, the new solution is accepted.
If the new solution is not better than the current solution,

though, then the new solution is only accepted with a cer-
tain probability. The SA procedure is less likely to get stuck
in a local optimum, compared to a classical Hill Climbing
heuristic, since bad moves still have a chance of being ac-
cepted. The annealing temperature is first chosen to be high
so that the probability of acceptance will also be high, and
almost all new solutions are accepted. The temperature is
then gradually reduced so that the probability of acceptance
of low quality solutions will be very small and the algorithm
works more like hill climbing, i.e., high temperatures allow a
better exploration of the search space, while lower temper-
atures allow a fine tuning of a good solution. The process
is repeated until the temperature approaches zero or no fur-
ther improvement can be achieved. This is analogous to the
atoms of the solid reaching a crystallized state.

Figure 10: Simulated Annealing - occasional uphill
moves and escaping local optima.

It appears obvious that the efficiency of Simulated Annealing
relies on many factors, such as:

• What is the initial probability of accepting a bad so-
lution given a certain time? (initial temperature)

• How many iterations should be carried out at each
temperature? (or new value of probability)

• What is the objective function? As it’s definition may
lead to the rejection of promising leads or acceptance
of solutions that are already infeasible, whatever hap-
pens.

• The topology of the neighbourhood structure is also
critical to the performance of the SA algorithm. In
general, a smooth topology with shallow local optima
is favoured over a bumpy topology with many deep
local minima.

The basic advantages of SA are the following:

1. It is very easy to implement, since it just requires a
method for generating a move in the neighbourhood
of the current solution, and an appropriate annealing
schedule.

2. High quality solutions can be obtained using SA, if a
good neighbourhood structure and a good annealing
schedule have been chosen.
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With the solving of the RAP in mind, SA doesn’t seem like
a very good solution, as the neighbourhood structure is very
bumpy due to the difficulties of finding a feasible solution in
the neighbourhood. This forces the neighbourhood function
to not be able to ”switch” transport mechanisms, resulting
in a very hilly solution space. Another problem of SA is
that due to its nature, it only considers one solution at a
time, which for a search space as huge as the one we are
considering means a pretty slow computation time. The dy-
namic nature of our problem makes SA badly suited and well
suited at the same time, bad as it would be a waste to spend
so much time for a near optimal solution. Useful when the
setting changes, we can just go on iterating from the best
solution found before the change. This way, we can hope-
fully profit from the work done before by just ”changing” the
actual solution to fit the current new problem. (deleting a
peer if he has stopped contributing to the network and go
on iterating for example).

3.4 Ant Colony Optimization
Ant Colony Optimization (ACO) is a metaheuristic tech-
nique that is inspired by the behaviour of real ants. The
general reasoning behind the algorithm is that a colony of
ants can always find the shortest path between the nest and
the food source, despite the fact that every individual ant is
blind, how do they do this?

Its principles were established by Dorigo et al. in 1991 [14].
Real ants cooperate to find food resources by laying a trail
of a chemical substance called pheromone along the path
from the nest to the food source. Depending on the amount
of pheromone available on a path, new ants are encouraged,
with a high probability, to follow the same path, resulting
in even more pheromone being placed on this path, as seen
in figure 11. Shorter routes to food sources have higher
amounts of pheromone. Thus, over time, the majority of
ants are directed to use the shortest path. This type of in-
direct communication is called stigmergy, in which the con-
cept of positive feedback is exploited to find the best possible
path, based on the experience of previous ants.

Figure 11: Colony converging on the shortest path
- [1]

In our case, artificial ants (software agents) cooperate to find
the best path by constructing solutions consisting of trans-
port mechanisms and the assigned bandwidth step-by-step.
Each step adds a selected transport mechanism (and it’s
bandwidth) to the partial solution in a stochastic manner,
but biased by the amount of pheromone available on the

transport mechanisms. One can also have the probabilities
be influenced by classical heuristics that were run on the
problem beforehand. To take into account the work of the
other ants, problem-specific information is placed in a com-
mon memory, which plays the role of the pheromone trail.
The information in the memory, i.e., the pheromone trail,
is updated by ants at each iteration, allowing ants to coop-
erate in finding good problem solutions. Pheromone values
also diminish over time, similar to the evaporation of real
pheromone. Thus, solutions of bad quality are eliminated
from further consideration as the search progresses.

To solve a Resource Allocation Problem using Ant Colony
Optimization, we must first send many artificial ants free in
the wilderness of the solution space. To do this, we could
use an ACO structure that is a combination of figures 12
and 13, in order to achieve a 2-dimensional structure to op-
timize for the bandwidth and the transport mechanism to
use. We consider using the bandwidth mechanism of figure
13, where the bandwidth is chosen randomly from the given
interval, because this way we can search the space better (it
seems obvious that the problem size increases exponentially
when we have more segmentations of the bandwidth). We
should start off by creating many random solutions sequen-
tially and setting a stronger pheromone path on solutions
that, by some “accident”, are better. This way, in the next
iterations of the ACO, we can use stochastically enhance the
search around the paths of solutions that have proven inter-
esting. In the long run, the whole search space should be
covered and the result should be a good solution.

Figure 12: Our ACO in order to find which trans-
port mechanism to use.

When originally presented, ACO was inferior to state-of-
the-art heuristics and metaheuristics used to solve its first
problem, the TSP. ACO is, on the other hand, very flexible
and applicable on a large array of problems. For further
information about the various type of Ant systems and their
applications, the reader is referred to the book by Dorigo and
Stuetzle [6].
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Figure 13: Our ACO in order to allocate the band-
width for the medium (WAN, LAN etc...) to each
transport mechanism to use.

ACO has several attractive features for the solving of the
RAP:

1. Inherent parallelism: we easily find ways to execute it
in parallel, which is good for the runtime.

2. Positive Feedback accounts for rapid discovery of good
solutions.

3. As it is swarm-based, we can easily analyse a broader
part of the search space.

4. It suits the dynamic part of the problem well, as in case
of a change, we just need to update the pheromone-
matrix (by adding or deleting paths when a peer is
added/deleted) and we can get the algorithm running
again using the pheromone matrix, hence keeping all
the work we did up to now.

3.5 Genetic Algorithms
The idea of simulation of biological evolution and the natural
selection of organisms dates back to the 1950’s. Neverthe-
less, the theoretical foundation of GAs were established by
John Holland in 1975 [10], after which GAs became pop-
ular as an intelligent optimization technique that may be
adopted for solving many difficult problems.

The idea behind GA is to simulate the processes of biolog-
ical evolution, natural selection and survival of the fittest
in living organisms. In nature, individuals compete for the
resources of the environment, and they also compete in se-
lecting mates for reproduction. Individuals who are better
or fitter in terms of their genetic traits survive to breed and
produce offspring. Their offspring carry their parents basic
genetic material, which leads to their survival and breed-
ing. Over many generations, this favourable genetic mate-
rial propagates to an increasing number of individuals. The

combination of good characteristics from different ancestors
can sometimes produce super fit offspring who out-perform
their parents. In this way, species evolve to become better
suited to their environment.

GAs operate in exactly the same manner. They work on
a population of individuals representing possible solutions
to a given problem. In traditional GAs, each individual is
usually represented by a string of bits analogous to chromo-
somes and genes, i.e., the parameters of the problem are the
genes that are joined together in a solution chromosome. A
fitness value is assigned to each individual in order to judge
its ability to survive and breed. The highly fit individuals
are given a chance to breed by being selected for reproduc-
tion. Thus, the selection process usually favours the more fit
individuals. Good individuals may be selected several times
in one iteration, while poor ones may not be selected at all.
By selecting the most fit individuals, favourable character-
istics spread throughout the population over several gener-
ations, and the most promising areas of the search space
are explored. Finally, the population should converge to an
optimal or near optimal solution. Convergence means that
the population evolves toward increasing uniformity, and the
average fitness of the population will be very close to the
highest fitness.

Chromosome representation as a bit string is not suitable
for many problems types, though. Which is why for the
RAP, we will use the chromosomes as described in figure
14. There are as many of these genes as there are peers
in our network. We need to use this representation in or-
der to avoid the problem of generating offspring that violate
constraints, such as having more than one transport mecha-
nism for a peer. In order to execute the crossover operator,
we would just need to exchange transport mechanisms and
allocated bandwidths from the same peer to ensure confor-
mity to the constraints. To execute the mutation generator,
which is used to get some diversity into the algorithm we
can just change the transport mechanism altogether and/or
the allocated bandwidth.

Figure 14: How a chromosome would look like for
the GA solving the RAP

In respect to the RAP, GAs represent an intelligent swarm
based search method which allocates higher resources to the
promising areas of the search space. GAs have the advan-
tage of being easily hybridized and to combine the genetic
paradigm with some kind of local search to make even bet-
ter solutions. GAs have been known to produce very good
results on large instances very quickly, which is also of great
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interest to us. The dynamic context is also something that
profits to GAs, as the optimization process can go on unhin-
dered after changes in the setting have been applied in the
fitness function.

4. CONCLUSION
In this paper, we have first introduced a problem that isn’t
present in the literature (namely the Resource Allocation
Problem in decentralized networks), and then seen how it
relates to other standard problems. After having shown that
the problem is NP-hard, we have shown how OR techniques
can be used in order to solve the problem non optimally
while keeping an eye on the runtime. It is important to note
that due to the current state of affairs where we have a lin-
ear objective function (namely more bandwidth makes the
quality of service linearly better for a given transport mech-
anism), the structure of the problem is such that dynamic
programming, more specifically Integer Linear Programming
can take advantage of. But if in the future a more realis-
tic approach is taken using more individualized functions,
thus representing the world better, then the search space
loses the structure that makes dynamic programming the
optimal choice. Solving the new problem would certainly
rely on metaheuristics, as the resulting search space would
be too complex to master. The most promising approach
is hybridizing a swarm based metaheuristic like Genetic Al-
gorithms with a local search one like Tabu Search, as the
swarm based heuristic can guide the problem solving in a
more general way, while the local search one can help nav-
igate the extremely intricate search space in a more local
way.
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