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Abstract

Today a growing number of applications, in particular in the area of cyber-physical
systems (CPS), depend on data collected by wireless sensor networks. The indivi-
dual nodes of these networks have severe resource limitations, concerning storage,
processing, and transmission capabilities, but also concerning energy available for
communication functions. Supporting the required protocol functionality in combi-
nation with the goal of energy-saving operation typically results in the development
of proprietary, highly specialized communication protocols for wireless sensor net-
works.
However, with Internet technology as the dominating communication paradigm for
a wide range of application areas, it became an attractive goal to be able to use In-
ternet protocols within wireless sensor networks. An important functionality within
wireless sensor networks is data gathering and aggregation. An Internet protocol
standardized within IETF that supports this functionality is the ‘IP Flow Informa-
tion Export’ (IPFIX) protocol.
In this thesis, concepts for adapting the IPFIX protocol to the needs of wireless
sensor networks have been investigated, resulting in the development of the protocol
TinyIPFIX, which is an adaptation of the ‘IP Flow Information Export’ (IPFIX)
protocol. The new protocol has been assessed in a representative use case involving
a building application. TinyIPFIX has been extended by compression capabilities
and by aggregation functionality. Furthermore, extensions to support secure data
transmission have been developed, using the protocol ‘Datagram Transport Layer
Security’ (DTLS). This solution ensures that data collected by sensor nodes is trans-
mitted via secure channels to a global data sink, and that authorised access is ensured
from a data sink to a wireless sensor network. For validation, a system has been rea-
lized that allows configuration of the networks components dynamically, and that
supports visualization of the current network status and the collected data in real
time.





Zusammenfassung

Eine wachsende Anzahl von Applikationen, insbesondere im Bereich von cyber-
physischen Systemen (CPS), ist auf die Datensammlung mittels drahtlosen Sen-
sornetzen angewiesen. Die eingesetzten Sensorknoten sind stark in ihren Ressourcen
hinsichtlich Speicher, Verarbeitungs- und Übermittlungskapazitäten eingeschränkt.
Zusätzlich ist die verwendete Hardware in der zur Verfügung stehenden Energiereser-
ve für Kommunikationszwecke limitiert. Um die angeforderten Protokollfunktionali-
täten in Kombination mit dem Ziel der Energieeinsparung zu unterstützen, müssen
für drahtlose Sensornetze hoch spezialisierte Kommunikationsprotokolle entwickelt
werden.
Auf Grund der heutigen Anbindung vieler Anwendungsbereiche an das Internet
wird es für die Forschung immer interessanter, existierende Internetprotokolle für
die Gegebenheiten in drahtlosen Sensornetzen anzupassen und dort zu etablieren.
In drahtlosen Sensornetzen stellen die Datensammlung und die Datenaggregation
die grundlegenden Aufgaben dar. Das sogenannte „IP Flow Information Export“
(IPFIX) Protokoll ist ein bei der Internet Engineering Task Force (IETF) standar-
disiertes Internetprotokoll, welches die von Sensornetzen geforderte Funktionalität
unterstützt.
In dieser Arbeit werden Konzepte zur Anpassung des IPFIX Protokolls an die Be-
dürfnisse von drahtlosen Sensornetzen untersucht. Auf diesen Ergebnissen basierend,
wurde das Protokoll TinyIPFIX entwickelt, welches eine Adaption des IPFIX Proto-
kolls darstellt. Dieses neue Protokoll wurde evaluiert und in einem repräsentativen
Anwendungsfall für drahtlose Sensornetze (in einem Gebäudeszenario) angewendet.
TinyIPFIX wurde erweitert durch Kompressionsfähigkeiten und Aggregationsfunk-
tionalitäten. Weiterhin wurden Erweiterungen integriert, die einen sicheren Daten-
transport unter Verwendung des „Datagram Transport Layer Security“ (DTLS)
Protokolls unterstützen. Diese Lösung gewährleistet, dass durch Sensorknoten ge-
sammelte Daten über einen gesicherten Kanal zur globalen Datensenke übermittelt
werden können. Weiterhin wird durch diese Lösung ein autorisierter Zugri� von der
Datensenke zum drahtlosen Sensornetz garantiert. Zur Validierung wurde ein Sys-
tem realisiert, welches eine dynamische Konfiguration der Netzwerkkomponenten
erlaubt und gleichzeitig die Visualisierung des aktuellen Netzwerkstatus und der
gesammelten Daten in Echtzeit unterstützt.
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1. Introduction

Some decades ago the Internet was connecting only thousands of computers. Due
to its growth, the Internet now connects several billions of computers. Today the
connection is not limited to computers any more; it also includes objects such as
mobile devices (e.g. smart phones, PDAs). In 2005 the International Telecommuni-
cation Union (ITU) published the report ‘ITU Internet Reports 2005: The Internet
of Things’ [1], which focused on the recent developments around the Internet of
Things (IoT) at this time [1]. The report pointed out that the term Internet of
Things is linked to Kevin Ashton (executive director Audio-ID Center) who first
mentioned this term in 1999 during a presentation by Procter and Gamble dealing
with radio frequency identification [1, 2]. The characteristics of devices, used in
the Internet of Things, is manifold and can include the following ones as pointed
out in the report by ITU: own Internet Protocol addresses, support of wireless com-
munication, embedding into complex systems, involvement of sensor technology to
collect information, and/or involvement of actuators to interact with the environ-
ment [1]. As can be seen, devices of the Internet of Things are of heterogeneous
structure, so that the Internet of Things only requires the capability of IP commu-
nication support. The included devices can be assigned to di�erent groups, among
others in Web of Things (WoT) and smart dust [3, 4]. Devices of the group WoT
are embedded components and are connected to other objects via Internet by using
web standards, such as the Hyper Text Transfer Protocol (HTTP) [5]. Smart dust
represents devices building a network of very small wireless microelectronic physical
objects, such as radio frequency identification (RFID) [6]. The intersection of the
two groups is represented by wireless sensor networks that build a network of low
complexity sensors with constrained hardware and communicate wirelessly [5, 4].

In the research field of the Internet of Things one traditional focus is on routing,
because independent of the application the main goal was to support transmissions
from the data collection point (source) to the next hop towards the final destination
e.g. data sink. It is assumed that an optimal route should be fast, cost-e�cient, and
reliable. The developed routing protocols are based on ideas known from ad-hoc,
IP or Peer-to-Peer networks. Another long standing research question deals with
security for the Internet of Things. Comparable strategies from the Internet or web
service area are the ‘Secure Sockets Layer’ (SSL) or ‘Transport Layer Security’ (TLS)
protocol for security support in both areas; HTTP is used for communication pur-
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poses in the Internet and Simple Object Access Protocol (SOAP) for data exchange
purposes between systems and for remote procedure calls (e.g. web services). Yet,
no solutions, that are equivalently secure, exist for the Internet of Things, especially
not for wireless sensor networks. This thesis investigates and solves, therefore, the
security problems arising from wireless sensor networks only focusing on key mech-
anisms and data encryption rather than securing the transmission channel [7, 8, 9].

In this dissertation it is assumed that very constrained hardware communicates with
each other as part of the Internet of Things. The devices used in wireless sensor
networks represent a special class of this constrained hardware. They are very lim-
ited concerning energy, memory, and computational capacity. Their main goal is
to collect information and transmit it into the direction of sinks. The sink serves
as gateway that has a connection to the Internet. In most literature for wireless
sensor network applications the term gateway is used for the device complex sink
and server. In this case, the sink is the last component that communicates wirelessly
with the network components and is wired to a server (e.g. PC) that has an Inter-
net connection [10, 11]. The previously mentioned setup, called device complex,
is required, because it is unusual that sensor nodes have a direct connection to the
Internet. Servers are not resource-limited, and, therefore, can support required pro-
tocols and security mechanisms [10]. Due to the growing application field of wireless
sensor networks, the functionality supported by the hardware grows, but resources
are still limited and can restrict the support of the functions. Today it is common
that research focuses on one application scenario developing a special solution. In
order to transfer the developed solution to other application scenarios, researchers
try to establish a generally applicable solution that can be adapted with less input
to new requirements (e.g. hardware changes). A prominent field of application is
the area in which di�erent devices (e.g. sensor nodes, management units) collect
information and exchange it in order to react depending on the analysis results.
An example is a building scenario, a representative of a cyber-physical system (CPS)
[12], which provides the basis of this thesis. A cyber-physical system is a combina-
tion of physical elements and system’s computational elements. In the case of the
assumed building scenario in this dissertation di�erent sensors collect environmen-
tal data (e.g. light, temperature, humidity) and transmit it to a management unit
(e.g. climate control, energy control). This management unit processes the data
by applying pre-defined knowledge (e.g. defined room temperature). Depending on
the analysis result the management unit activates the corresponding components in
order to perform a special action (e.g. to turn on/o� heating/light). [13]
Other application examples for cyber-physical systems can be found among others
in the area of health care, logistic or behavior monitoring. In general, the previously
mentioned application scenarios are characterized by heterogeneous hardware usage,
flexibility requests, and di�erent network sizes. [10, 12]

1.1 Problem Statement

As previously mentioned, it is required to integrate wireless sensor networks into the
Internet of Things. It is assumed that sensor devices have enough resources to sup-
port IP communication. An overview of IP solutions for sensor devices is presented,
e.g. ZigBee, IPv6 over Low power Wireless Personal Area Network (6LoWPAN),
and the Berkeley Low-power IP stack (BLIP) representing the underlying stack
(cf. Section 3.1). Due to the limited resources of sensor hardware, especially energy,
memory, and computational capacity, supported solutions must be developed in a
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resource-e�cient way.
In order to support interoperability of protocols and heterogeneity in the hardware,
the developed solutions must be flexible and independent of the underlying stack
(e.g. 6LoWPAN, BLIP), which is i.a. responsible for the network and transport
functionalities. As a consequence the integration of protocols and algorithms on
the application layer with focus on standardization is preferred as solution. The
application layer is located separately above a complex (called network stack) that
includes all underlying layers (e.g. transport, network, physical). The protocols
and algorithms in the application layer communicate with the underlying layers via
interfaces (cf. Section 3.1). For example, if a protocol using 6LoWPAN on the un-
derlying layer is developed and ZigBee is now exchanged by BLIP, it is only required
to modify the interfaces between the application layer and the underlying stack but
not the application itself. Instead of developing new isolated solutions, this disser-
tation focuses on the analysis of existing standards, for example of IP networks, and
the possibility for application and protocol transfer to constrained hardware, such
as sensor nodes, and transfers advantageous characteristics (e.g. message format,
energy e�ciency) into one combined protocol - TinyIPFIX and its extensions.
In conclusion, this dissertation develops a secure, e�cient and standardized commu-
nication solution for constrained devices in the Internet of Things. The solutions’
objective is to be able to be scaled on di�erent network sizes, to be flexible, and
applicable on very constrained hardware.

1.2 Research Questions
The research questions answered in this dissertation focus on e�cient data trans-
mission in wireless sensor networks with support of a security solution. Secu-
rity considerations are required, because of the integration of wireless sensor net-
works into the Internet of Things and because of the connection between data
and personal/sensible information (e.g. GPS). In order to develop a resource-
e�cient solution the requirements of wireless sensor networks, which are presented in
Chapter 2, are kept in mind. The developed solution should support di�erent hard-
ware platforms and allow integration of new features into a modular architecture.

1.2.1 E�ciency

Due to the constrained hardware used in wireless sensor networks, as presented in
Chapter 2, resource e�ciency is very important. The hardware has limited compu-
tational capacity, memory, and energy. In order to save energy, which is the most
limited resource, data sensing and processing, especially transmission, must be op-
timized, because it requires most of the energy of a sensor node [14, 15, 16, 17]. It
is the goal to transmit as much information as possible in one packet. As described
in Section 3.1 the supported maximum transmission unit (MTU) of the used hard-
ware’s RF transceiver CC2420 is limited to 127 bytes [18]. The finally available
MTU for individual data (e.g. measured sensor data) becomes more limited due to
additional headers (e.g. TinyOS message header and overhead by IP communication
as shown in Figure 5.4). Thus, an e�cient transmission protocol must be used in
order to achieve the goal to put as much data payload as possible into one packet.
This reduces the number of transmissions of a sensor node and helps to save energy,
which is the most limited resource.
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This dissertation deals with the following research questions in the field of e�cient
data transmission:

(E1) Is the IP Flow Information Export (IPFIX) protocol a viable solution for trans-
mission of sensor data in wireless sensor networks?

(E2) Is it possible to combine data pre-processing techniques (e.g. aggregation) with
the IPFIX protocol within the network?

(E3) Can all sensor platforms perform TinyIPFIX and its extensions (compression,
aggregation), as well as TinyDTLS?

Research question E1 is answered in Section 3.2 which focuses on the e�cient trans-
mission protocol ‘IP Flow Information Export’. The IPFIX protocol is characterized
by a push-protocol behavior and a template-based message design [19, 20]. Together
with the characteristics of the data transmission protocols used in wireless sensor
networks, as presented in Section 4.1.1, the main issue for e�cient data transport is
the separation of meta information and data, which is done by the IPFIX protocol.
The IPFIX protocol is a known standard from IP networks and can be adapted to
sensor network requirements with some modifications as introduced in Section 4.1.2.
This section also presents compression techniques in order to get along with the
additional overhead caused by additional headers (IPFIX message and Set header).
In order to optimize the e�ciency of data transmission in wireless sensor networks
(cf. research question E2) aggregation techniques are integrated into the wireless
sensor network, as introduced in Section 4.2. The term aggregation includes two
functionalities. One functionality is message aggregation where two or more indi-
vidual messages are compressed into one combined packet without any modification
within each message itself. The second functionality deals with pre-processing and
is called data aggregation. This means, on a special point (node) within the network
messages are collected and special information (e.g. temperature value) is extracted
from the payload. This extracted information is pre-processed (e.g. MIN, MAX,
AVG calculation of temperature) and the calculation result is transmitted to the
next hop in one message. The implementation of the developed data transmission
protocol TinyIPFIX with its extensions (e.g. compression, aggregation) is studied
in Sections 5.1 and 5.2, followed by the evaluation in Sections 6.1 and 6.2, which
answers research question E3.

1.2.2 Security
Due to the integration of wireless sensor networks into the Internet of Things and the
relation between data and private/sensible information a secure data transmission
is very important. Today, applications of wireless sensor networks prefer to use the
unreliable ‘User Datagram Protocol’ (UDP) instead of the reliable ‘Transmission
Control Protocol’ (TCP). As described by Wagenknecht et al., todays’ deployed
wireless sensor networks use UDP for data transmission towards a sink and TCP is
used for administrative functions (e.g. node configuration) [21]. If TCP would be
used, the standard TLS protocol could be used. It requires that both communication
endpoints support the same network layer. Another problem for using TLS over
UDP is the missing authentication of packets if packet loss occurs which is possible
when UDP is used.
In order to support secure data transmission between participating sensor nodes,
this dissertation deals with the following research questions in the field of security:
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(S1) Is it possible to secure data transmission in wireless sensor networks with known
standards from IP networks?

(S2) Can DTLS be performed on severely resource constrained hardware as used in
wireless sensor networks?

In order to evaluate existing standards that are relevant for wireless sensor net-
works an overview is given in Section 3.3 answering research question S1. The
presented standards in Section 3.3 provide confidentiality, integrity and authoriza-
tion support, as well as strategies against di�erent attacks and defense strategies.
Those standards and existing security solutions for wireless sensor networks influ-
enced the design decisions for the developed solution in this dissertation presented in
Section 4.3. Section 4.3.2 focuses on research question S2 in order to secure data
communication in wireless sensor networks by using DTLS, which provides server
authentication, confidentiality, and message integrity, as well as protection against
replay attacks [22, 23]. A brief introduction to the implementation is given in
Section 5.3, followed by a detailed evaluation in Section 6.3.

1.3 Structure of this Dissertation
The remainder of this dissertation uses the terms sensor node and mote as synonyms,
as well as building scenario, home scenario and o�ce scenario. It is organized as
follows:

Chapter 2 discusses the background information related to wireless sensor net-
works which is required in order to get a feeling about how challenging the con-
strained hardware used in wireless sensor networks is. The chapter starts with the
introduction of design principles in order to establish a high standard of quality
of service (QoS), energy e�ciency, and scalability of the performed functionalities
(c.f. Section 2.1). It has to be kept in mind that design principles are always in
global scope and their characteristic depends on the used hardware and the selected
application. The next parts of this chapter focus on the characterization of sensor
node hardware in order to give a feeling of their constraints. In general, the sen-
sor node hardware is very limited in memory, computational capacity, and energy
resources. Because of those constraints not every hardware can be used in every ap-
plication and/or perform the same functionalities (e.g. aggregation, encryption), as
well as energy saving methods become interesting in order to support long lifetime of
the system. In Section 2.4 a brief overview of the most common operating systems
in wireless sensor networks is given. The operating system TinyOS is driven by the
academic side, whereas the operating system Contiki is driven by the industry. Both
operating systems can be used for common sensor platforms (e.g. TelosB, OPAL),
but at the same time not every operating system gets along with all platforms
(e.g. TinyOS supports IRIS but Contiki does not). The choice of the operating
system is influenced by the used hardware and the preferences of the developers
of the wireless sensor network. For both operating systems the basic idea is the
same: Keep protocols/algorithms as simple as possible in order to get along with
the limited resources of the hardware. In addition, they try to support a modular
structure in order to add/delete/exchange parts without deep impact to other pro-
tocol/algorithm parts. In order to support all kind of sensor platforms, it becomes
interesting to transfer developed protocols between operating systems. In the case of
TinyOS and Contiki a brief description is given what the requirements are. Finally,
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this chapter closes with an introduction of today’s relevant application scenarios in
Section 2.5. The application groups, however, can be grouped di�erently. In this dis-
sertation a grouping concerning mobility of sensor nodes and gateway is performed,
followed by a handful of available applications for each group.
Chapter 3 covers background information of related standards that are interest-
ing for wireless sensor networks in order to support integration into the Internet
of Things. The first step is to support IP communication with constrained hard-
ware. Sections 3.1 briefly describes the history concerning stack development for
IP communication on constrained hardware. The drawback of IP communication
support is the added overhead by required IP headers. Thus, it becomes impor-
tant to focus on e�cient data transport functionality in order to transport as much
relevant data (e.g. sensor data) as possible in a maximum transmission unit. In
this dissertation the used RF transceiver CC2420 limits the maximum transmission
unit to 127 bytes [18]. From IP networks the e�cient data transmission protocol
‘IP Flow Information Export’ (IPFIX) comes to mind. It is known from moni-
toring tasks in IP networks and has an interesting message structure in order to
reduce redundancy in the messages by separation of meta information and data in
di�erent messages. The IPFIX protocol will briefly be introduced in Section 3.2
pointing out its advantages and why it is interesting to adapt the protocol to the
requirements of wireless sensor data. Section 3.3 focuses on related standards for
security support. Due to the connection to the Internet, it is an attractive aim
for attackers. The problem is that transmitted data can include sensitive data
(e.g. personal information) that must be kept private. Thus, the network and
the data must be secured. In order to find an appropriate method for this task
this section defines terms such as security attack, security services, and security
mechanisms. Further, this section introduces standard security solutions (e.g. cryp-
tographic functions, public key infrastructure, (D)TLS protocol, trusted platform
module) that influence the design decisions for the implemented security solution in
this dissertation.
Chapter 4 requires the previously introduced background information about wire-
less sensor networks and related standards from IP networks in order to justify the
design decision for the upcoming transfer of selected standards and required modi-
fications for wireless sensor networks. For further purposes it is assumed from this
point on that the used sensor data supports IP communication using the intro-
duced BLIP stack. As introduced before the hardware components of the wireless
sensor network used in this dissertation are very limited in memory, energy, and
computational capacity. Therefore, the supported functionality of the individual
components varies. First, the focus of this chapter is on e�cient data transport
realized by transferring the message structure of the IPFIX protocol to the require-
ments of sensor nodes (cf. Section 4.1). The result is the developed TinyIPFIX
protocol, which separates the transmitted data into messages including only meta
information or only data. Because of possible route updates caused by the BLIP
protocol and the used unreliable transmission protocol UDP, meta information is
repeated periodically in order to guarantee the translation of the collected sensor
data at all points in the network. The IPFIX protocol adds additional overhead to
the already limited message size, which reduces the original goal to send as much
information (sensor data) as possible in one message. Thus, compression techniques
for the IPFIX headers (IPFIX message and Set header) are designed which add a
pre-header to the message that verifies the size of each field in the IPFIX header. As
a result, the overhead caused by IPFIX support can be reduced by 85% and leaves
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enough space for the original goal. In order to reduce the tra�c within the network
itself, an aggregation protocol ‘TinyIPFIX-Aggregation’ is designed, as specified in
Section 4.2. It supports message aggregation and data aggregation. The latter al-
lows pre-processing of data within the network. In order to support a secure data
transmission within the sensor network, especially in direction to the gateway, a
DTLS solution is designed (cf. Section 4.3). The DTLS standard is adapted to the
requirements of the sensor node OPAL, which includes a trusted platform module
for authentication purposes. Independent of the protocol transfers a graphical user
interface (GUI) was designed in order to configure the wireless sensor network and
to receive visual feedback about the system’s status and the collected information.
The graphical user interface is briefly characterized in Section 4.4, which is based
on a virtual representation of the real sensor network.

As mentioned in Chapter 2 the resources of the used sensor hardware are limited, as
well as the supported maximum transmission unit by the chosen operating system
TinyOS. In order to establish a better understanding for the evaluation of the im-
plemented solutions Chapter 5 focuses on the implementation of TinyIPFIX and
its extensions as well as the graphical user interface. During the explanation of the
design decisions it was pointed out that the development of solutions also depends
on the chosen application scenario. Therefore, a building scenario is assumed in this
dissertation. With the help of this scenario di�erent environmental conditions could
be tested that influenced the performance of the implemented solution (e.g. wall
structures, distances between sensor nodes). This scenario also provides an intuitive
idea why secure data transmission is required, in order to ensure only allowed ac-
cess to data, especially using authentication mechanisms. Concerning the developed
graphical user interface this chapter focuses on the required workflows in order to
support configuration functionality of the network components, the visualization of
the network status, and di�erent possibilities to import/export data.

After presenting detailed background information about the design decisions and
the implementation the developed secure data transmission solution for wireless
sensor networks presented in this dissertation is evaluated in Chapter 6. Due to
the requirements of wireless sensor networks, it is a challenge to integrate them
into the Internet of Things without loosing their main tasks (e.g. data collection
and forwarding) out of scope. The developed solution - TinyIPFIX and its ex-
tensions - deals with an e�cient data transport possibility, containing a template-
based message design and support of pre-processing (aggregation) of data within
the network itself, and the establishment of a secure data transmission possibility
(cf. Sections 6.1 to 6.3). In this chapter the presented solutions are evaluated
concerning their requirements for memory, transmission e�ciency, and energy con-
sumption. Further, a comparison of the established solution with related standards
is presented. It will be pointed out that not every sensor platform is able to support
all functionalities, but all support IP communication. This regulation is mainly
based on the required memory of the solutions (e.g. performing aggregation) or
because the solution requests special hardware (e.g. trusted platform module). In
order to support an user-friendly environment to manage the wireless sensor network
a graphical user interface is developed. The graphical user interface is running on the
server side, so that no regulations concerning memory, computational capacity or
energy exist. Thus, the evaluation of the graphical user interface is a proof of concept
showing examples for hardware configuration, feedback of network status, and data
import/export (cf. Section 6.4). Chapter 6 is concluded with compliance proof of
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the requirements for a cyber-physical system focusing on standardization, resource
e�ciency, flexibility, and usability of the developed solutions in this dissertation.
Finally, this dissertation is concluded in Chapter 7. It briefly summarizes the faced
challenges for the developed solutions in order to integrate a wireless sensor network
into the Internet of Things with a building scenario as application example. Fur-
thermore, the advantages of the developed TinyIPFIX protocol with its extensions
is resumed. Next, the mentioned research questions in Section 1.2, focusing on ef-
ficiency and security, are answered in order to summarize the research impact of
this dissertation. Last but not least, an outlook is given for further investigations
in order to improve the established wireless sensor network with all its components
and features.



2. Fundamentals of Wireless Sensor
Networks

In general, a wireless sensor network consists of di�erent sensor nodes (white) from
di�erent vendors which collect individual data and transport it to one or more
sink(s) (black) as illustrated in Figure 2.1a (analog to references [24, 10]). The
number of participating nodes depends on the network size and may cause a long
communication link to the sink with several hops in between. Depending on the
placement of the sensor nodes, some nodes are not able to communicate with the
sink directly. To overcome this, the network must support routing functionality
in order to route data packets to the sink in an e�cient way. Therefore, the
routing algorithms take the current network status into account in order to be able
to calculate the optimal route towards the sink. For example, depending on the
location of sensor node A it would be expected that the routing algorithm would
prefer to forward the collected data to sink 2 and further to the global data sink.
Instead, the underlying routing algorithm (e.g. BLIP) decides to route the data over
five hops to sink 1 using direct addressing of the sink by its individual IP address.
From sink 1 the data is forwarded using LAN connections to the global data sink.
In both cases the data would arrive the global data sink but the required time might
be di�erent.
The sink is a sensor node with gateway functionality (e.g. IP Basestation1). It
forwards the wireless received data to a wired infrastructure, such as a server or
PC, which is responsible for the further handling of the data (e.g. interpretation
and analysis of the data, forwarding to the global data sink). The terms sink and
base station are equivalents and together with a server connection a gateway is
formed. Various functions are performed on the server such as data storage, data
pre-processing, visualization or node configuration. In general, the gateway has
a connection to other components of the cyber-physical system and provides the
collected data to the components for di�erent application purposes (e.g. online
analysis, entity management). [24, 10]

1‘IPBaseStation is a modification of the generic BaseStation which ships with tinyOS-2.x. It alters the
serial protocol to pass 802.15.4 frames instead of Serial.h packets. It also adds an out-of-band configuration
protocol which allows a driver running over the serial port to reboot the mote, and to set the device address,
channel, and retransmission parameters. These changes are useful when one wishes to use a mote attached
to a computer as an 802.15.4 interface rather then an actual mote. The actual queuing logic for copying
packets is mostly unchanged, and it continues to make use of serial ACKs.’ [25]
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Figure 2.1: Components of a wireless sensor network including communication links

Figure 2.1b illustrates a special case of a wireless sensor network, which is mainly
used in todays’ application fields (cf. Section 2.5). In comparison to Figure 2.1a the
wireless sensor network has one sink. The performed routing algorithm addresses
all packets in the wireless sensor network to one sink. The server in the gateway
complex is equivalent with the global data sink.

One of the first sensor nodes for wireless sensor networks in research - called smart
dust - was developed by Jason Hill and David Culler at the University of California,
Berkeley, USA [26, 27]. The task was simple: build small devices that are able to
collect and transmit di�erent data. Data was collected by di�erent sensors (e.g. light
sensor, microphone, motion sensor) and was transmitted over a number of hops to
a sink via a wireless connection. The sink was part of the server’s wired network,
on which various analysis applications ran. [26, 27]
Based on the ideas and developments of the group around Jason Hill and David
Culler the first wireless sensor network was deployed as part of the Golden Gate
Bridge Project, a structural health monitoring (SHM) approach [28]. For this appli-
cation the sensor nodes of type MICA were developed. Other application areas can
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be found in health, military, building scenarios, and early-warning systems, e.g. for
tsunamis and earthquakes. Those varied application areas are characterized briefly
in Section 2.5.
During the last ten years, the developments in the field of sensor networks have
been primarily in data transmission, cost-benefit ratio, and energy consumption.
The miniaturization of devices allowed enhanced requirements such as more sensors
per unit, lighter weight units, and the ability to recharge. Due to limited space on
used hardware, resources must be placed and used meaningfully. It is, therefore,
important to be aware of design principles for sensor networks (cf. Section 2.1)
and to choose the appropriate operating system for the hardware used accordingly
(cf. Section 2.4).

2.1 Design Principles

The operators of wireless sensor network set a high standard to good support of
quality of service, energy e�ciency, and scalability of the performed functionalities.
In order to accomplish the operators’ requests, design principles are important as
described by Holger Karl et al. in reference [10]. The design principles introduced
below, are di�erently weighted according to the chosen application scenario, the
performed functionalities, the network size, and the resources of the hardware used.

The network organization is a very important issue, because it influences the perfor-
mance of the sensor network. In today’s applications sensor devices are organized
in a distributed way combined with self-organization protocols. Di�erent sensor
nodes in the network perform di�erent functionalities, such as data collecting, pre-
processing of data within the network (e.g. aggregation, compression) or forward-
ing it towards the next hop. Depending on the deployment of the sensor nodes a
self-organization mechanism must be performed in order to support a quick data
transmission towards the sink. Representatives of self-organization protocols are
neighbor-discovery algorithms and routing protocols that both support the estab-
lishment of a stable communication network. [10]
If the wireless sensor network is organized in a distributed way, the design principle
of in-network processing becomes interesting, because resources of sensor nodes can
be saved. In this case, selected sensor nodes in the network perform special algo-
rithms, such as aggregation or compression, in order to pre-process data within the
network. In general, the selected sensor nodes have more resources for calculation
and bu�er purposes. The advantage of in-network processing is the reduction of the
amount of data in the wireless sensor network and the reduction of energy consump-
tion due to the reduction of transmissions. [10]
In order to transmit recorded data in a wireless sensor network in an e�cient and
resource saving way towards the sink the design principle of accuracy becomes a re-
search issue. If a wireless sensor network is working accurately, it takes the current
network status into account in order to optimize routes. For example, if a sensor
node has less energy resources, routes of the sensor network are updated in a way,
which avoid the exhausted sensor. The goal is to ensure a long lifetime for this
overused node. [10]
In wireless sensor networks it is popular to address data instead of the source
(e.g. address of the node that collected the data). This strategy is based on the
idea of data centricity which allows reconstruction of the data’s source out of com-
munication relationships (e.g. neighbors and link quality). Data centricity can be
combined with database approaches in order to obtain interactions between sensor
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nodes collecting data (called publishers) and devices requesting data (called sub-
scribers; e.g. sensors with aggregation functionality, users with mobile devices) in a
wireless sensor network. [10]
Today, di�erent application scenarios exist, which include sensor devices with
di�erent capabilities for di�erent functionalities within a wireless sensor network
(e.g. aggregation, compression, encryption). In order to support the heterogeneity
of system components (e.g. not every sensor node has the same sensors included),
TinyOS has a component-based architecture [29]. This component-based structure
allows dynamic adaptation of the protocols (e.g. activation or deactivation) for
each component depending on whether it is needed or not (cf. Figure C.1). For ex-
ample, one sensor node collects light and temperature data, whereas another node
collects humidity and acoustic data. For the transmission of both data sets proto-
cols are required, which adapt automatically to the required settings. In general,
the exploitation of heterogeneity is combined with cross-layer optimization strate-
gies, which allow the integration of new features with little modification to the
already existing protocol stack. A drawback of cross-layer optimization can be a
performance reduction of the network due to feedback loops. [10]

2.2 Hardware Specification of Sensor Devices
The standard equipment of a sensor node consists of a microcontroller, a memory
unit, a communication device (radio), a power supply, and one or more sensors or
actuators [11, 10]. Depending on the hardware design other components might be
included such as LEDs, power switches, external power connectors, external RF con-
nectors or expansion connectors. The main task of sensor nodes is to collect data and
forward it. Depending on the application some sensor nodes can perform additional
tasks, such as packet aggregation or data pre-processing, within the wireless sensor
network. [11, 10]
The most relevant component of a sensor node is the microcontroller. It has several
responsibilities such as data collection from sensors or actuators, data processing,
decision management, and flow control. The memory is subdivided into a random
access memory (RAM) and the read-only memory (ROM), which is sometimes an
electrically erasable programmable ROM (EEPROM) or a flash memory. In contrast
to ROM, RAM looses its content by power loss. Thus, it is used for bu�ering pur-
poses, especially for data that can be changed while a program runs. The executing
code is stored in the ROM in order to avoid reprogramming after power loss. The
node, therefore, must only be programmed once and can be reused several times
until a code update is required. [11, 10]
The communication device is responsible for the communication ability of the sensor
node as described in detail in reference [10]. Depending on the application scenario
the number of sensors and actuators di�er. The power supply must be dimensioned
according to the hardware, the application scenario, and the targeted lifetime of the
system.
The hardware itself is limited regarding power resources, memory, and computational
capacities [30]. Figure 2.2 shows platforms highlighting typical approaches, such
as Berkeley Motes (e.g. MICA2dot, MICA2, IRIS, TelosB), and new approaches,
such as OPAL. Another challenge is the size of hardware which ranges from coin
to matchbox sized. This makes the placement of sensors next to other equipment
such as microcontroller, conductor, and all other technical equipment especially
challenging. [31, 32, 33]
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Figure 2.2: Hardware specification of common sensor node platforms

For the MICA2, MICA2dot and IRIS platform developers decided to work with
an add-on sensor board, which is connected via an UART-connection to the main
board. A big advantage of this technique is the flexibility of the sensor boards.
Di�erent boards can be equipped with di�erent combinations of sensor types such
as brightness, temperature, microphone, pressure, humidity or GPS. Depending on
the application the sensor board must be exchanged, but the basic hardware stays
the same. [31]
The OPAL platform also o�ers an UART-connection opportunity to add a sen-
sor board. Additionally, this platform has an integrated Trusted Platform Module
(TPM) chip on the main board which o�ers security functionality. The TPM
technology is known from notebooks, smart cards, and other security sensitive de-
vices in order to authenticate the user by his hardware. The TPM securely stores
information about the host system (e.g. notebook, sensor node), such as crypto-
graphically keys, certificates or passwords. The task of this security principal is to
prevent fraudulent use of hardware and stored data. [33, 34]
With the TelosB nodes the strategy was di�erent. Here developers decided to de-
velop a sensor node platform with on-board sensors, so that the sensors are located
on the same board as the processing and communication components. As a conse-
quence, a new sensor node must be developed for applications that do not fit into
the standardized sensor equipment. [32, 31]

The energy resources of sensor platforms vary as shown in Figure 2.2. In general, two
AA batteries supply Berkeley Motes. For the coin sized platforms
- MICA2dot and Smart Dust - the energy is limited by a coined cell. The TelosB
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node can also be charged via a USB connection. The OPAL node can either be
supplied by a three AA battery pack or by a non-exhaustible USB connection to
a power source (e.g. PC, electric socket). In all cases, with exception to the USB
support, the energy resources for the introduced sensor platforms are very limited.
Thus, research focuses on integration of energy saving methods into the established
wireless sensor networks as briefly introduced in Section 2.3. [31, 32, 33]

2.3 Energy Saving Methods

As illustrated in Figure 2.2 power resources of sensor platforms are very
limited. Depending on the application battery power might be exhausted very soon
(e.g. calculation, transmission). Usually, the most energy consuming procedure is
the transmission of data to the next hop towards a sink followed by decoding and
processing operations directly on the node. In order to ensure a longer lifetime of
the wireless sensor network energy saving techniques should be integrated into the
system.
One idea is to reduce energy consumption by implementing di�erent modes
of activity for the nodes as described in reference [35]: full active, idle, and sleep.
Most power is consumed when the node is fully active, which means everything
requires full power for listening, sending, and data collecting. Sensor nodes in the
sleep mode consume very little energy - microjoule instead of millijoule [35]. Nor-
mally, nodes are programmed with internal clocks that wake them up in predefined
intervals in order to perform, e.g. data collection followed by sending data directly
to the next hop afterwards, before they fall into sleep mode again. The idle mode
is a mode in between those two modes. Here the node actively listens to the sur-
rounding tra�c for beacons that let it know when to wake up and when to perform
operations. [35]

Another idea to reduce energy consumption is software based and focuses on mes-
sage size and network tra�c. It has been proven that messages with smaller size
consume less transmission energy than bigger messages [16, 17]. Therefore, one
strategy is the reduction of overhead. In the context of sensor networks overhead is
the meta information connected to each measurement, which is anytime the same
for the same sensor node. Thus, splitting of sensor data packages into a message
that includes meta information, and a message with the measured values is the strat-
egy of choice. The message including meta information is sent out to all network
components when the sensor node boots. After this announcement the sensor node
only transmits messages, including the measured data, and refers to the before an-
nounced meta information. Also, each packet should produce low overhead in order
to o�er more space for individual payload, including relevant data. This approach
can be realized by performing compression techniques on the messages components
(e.g. headers). Another strategy is the reduction of tra�c within the network itself
in order to save energy. In this case either message aggregation or pre-processing of
data can be performed on nodes within the network. The simple idea behind this
approach is that sometimes not all data is required in order to perform a specific
action. For example, only the average room temperature is required to manage the
cooling system in a room. [16, 17]

A complete di�erent method to raise the system’s life time is to charge the power
resources by using solar panels or environmental inputs such as vibration or tem-
perature [36].
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2.4 Operating System for Sensor Devices
Today the operating systems TinyOS and Contiki are very popular for wireless
sensor networks which are briefly characterized in Sections 2.4.1 and 2.4.2 [37]. A
few years ago researchers started to develop new operating systems based on Unix
(e.g. MantisOS, LiteOS), but those approaches are not as popular as TinyOS and
Contiki and do not support the hardware mentioned in Figure 2.2, yet [37, 38].
Thus, they are not addressed in this section. Finally, a brief look on code porting
possibility between TinyOS and Contiki is presented, which is driven by industry
partners and the ongoing development in the Internet of Things [39].

2.4.1 Characteristics of TinyOS

TinyOS is a research driven operating system, which is used for hardware with lim-
ited resources such as Berkeley Motes (e.g. MICA2, MICA2dot, IRIS, TelosB) that
are used in the deployed wireless sensor network in this dissertation and were in-
troduced in Section 2.2. TinyOS is an open source project [25]. It was developed
by David Culler and Jason Hill at the University of California, Berkeley, USA in
2000 especially for wireless sensor networks based on the requirements of Berkeley
Motes [26].
TinyOS is a component-based operating system and has an e�cient multi-threading
engine, which is composed of a two-level-scheduler and realizes the computer-time-
spreading for threads. The application code consists of a Makefile including com-
piling commands, module files including configuration information, and one or more
configuration files including the required information of the interfaces used and the
component wiring [25].
The following two sources of concurrency are necessary prerequisites in order to
understand the execution order of the two-level-scheduler in TinyOS [29]:

• Tasks, which contain current network routing and data preparation, typically
take longer to finish, because hardware events have higher priority.

• Events on the other hand must be handled immediately, so that long duration
blockades caused by current applications and data loss are prevented.

It is important to take the consumption of power into account to guarantee an e�-
cient way of processing parallel data streams. The components link the sensors, the
processing-, and communication-units that result in a wiring graph of components
(cf. Figures C.1 and C.2). They contain a Command Handler and an Event Han-
dler, so that an immediate reaction to a change in state is possible.
Components of a higher level communicate with the ones on lower levels via the
Command Handler. After completion of a command on lower levels, independently
of success or failure, the Command Handler answers with a signal (e.g. return value
or flag) to the higher level in order to indicate the run to completion. A Command
cannot cause Events. For example, the command init() is called in order to ini-
tialize a component for the first time, the command start() activates the start of
the component, and finally the component is stopped with the command stop().
The Event Handler deals with Events, which can be caused directly or indirectly by
hardware-interrupts (e.g. fired() in order to signal that an interval has passed).
Events can even cause Events of higher levels. Frames contain the data memory
of a component. Within a component Tasks are running, which have been started
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by commands, Events, or other Tasks from the same component. Typical for Tasks
are the atomic structure and the so-called run-completion semantic, i.e. the Task
cannot be stopped and stops automatically when finished. [29, 25]
The advantage of the two-level-scheduler is that TinyOS only requires one mem-
ory stack, because memory allocation happens during program compilation process.
This knowledge allows a classification of the components into three types [25]:

• Hardware abstraction components: Mapping of physical hardware onto a com-
ponents model. One of the components is the Radio-Frequency-Module (RFM),
which operates the pins of the RFM sender/receiver, and informs other com-
ponents of successful transmission via Events.

• Synthetic hardware components: Mapping of ongoing hardware, e.g. the radio-
byte-hardware, which sends data to the RFM, and gives a signal when a whole
byte has been sent.

• High level software components: They contain the application-logic. They
control components, and calculate the routing, and other data information.

A drawback of TinyOS is the missing support of simultaneous execution of several
applications. Due to the Event-based programming, an operational capacity dur-
ing applications with a high degree of parallelism can be reached. The modular
architecture allows the user to add or remove di�erent components without much
overhead.
The configuration of the components is realized by a special programming language
called nesC which is a derivate from the programming language C [40, 29]. It
was specially designed for the requirements of TinyOS. The basic concepts are as
follows [40, 29]:

• Construction and composition are separated.

• Component behavior is specified in terms of set of interfaces; interfaces are
bidirectional.

• Components are statically linked to each other via their interfaces.

• NesC is designed under the expectation that code will be generates by whole-
program compilers.

• The concurrency model of nesC is based on run-to-completion Tasks and in-
terrupt handlers which may interrupt Tasks and each other.

2.4.2 Characteristics of Contiki

In contrast to TinyOS the operating system Contiki is an industry driven operat-
ing system. In 2004 the development of Contiki by Adam Dunkels at the Swedish
Institute of Computer Science was driven by the request of a light weight operat-
ing system (2 kB RAM and 40 kB ROM) for embedded systems that later on was
adjusted to the requirements of wireless sensor networks [41]. The technical term
‘embedded system’ summarizes small and limited hardware that is included in big
systems (e.g. control system in a washing machine). Those embedded systems must
function despite limited storage and computational capacities in the same way as
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components of a wireless sensor network. A representative for Contiki usage is the
ScatterWeb project [42].
The most important advantage of Contiki in comparison to TinyOS is the
IP-communication (IPv6, IPv4), which is supported from the beginning. In Contiki
the storage allocation happens during compiling. In contrast, the storage alloca-
tion for TinyOS is specified by the programmer, which means it is hard coded. A
Contiki system consists of the kernel, the libraries, the program loader, and a set of
processes, which can be an application or a service. The di�erence between an ap-
plication and a service lies in the flexibility of the adaptations. In general, a service
is programmed in a highly flexible manner so that di�erent programs or applications
can use it. In contrast the application is only developed for one special goal, e.g.
health or building monitoring (cf. Section 2.5). In order to be flexible, Contiki
supports di�erent hardware such as Tmote Sky, JCreate, TelosB,MicaZ, Scatterweb
plattforms MSB and ESB [41, 39, 30]. The programming language is Java. The
process and the drivers can be replaced without interrupting a running system. If
the processes need to communicate with each other they go through the kernel and
communicate directly with the required hardware. The kernel itself is only responsi-
ble for event handling and outsources the remaining tasks to libraries that are linked
if needed. In comparison to TinyOS the program code of Contiki consolidates all
relevant packet imports and the application code itself in one file. [41, 39]

2.4.3 TinyOS code porting Contiki

In research TinyOS is the operating system of choice. The big advantages are the
modular structure, the ongoing development, and the established community. A
disadvantage is the fact that TinyOS requires special hardware such as Berkeley
Motes that narrows the application field. But if an implementation runs under
TinyOS with little complexity, the code and hardware can be transferred to Contiki.
In order to realize the code porting, developed modules under TinyOS need to be
subdivided into application and service processes in Contiki. The underlying wiring
of components in TinyOS needs to be replaced by services interfaces in Contiki.
If the code of TinyOS is adapted to the code requirements of Contiki, everything
runs under the other operating system. For example, the TelosB nodes represent
a platform, which can be programmed with TinyOS and Contiki, if the required
drivers are supported. [39, 25]

2.5 Characteristics of Application Scenarios
The scaling of a wireless sensor network and its supported features depend on the ap-
plication scenario, which ranges from environmental monitoring tasks
(e.g. influences to building structures or user comfort), logistic, and localization
tasks to health care areas. Those scenarios can be divided into indoor, outdoor, or
mixed scenarios [43]. Alternatively, the applications can be divided depending on
the mobility of components [11]. It is a more specific grouping as performed in
this section. In every scenario di�erent challenges must be faced such as weather
conditions, architecture structures, as well as environmental factors. Depending
on those challenges the chosen hardware must be dimensioned and designed. The
interactions between network components are periodical measurements, event detec-
tion, and tracking. Before establishing a wireless sensor network developers must be
aware of design principles, hardware constraints, and operating system possibilities
as discussed in the previous Sections 2.1 to 2.4.
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The currently established wireless sensor networks can be classified into the fol-
lowing three groups, where grouping depends on the node and sink location or
status [11]:

1. Group: Static sink and static nodes (cf. Section 2.5.1)

2. Group: Static sink and mobile nodes (cf. Section 2.5.2)

3. Group: Mobile sink and mobile nodes (cf. Section 2.5.3)

Finally all the application groups have in common that networks consist of one sink
and one or more sensor nodes (cf. Figure 2.1b). Those sensor nodes are equipped
with application-dependent hardware and periodically collect values. Those val-
ues are transmitted to the sink automatically, if it is in communication range.
Depending on the network structure this data transmission happens over one or
more hops where sensor nodes can work as intermediates. [11]

2.5.1 Group 1 - Static Sink and Static Nodes

If the sink and the sensor nodes are static and the location is known, the established
wireless sensor network is included in the first group. Those networks are usually
used if everything is known and the monitored area or situation is fixed. In general,
those deployed networks can be found in the area of structural health monitoring
(SHM) setups observing building structures. It is used to analyse the changes in the
structure of the building, which can a�ect the performance and the architectural
stability of the construction.
The first recorded project is the Golden Gate Project in San Francisco, USA [44].
The aim of this project is to observe the ambient vibration of the same named bridge,
because the bridge is located in an area where earthquakes and sharp sea winds
often occur. The bridge is a frequently used tra�c connection. The construction,
therefore, needs to be stable and resist strong vibrations. Due to the construction
of the bridge, it is essential to measure two directions perpendicular to the bridge’s
span - one up-down and one across the span. Two types of accelerometers are used
in the project which have various measurement ranges to account for all possible
vibration modes. The first type has a range from -2G to 2G for big movements
(e.g. earthquakes) and the other has a narrow range from -0.1G to 0.1G to sample
ambient vibrations (e.g. car tra�c, wind). The bridge is 6450 ft long in total, the
towers are 500 ft high and the bridge piers are 246 ft in parallel away from each
other. The distance between the two bridge towers is 4200 ft. [44]
Project leaders decided to work with over 50 nodes and used Berkeley-Motes, which
were the technology of choice at that time. The location of the sensor nodes is fixed
as well as the sink. Collected measurements are transmitted via hops towards the
sink where the longest hop distance is 280 ft long. The established network works
with IEEE 802.15.4 at 2.4 GHz and supports bi-directional communication. The
bi-directional communication was established in order to update the measurement
intervals of the nodes depending on the analysis results of the data. For example,
a higher sample rate is valuable during emergency situations. Long lifetime of the
system is ensured, because sensor nodes transmit data only a third of the time and
otherwise are in idle state combined with solar panels to recharge the batteries. [44]
Such an established wireless sensor network with fixed locations of sensor nodes
and sinks (perhaps with modified hardware) can be found in di�erent constructions,
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which are located at critical environments such as earthquake regions. Another
approach with the same setup situation can be found in emergency alert systems
with fixed locations [45]. The most popular examples are the tsunami warning
systems established in the pacific sea area [46, 47] and the earthquake warning
system in Europe [48]. Those systems are combined with an alarm system via mobile
devices. The sensor nodes are located in a fixed position in the sea in measurement
buoys or next to known regions for earthquakes, such as volcanoes or seismotectonic
active regions. They measure the movement of water, sea ground or earth. The
data is transmitted to a global data sink located in a research center at the land
surface where data is analysed. Depending on data changes researchers can predict
a tsunami or an earthquake. In this case they start the early warning system, which
is integrated in online applications (apps) available for mobile devices, and allow the
people to evacuate as early as possible. [45, 46, 47, 48]

Other examples for group 1 networks can be found in medical and building (home
or o�ce) applications. In the medical field the technical term is wireless body area
networks (WBAN) [49]. In this case, di�erent sensors are located on the human
body, such as movement sensors or cardioplegia sensors, to observe the movement
pattern or heart beat of a person. The person either wears the sink, for example
on the belt, or it is located next to the person such as in the neonatal monitoring
case. The body sensors must bridge a short distance to the data sink, so that it can
be done in one hop compared to the other approaches included in this application
group. The sink either stores the data and needs to be connected to the internet
manually to transmit the data to a medical analysis center (= global data sink) or is
equipped with a permanently active internet connection and transmits data directly
e.g. via a mobile phone. Such a medical emergency application was implemented
by the CodeBlue project published in reference [50].

2.5.2 Group 2 - Static Sink and Mobile Nodes

The second group of wireless sensor networks has a slightly modified setup compared
to the previously described grouping in Section 2.5.1. The sink is still static, but
the sensor nodes are mobile. Those networks can be found in military, logistics, and
building applications.

Networks in military scenarios deal with monitoring militants activities on roads
or in villages, intrusion detection, and, in general, are used for protection purposes
[51, 52]. Usually a headquarter has a fixed location and should be protected. In
order to ensure protection, the surroundings must be observed. The sink is located
in the headquarters. Flying objects can be equipped with di�erent sensors such as
GPS and infrared sensors in order to observe the region. Those aerial drones are
unpiloted and fly over the region of interest in order to collect data. This data is
usually transmitted via a satellite connection to the ground-based global data sink
where the tactical companies analyse collected data and plan the attack strategies
for military groups. [51, 52]

In logistic scenarios the sink is generally fixed in the transport vehicle and the
sensor nodes are on the transport material such as packets or boxes. Here the
sensors are equipped with a GPS unit, with a radio-frequency identification (RFID)
unit or vibration sensors [53]. One of the challenges of this setup is the question
of self-organization. Boxes might be loaded randomly and must organize a working
infrastructure by themselves in order to ensure a working network to transmit data
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to a sink. If a box is moved, its location and communication links need to be
updated, which is the main reason for putting the application in group 2. [53]
The home or o�ce application scenario is a variable scenario. Depending on the
possible scenario it can either fit in group 1 or group 2. In every scenario the data
sink is fixed. If sensors like temperature, humidity, gas or brightness for monitor-
ing tasks of the environment are located on known positions, the network can be
classified in group 1. If the sensors, such as GPS, are used to locate persons in the
building, the scenario belongs to group 2. The project AutHoNe deals with those
scenarios and is used as the basic application for the presented work in this doctoral
thesis [13]. One part of the AutHoNe project was to measure environmental data
and transmit it to a gateway. On the gateway the sensor data is compared to prede-
fined knowledge. Depending on the analysis’ result an action is planned and advised
to the corresponding actor (e.g. climate management unit). [13]

2.5.3 Group 3 - Mobile Sink and Mobile Nodes

Wireless sensor networks dealing with wildlife monitoring tasks are representatives
of a network of the third group [54, 55]. The characteristics of this group are the
mobility of sensor nodes and sink. Here the hardware needs to be equipped with a
huge memory unit, because data needs to be stored until a sink is available.
The ZebraNet project developed by the University of Princeton (USA) is one ex-
ample of such a network type [55]. In this project zebras wear a tracking collar
that weighs 1090g. This collar consists of a GPS chip, CPU, 640 kB flash memory,
short-range radio unit, long-range radio unit with packet modem, Lithium-Ion bat-
teries, and solar cell array [56]. The main characteristic of this sensor system is the
long-term animal tracking even over long distances (e.g. > 100 km). This arrange-
ment allows researchers to follow and find those zebras throughout their habitat in
order to collect information. The project is located at the Mpala Research Center
in central Kenya. Biologists observe Plains Zebra (Eciton burchelli) which live in
tight-knit uni-male, multi-female breeding groups. Only males need to wear collars
to collect enough information about the whole group, because males cause the the
direction of movement. Collected data is stored locally on the collars until a sink is
available. A ranger with the necessary equipment serves as mobile sink. The ranger
drives to well known places, such as water holes, and waits until zebras cross the
range of the sink. The sink announces itself permanently to the environment. If a
collar detects this signal, it directly transmits all its data automatically. In order to
ensure that all collected data from all collars reach the sink even if they are not in
range, collars transmit some data to other reachable nodes in their surroundings. It
might happen that those nodes have earlier contact to the sink and then transmit
also the out of range nodes’ data. A similar approach was done with Iberian lynx
as reported in reference [54]. [55, 56, 54]
In 2012 the ‘UvA Bird Tracking System’ started with tracking birds’ movement
[57]. The project was developed at the University of Amsterdam. In order to
observe such small animals, lightweight hardware must be developed. As described
on the project homepage the hardware utilized includes a tri-axial accelerometer
and a GPS logger. In order to support a long lifetime, solar and rechargeable
batteries power the hardware. A bi-directional communication between the base
station and the mobile bird hardware was established in order to allow updates of the
system. The sink is represented by mobile ground stations, which further transmit
the data to the labs (= global data sink) using satellite connections. Received data is
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automatically processed and visualized in the developed virtual lab. The global goal
of this project is to gain a better understanding about migration and navigation of
birds. In addition, the project develops software in order to gain access to recorded
measurements outside the laboratory, to share data with other research groups, and
to visualize the data mapped on global maps in order to follow the travel distances
of the birds. [57]

2.6 Summary and Findings
This chapter gave a brief introduction to wireless sensor networks, which will be used
as required background information for the upcoming chapters. First, this chapter
introduced general design principles that must be kept in mind in order to estab-
lish a wireless sensor network. Followed by a characterization of commonly used
hardware in todays’ sensor networks. Pointing out the constrains of the hardware
concerning memory, energy, and computational capacity. In order to save resources
general used energy saving methods were introduced, such as compression and
aggregation. Additionally, the two main used operating systems for wireless sen-
sor networks - TinyOS and Contiki - were briefly characterized. TinyOS is mainly
driven by academic/research decisions and Contiki by industry constraints. It was
also shown what is required to port protocols between both operating systems in
order to use di�erent hardware, because not every hardware is supported by both
operating systems. In order to conclude the background information about sensor
networks di�erent application scenarios were introduced and grouped by the mobil-
ity of the network components. Todays’ deployed wireless sensor networks have in
common that they transmit data to one global data sink, perhaps via a number of
intermediate hops (e.g. other nodes, routers or local data sinks / gateways). In sum-
mary, this chapter demonstrated what constraints di�erent sensor hardware have,
where sensor networks are available today, and what features should be supported
in order to optimize the behavior of wireless sensor networks.
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3. Related Standards for Wireless Sensor
Networks

Today, a number of implemented use cases for the Internet of Things (IoT) and
wireless sensor networks exist, as described in the previous Section 2.5 and in
reference [58]. In most of the scenarios (e.g. Project UvA Bird Tracking Sys-
tem, building, logistic or military applications) it is preferable to make collected
data globally accessible to authorized users and to authorized data processing units
(e.g. analysis server, visualization tool) through the Internet. In general, much of
the collected data in these scenarios, such as location and personal IDs, is sensitive
information. User’s privacy can be violated if unimportant data (e.g. energy con-
sumption, light, sound) is monitored somehow, so that it can be directly linked to
the user. As pointed out by the following statement given by the market research
firm Gartner Inc., it is essential to think about security solutions [59]:

‘The Internet of Things concept will take more than 10 years to reach the
Plateau of Productivity - mainly due to security challenges, privacy policies,
data and wireless standards, and the realization that the Internet of Things
requires the build-out of a topology of services, applications and a connecting
infrastructure.’ [59]

The solution for security problems is to integrate end-to-end security into the Inter-
net of Things. This means, that communication between client (e.g. sensor node)
and server (e.g. gateway) is isolated from the outside and not readily ascertainable
to anybody else, that data cannot be modified during transmission, as well as the
communication channel. Protecting data once it leaves the scope of the local net-
work is not enough. An end-to-end security solution provides security even if the
underlying network infrastructure is not under control of the user. This case occurs
if data is transported to a remote data center (gateway). If the gateway is a sta-
tionary installation, it can provide security functionality to the higher-level network,
but the gateway is still a high-value target for attackers. If an attacker gains access
to a gateway, access to all information is possible. Examples for scenarios where
user has limited control can be found in the logistic area, where no gateway to the
provider’s network with user’s control exists, or in building scenarios, where the
users share the common infrastructure for metering and climate-control purposes,
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but try to keep their device’s data private from other network members. If a proto-
col such as DTLS is used, security responsibility is shifted from the gateway to the
communication participants. The DTLS protocol is located between the transport
and application layer, which excuses the infrastructure (e.g. gateway) from sup-
porting security mechanisms. Thus, the gateway’s attractiveness for the attacker is
reduced. Another possibility is the usage of IPsec which is located on the network
layer [60]. IPsec o�ers two packet formats for cryptographically protected data: (1)
the IP authentication header provides integrity protection and authentication [61]
and (2) the IP encapsulating security payload which also supports confidentiality
protection through encryption [62]. [59, 60, 61, 62]

The request for integrating constrained systems (e.g. wireless sensor networks) into
the Internet of Things was motivated by Jonathan Hui and David Culler in their
article ‘IP is Dead, Long lives IP for Wireless Sensor Networks’ [63]. The authors
pointed out that a connection to the Internet of Things can only be successful
if the hardware of wireless sensor networks can co-exist with IP communication.
But at the same time, the authors requested resource saving solutions in order
to support the basic functionality of data collection, pre-processing and forward-
ing without restrictions. They developed a new stack for the constrained hard-
ware which could be interoperable with existing standards from the IP networks
(e.g. TCP/IP stack), and do not restrict the previously mentioned basic functional-
ities. The problem with standards supporting IP communication is their complexity,
which makes it impossible to transfer them to constrained hardware with limited
resources as described in Section 2.2. Researchers, therefore, decided to develop new
resource-adapted stacks as described in Section 3.1. [63]

After bringing IP communication to such constrained hardware, researchers fo-
cused on optimizing data transmission within such networks. Usually, transmitted
messages in wireless sensor networks include data itself and its meta information.
If IP communication is supported additional information is placed into the indi-
vidual payload, so that space in the maximum transmission unit is more limited
(cf. Section 5.1.1). But the goal of transmission is still the same: Put as much
data as possible in one message. With this aim in mind this dissertation accepts
the challenge to optimize the data transport in wireless sensor networks by using
protocol standards from IP networks. Additionally, the developed solution should
be integrated into the application layer in order to remain compatible with pos-
sible stack exchanges below (e.g. use BLIP instead of 6LoWPAN as described in
Section 3.1).
In IP networks the ‘Internet Protocol Flow Information Export’ protocol is used
to transmit data. The protocol itself o�ers a packet design for e�cient usage
of the maximum transmission unit by reducing redundant information, such as
meta information that is the same in each data packet from one sensor node.
Section 3.2 will introduce the IPFIX protocol and point out in detail what func-
tionality or characteristic is interesting for wireless sensor networks. The required
modifications (e.g. IPFIX message header compression) for the integration into
wireless sensor networks are described in Section 4.1. Next, the aggregation sup-
port within the network using TinyIPFIX as message structure is described in
Section 4.2. Information about the implementations are given in Sections 5.1 to
5.2, and a detailed evaluation in Chapter 6, assuming a building scenario as appli-
cation example.
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When the wireless sensor network is integrated into the Internet of Things and data
transport is optimized, the last challenging task is security support. In this disser-
tation the idea for solving this task is the usage of security standards known from
applied cryptography. Therefore, Section 3.3 gives an overview of security tasks
and techniques. The section starts with the definition of security attacks, security
services, and security mechanisms. Followed by a brief description of standardized
security solutions such as cryptographic functions, public key infrastructure, (D)TLS
protocol, and trusted hardware component by using a trusted platform module. In
Section 4.3 existing security solutions for wireless sensor networks are described and
it is motivated why this dissertation prefers to support the DTLS protocol. Infor-
mation about the implementation is given in Section 5.3, followed by an evaluation
in Section 6.3.

3.1 IP Communication Support

Today, Internet access is possible nearly everywhere, which calls for global com-
munication solutions between participating entities. Depending on the applica-
tions access to an established network, such as a wireless sensor network, should
also be possible via Internet access. This approach can be realized by bringing
IP communication to those devices. The TCP/IP stack o�ers this opportunity, but
it is too complex for the limited hardware resources of sensor devices. In 2002
the ZigBee stack was developed by the ZigBee-Alliance based on IEEE 802.15.4
and supports IP communication for resource limited hardware as described in refer-
ence [64]. Figure 3.1a shows the supported ZigBee stack developed by the ZigBee-
Alliance. The stack includes the physical and MAC layer from IEEE 802.15.4. The
physical layer supports three frequency ranges: 868 MHz, 933 MHz, and 2,4 GHz.
Energy e�ciency is gained by functionalities on the MAC layer. On top of those two
layers the ZigBee part was added, including an extra MAC layer, a network and secu-
rity layer, followed by an application framework and application profiles. The extra
MAC layer includes updates for the underlying IEEE 802.15.4 MAC layer in order
to extend basic functionalities. Applications are located on top of the ZigBee stack.
The ZigBee stack requires 8 kB RAM, produces 8-16 bytes of network overhead, and
only mesh functionality in networks of a maximum size of 65,000 components is sup-
ported as Mulligan analysed in reference [65]. Those constraints together with the
limited hardware and the request for direct IP addressing were reasons to implement
new stacks for IP communication on limited hardware. [59, 64, 65]

(a) ZigBee stack (b) 6LoWPAN nano stack (c) BLIP stack

Figure 3.1: Stack comparison
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Figure 3.2: Communication interoperability via Internet using 6LoWPAN

In 2005 the Internet Engineering Task Force (IETF) working group 6LoWPAN was
founded [66] dealing with research questions for supporting IPv6 in wireless sen-
sor networks. Harvan et al. developed the ‘IPv6 over Low power Wireless
Personal Area Networks’ (6LoWPAN) implementation in 2007 [67]. Based
on this implementation the IETF started the standardization process with the
RFC 4919 specifying the problem statement, assumptions, and goals for IPv6 power
Low-Power Wireless Personal Area Networks [68]. Detailed protocol specification
were published in the RFC 4944 [69]. The idea of the implementation was to bring
IPv6 features over UDP/TCP on sensor nodes regardless of the underlying physi-
cal layer. It allows communication via the Internet which results in interoperabil-
ity as illustrated in Figure 3.2. The red dashed lines show the 6LoWPAN func-
tionality, which covers the communication between two stand-alone networks via
IPv6. [67, 68, 69]
The 6LoWPAN nano stack, as shown in Figure 3.1b, consists of a Socket API and
applications, which are addressed via socket interfaces. The following components
build the Socket API: The physical layer (PHY) of the 6LoWPAN stack is based on
IEEE 802.15.4 and supports basic communication capabilities on radio. The next
layer is compliant to the MAC layer of IEEE 802.15.4. It supports a contention-
based channel access method of unslotted CSMA/CA for data transmissions. In
comparison to the ISO/OSI layer model an adaptation layer in 6LoWPAN - called
IPv6 6LoWPAN - replaces the network layer. This layer is the main component of
6LoWPAN, which supports compression of TCP/UDP and IP headers. The nor-
mal TCP/IP header dimensions are too large for transmission in IEEE 802.15.4
networks. A maximum transmission unit of 1280 bytes is required for IPv6, so
that the adaptation layer supports packet fragmentation and reassembling tech-
niques. Among other tasks the layer is responsible for routing, neighbor discovery,
and multicast support. UDP and TCP are transport protocols, which are sup-
ported by the next layer representing the transport layer in the ISO/OSI layer
model. [67, 68, 69]
As described in the RFC 4919, 6LoWPAN works with a small packet size which
operates with a maximum transmission unit of 127 bytes on the physical layer
102 bytes individual payload on the media access control (MAC) layer [68]. If
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6LoWPAN is used, only 2-11 bytes of overhead occur depending on used compres-
sion [65]. The protocol supports 16-bit and 64-bit address space, di�erent band-
width, and di�erent network topology. Concerning security issues 6LoWPAN o�ers
AES-128 encryption and authentication. Finally, the 6LoWPAN nano stack only
requires 4 kB RAM compared to ZigBee and supports network sizes up to 264

components [65]. On the lower layers the functionalities of IEEE 802.15.4 are
included followed by a special developed IPv6 6LoWPAN and UDP/ICMP layer.
Individual applications (e.g. security operations) are located on top of the nano
stack. [65, 68, 69]
Concerning security issues it was pointed out in RFC 4919 that applications us-
ing 6LoWPAN require confidentiality and integrity protection, which can both be
provided at di�erent layers (e.g. application, transport, network, link) [68]. It was
recommended to use link layer security, because most IEEE 802.15.4 devices sup-
port the Advanced Encryption Standard (AES) on the link-layer. AES is a block
cipher operating on blocks of fixed length and is adaptable to di�erent modes of
operation, as described in detail in Section 3.3.1.1. For network layer security the
RFC 4919 distinguishes between end-to-end security (e.g. IPsec) and security lim-
ited to the wireless portion of the network (e.g. secure gateway + IPsec tunnel)
(cf. Section 4.3.1.3). [68]

Due to the advantages of 6LoWPAN compared to the ZigBee approach the de-
velopment continued. Researchers at the University of Berkeley are responsible
for TinyOS, which became more and more popular as the operating system of
choice in academic research. In 2010 researchers decided to implement a 6LoW-
PAN version compatible with TinyOS requirements - called Berkeley Low-power
IP stack (BLIP) [70, 71]. This implementation supports di�erent node plat-
forms (e.g. IRIS and TelosB) with the RF transceiver CC2420 from Texas Instru-
ment. The RF transceiver CC2420 is an IEEE 802.15.4 compliant radio transceiver,
which supports a maximum packet length of 127 bytes including all headers [18].
The BLIP stack consists of the following parts (bottom to top) as illustrated in
Figure 3.1c [72]:

• IPLower Interfaces: In this part the link layer support is included with a
6LoWPAN layer on top. The 6LoWPAN component compresses headers and
breaks large packets into multiple link-layer fragments.

• IP Interfaces: Those interface represent network functionalities including sup-
port for IPv6neighbor discovery, forwarding, routing (default selection, point-
to-point) and dispatcher functionalities.

• Transport Interfaces support standard Internet transport protocols (e.g. UDP,
TCP).

• Applications include all user protocols and algorithms (e.g. the developed
TinyIPFIX in this dissertation).

IPv6 itself requests a maximum transmission unit of 1280 bytes as specified in
RFC 2460 [73]. But the today used IEEE 802.15.4 compliant RF transceiver CC2420
only supports a packet size of 127 bytes [18]. In order to support IPv6 communi-
cation, fragmentation must be supported. This fragmentation is realized by the
included 6LoWPAN layer in the IPLower interfaces of the BLIP stack [72]. In the
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installation packets of BLIP a tunnel driver is included to realize the node con-
nection to the gateway/computer, which performs the role of the router as shown
in Figure 3.2). As specified in RFC 4944 addressing, stateless auto configuration
and header compression features are implemented [69]. Concerning security issues
BLIP supports the same security as 6LoWPAN, because it is an implementation of
6LoWPAN for the operating system TinyOS [72].
From this point on it is assumed that a wireless sensor network supports IP com-
munication and might be connected to the Internet. This setup makes it possi-
ble to think about adaptation of IP network standards to wireless sensor networks
(cf. Section 3.2), but it also brings up the question of security, because the collected
data might be sensitive and restricted in access (cf. Section 3.3).

3.2 Internet Protocol Flow Information Export Protocol
If a network has a connection to the Internet or consists of more than two parties, it
is helpful to monitor the occurring tra�c within. This monitoring is essential if the
system contains sensitive data in order to support a secure system and to recognize
abnormal behavior as soon as possible. For monitoring purposes in IP networks
the IETF further developed the Netflow protocol from Cisco System, which resulted
in the IPFIX protocol standardized in RFC 5101 [19]. The IPFIX protocol was
developed in order to standardize the exchange of network monitoring information.
This means, the protocol deals with the transmission of IP flow information between
di�erent instances in the network as described in the RFC 5101.
The protocol is located on the application layer and works among others over UDP,
TCP, and the ‘Stream Control Transmission Protocol’ (SCTP). IPFIX itself is a
push-protocol which periodically sends out collected data by itself. This behavior
makes IPFIX an attractive choice for wireless sensor networks, because they often
rely on collection tra�c. The underlying tra�c pattern means that information
flows from many source nodes to only a few information sinks, such as the gateway
nodes in wireless sensor networks. Another welcome characteristic of the proto-
col is the template-based design. An Exporter periodically transmits its data to
one or more Collectors by using IPFIX messages. The first message an Exporter
transmits to its neighbors when entering the network is a so called Template Record
(cf. left part of Figure 3.3 [20]). The Template Record consists of meta infor-
mation about the upcoming Data Records (cf. right part of Figure 3.3 [20]). The
receiving neighbors for decoding purposes regarding received Data Records from this
special Exporter store those Template Records. After the Template Record is an-
nounced the Exporter can start with transmission of the Data Records, which refer
to the corresponding Template Record. Due to the highly dynamic nature of net-
work structures, Template Records are repeated periodically to ensure a successful
decoding. [20, 19]
As a result of the separation, packets are smaller, because the Data Records only
transmit values and not the data together with its meta information. The coher-
ence between Template Record and Data Record is illustrated in Figure 3.3 [20].
The di�erent Records and the corresponding headers build a so called Set, which is
transmitted in total. If it is requested by the monitoring task, the IPFIX protocol
also o�ers the opportunity to combine di�erent Data Records referring to the same
Template Record in one Set. [20]
The IPFIX protocol itself is very flexible [20]. It allows data sending of every type
if needed. The only requirement is to specify the data by an individual data triple
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Figure 3.3: Components of the IPFIX protocol showing decoding of the data

in the Template Field which consists of the following three fields: Type ID, Data
Length ID, and Enterprise ID. In the case of exchanging non-standardized data,
the vendor must use Type IDs located above ID 32767. Type IDs below are reserved
for tra�c measurement data types. A Type ID specifies the type of data while the
Enterprise ID denotes the organization which issued the Type ID. In case of new
types the vendor needs to register the new chosen Enterprise ID with the Internet
Assigned Numbers Authority (IANA) [74]. Via this serial number each vendor can
be identified uniquely. A vendor can be a special hardware value such as a sensor.
The Data Length ID includes the field size of the value, for example, two bytes. [20]
Due to the previously mentioned characteristics, the IPFIX protocol is of interest
for constrained networks, especially the used data format. Thus, a modified version
of the IPFIX protocol, only including the flexibility and the template-based data
format, was implemented in this dissertation. The resulting protocol was called
TinyIPFIX where sensor nodes act as Exporters and transmit their measurement
data using IPFIX. Before implementing IPFIX on very constrained hardware de-
velopers must familiarize themselves with the standard implementation known from
common IP networks (e.g. message structure), especially with the required IPFIX
headers. An IPFIX message itself consists of an IPFIX Message Header and an
IPFIX Set Header followed by one or more Templates or Data Records. [20]
Figure 3.4 shows the structure and sizes of the IPFIX headers, which cause an over-
head of 20 bytes in total, whereas IPFIX Message Header spends 16 bytes and Set
Header four bytes [20]. The first field Version Number with two bytes specifies the
version of the utilized IPFIX protocol followed by a two bytes long Length field
given the total length of the IPFIX message including all headers and payload. The
four bytes long Export Time field is a time stamp to verify when the packet was con-
structed for transmission. The following Sequence Number and the Observation
Domain ID (each four bytes long) are two more IDs in the IPFIX Message Header
which are essential for putting the packets into the correct order at monitoring or
analysis point. This information is needed if the packets are received in a mixed
order caused by di�erent chosen routes as the packets find their way to the sink.
The Set Header consists of a Template ID and Length field each two bytes long.
The first field specifies an ID, which is essential for decoding tasks between Template
and Data Records. The second field specifies the total length of the following fields
which build the Template or Data Record as shown in Figure 3.3. [20]
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The additional 20 bytes overhead caused by the IPFIX message header and the Set
header reduces the available payload for sensor data in a message
(cf. Section 5.1.1). In the experiments performed for this dissertation the RF
transceiver CC2420 is used and the maximum transmission unit on the MAC layer,
therefore, is limited to 102 bytes [18] where 12 bytes are required for the TinyOS
packet structure and 43 bytes for IP support by 6LoWPAN in compressed format
with long addresses, as specified in RFC 4944 [69] support. The required payload
space for IP communication can be reduced to six bytes, when using BLIP im-
plementation in compressed format with short address support [75]. If the IPFIX
message header is used, the resulting payload size of 84 bytes is reduced to 64 bytes
(cf. Figure 5.4). A detailed description of the final packet structure is provided in
Section 5.1, where the implementation of the TinyIPFIX protocol and its extensions
is described. The global goal in wireless sensor networks is it to transmit as much
data as possible in one individual payload. Therefore, the overhead caused by new
headers must be reduced. The design decisions for an implementation of IPFIX
for wireless sensor networks are described in Section 4.1.2, followed by a detailed
description of the used message format under the operating system TinyOS 2.x in
Section 5.1.

3.3 Security Issues
Today the term security summarizes concepts that are used to secure a system or
communication between devices. In order to achieve an equal understanding of this
concept, e�orts to organize this research field have been undertaken. This section
gives an overview of concepts, which are required in order to secure a network. Used
terms follow the security terminology published in the RFC 2828 [76]. In general,
the two communication partners are called Alice and Bob, and the attacker is called
Eve. Those terms will be used throughout this section in order to describe attacks
and defense strategies.
Before a successful defense strategy can be developed for a system a user must think
of the following three concepts [77, 78]:

1. Security attack,

2. Security service, and

3. Security mechanisms.

Under the term security attack all strategies are summarized where an attacker
tries to compromise security of a system in order to gain access to stored information
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or to processed functionalities by the system (e.g. transmission, processing) [77, 78].
In literature it is assumed that capabilities of an attacker are based on the Dolev-Yao
model [79]. This model assumes that an attacker can receive messages from other
members of a network. The attacker can overhear and intercept all messages sent in
the network. The attacker is a valid member of the network and can send messages
to all other members of the network. In addition, the attacker can send messages
to other network members while using a false identity. In general, attacks can be
distinguished between active and passive attacks, which are briefly characterized in
the following. [77, 78, 79]
In active attacks the attacks performed by Eve aim on the system’s performance
in order to a�ect the operations of the system. Such active attacks are mas-
querade, replay and denial of service attacks, and message modifications. Dur-
ing a masquerade attack where Eve masquerades herself as a person Alice knows
(e.g. Bob). Eve uses her fake identity to collect information about Alice and her
used message encryption in order to gain knowledge about Alice’s secured communi-
cation. In comparison to replay attacks, Eve plays an active role in the communica-
tion to collect information. Before Eve can perform replay attacks she has a passive
role where she passively captures data of the communication between Alice and Bob.
Passively captured data is retransmitted by Eve in order to gain access to the system
or files of one of the communication participants. Normally, replayed messages are
not modified in comparison to attacks performing message modifications. In case of
message modifications, Eve captures a message send from Alice to Bob (e.g. ‘Meeting
starts at 9 a.m. in the computer science lecture room.’), modifies the message content
(e.g. ‘Meeting starts at 9 a.m. in the seminar room in the physics department.’),
and sends this modified message to Bob. As a consequence Bob will wait in the
wrong room for Alice. The previously mentioned three active attack types focus on
influencing message flow between Alice and Bob with more or less input. The forth
active attack - the denial of service attack - has a deeper impact on the commu-
nication. This attack focuses on disturbing the service provided by the system or
communication via the network. Di�erent ways exist to perform this attack, but
in general the system or network is overloaded with tra�c/messages in order to oc-
cupy resources. This attack can cause a crash and finally a shut down of the whole
communication system. [77, 78]
Passive attacks, in comparison to active attacks, are harder to detect, because the
attacker does not modify any data. Representatives of passive attacks are the re-
lease of message content or tra�c analysis. In the first case, Eve passively eaves-
drops on the communication between Alice and Bob. The aim of Eve is to learn
the message content passed between the two communication parties. Here Eve
also reads the content of the messages. In comparison, if Eve performs a traf-
fic analysis as a passive attack, she does not read the content but analyses the
pattern of the message exchange between Alice and Bob. Hereby, Eve can col-
lect information about the identity of the persons, message frequency, and mes-
sage length, among other information. Eve uses the collected information to infer
the communication nature of Alice and Bob, e.g. by modifying the location or
identity of the communication hosts. This kind of attack can be performed by
Eve with less overhead if the communication between Alice and Bob is not secured
(e.g. message encryption). [77, 78]

Security services are integrated into a system in order to support security of
data or information processing by performing one or more security mechanisms.
Security services can be grouped into five categories that represent security goals
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that should be addressed when designing a security solution for a system or network:
(1) data confidentiality, (2) data integrity, (3) authentication, (4) access control, and
(5) availability. [77, 78]
The first group deals with data confidentiality. The aim is to protect data from
being read by an attacker. This group also includes protection mechanisms against
tra�c analysis with the goal to disturb the attacker’s possibility to observe the com-
munication’s source or destination and the communication’s characteristics. The
second group deals with data integrity in order to ensure that the message send
out is received by the destination unmodified. Hereby, research distinguishes be-
tween connection-oriented and connection-less services. In the connection-oriented
service data integrity support includes the guarantee that message are not modi-
fied, not replayed, not duplicated, and not omitted. In contrast, the connection-less
services only give a guarantee that the message is unmodified. Services supporting
data integrity can also include recovery mechanisms that can detect a violation and
automatically restore the prior state. The third group of services deals with authen-
tication and guarantees that the communicating entity (e.g. Alice, Bob) is the one,
who it claims to be. Authentication can be guaranteed either for each message or
for the whole message exchange. In the latter, it is assumed that the participat-
ing entities authenticate each other before the message exchange starts and that it
is impossible for an attacker (e.g. Eve) to successfully masquerade as one of the
communication partners. The fourth group of services works in tight cooperation
with authentication and focuses on access control. The services limit the access to
host systems or applications. The entities can only get access if they are authenti-
cated and have the required rights. [77, 78] The last group of security services deals
with availability that o�er defense support against denial of service attacks with
disrupting the communication ability of a system or network. [77, 78]

Security mechanisms are processes that are designed to prevent attacks or to
detect attacks if they happened and to recover the system from attacks [77, 78].
As specified by the ITU in the recommendation X.8002 security mechanisms are
incorporated into di�erent protocol layers. The security mechanism Access Control
supports mechanisms to enforce access rights to resources. Data integrity is pro-
vided by a variety of mechanisms that are applied either on a data unit or a message
flow. In order to ensure the identity of an entity throughout information exchange,
the authentication exchange is the mechanism of choice. The encryption mechanism
uses an algorithm to transform plaintext into an unintelligible ciphertext and the
other way round. In order to perform encryption, special algorithms and encryption
keys are required. Digital signatures refer to data attached to a message. The dig-
ital signature can be used by the receiver to prove the source and integrity of the
message. If attacks on routing occur (e.g. link congestion), the security mechanism
Routing Control can be used for defense purposes. This mechanism selects other
routes in order to avoid undesirable nodes. [77, 78]
Further security mechanisms and strategies that inspired the design decision for
the implemented security solution in this dissertation are introduced in the follow-
ing Sections 3.3.1 to 3.3.3. The upcoming security mechanisms and strategies are
standardized solutions that are used for networks independent of the constraints of
wireless sensor networks.

2Security Architecture for Open Systems Interconnection For CCIT Applications - Recommendation
X.800: http://www.itu.int/rec/T-REC-X.800/

http://www.itu.int/rec/T-REC-X.800/
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3.3.1 Security Protocols

As mentioned in the beginning of Section 3.3, di�erent security mechanisms exist.
This section focuses on security protocols, based on cryptographic functions and
public key infrastructure. Presented background information refers to the book
‘Network Security: Private Communication in a Public World’ written by Charlie
Kaufman et al. [78], as well as the book ‘Protocols for Authentication and Key
Establishment (Information Security and Cryptography)’ written by Colin Boyd
and Anish Mathuria [77]. A detailed security analysis of existing cryptographically
algorithms and their transfer possibilities to constrained hardware platforms were
done within the scope of the bachelor thesis by Christian Liedl [80] and the master
thesis by Thomas Kothmayr [81].

3.3.1.1 Cryptographic Functions

In order to secure a system, cryptographic functions are the basic component. This
section introduces the symmetric and public key cryptography, as well as message
hash functions. Those security mechanisms only provide computational security,
because the performance of these security mechanisms are expensive concerning time
and computational capacities. In order to verify the strength of a cryptographic
function, security is measured in bits. Assuming a 128-bit key length, it can be
said that the message has 128 bits of security if no attack is known that is better
than exhaustive search of the key space. In this case, an attacker has to perform
2127 decryption operations in order to find the required key. Due to today’s high
performing computers an attacker can solve the problem even faster. In 2007 the
National Institute of Standards and Technology (NIST) published a security analysis
report pointing out that 80 bits of security be phased out as of 2010 and that
112 bits of security will have a lifetime until 2030. If the previously mentioned
example of 128 bits of security is performed, NIST recommended that it will be
secure beyond the year 2030 [82]. [78, 77, 80, 81, 82]

The first security mechanism introduced in this section is the symmetric cryp-
tography. In this mechanism the same key is used for decryption and encryption
of a message. For example, Alice wants to send a message to Bob using symmetric
cryptography. Alice performs an encryption algorithm where her plaintext is en-
crypted with the symmetric key. As a result of this operation she receives a cipher
text, which is transmitted to Bob. Bob knows the symmetric key Alice used and
performs a decryption algorithm in order to decrypt Alice’s message and receives the
plaintext. [78, 80, 81]
When using symmetric cryptography it is required that the used algorithm is
strong [78]. Which means an attacker should not be able to decrypt the cipher
text or to recalculate the key if the attacker gains access to a number of plaintext
and resulting cipher text combinations. It is also required that the key exchange be-
tween Alice and Bob was performed through a secure channel. If the attacker gains
access to the key, the upcoming communication between Alice and Bob becomes un-
secure. Thus, keeping the key secret is the most important requirement for a secure
communication. The research community assumed that the key exchange is secure
and therefore focused on the development of strong algorithms. The algorithms can
be divided into two classes. The first class uses stream ciphers, whereas the second
class uses block ciphers. [78, 80, 81]
As the name of the first class discloses, stream ciphers operate on data streams [78].
The result is that the cipher text is as long as the initial plaintext. The operation
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consists of two parts: First, a long (pseudo-)random string is generated based on
the used key. Second, the resulting string is combined with plaintext by a exclu-
sive disjunction (XOR) operation. For an attacker it is impossible to determine the
plaintext, because of using a one-time pattern for the (pseudo-)random string the
resulting cipher text does not include enough information to recalculate the plain-
text even if the attacker gains access to several cipher texts. A drawback of stream
ciphers is the fact that if a block is lost, it is an unrecoverable error. If an unreliable
transport protocol is used in the network, e.g. in wireless sensor networks, the usage
of block cipher in the encryption algorithm is not applicable. [78, 80, 81]
In comparison to stream ciphers the block ciphers divide the plaintext into fixed
sized blocks and apply permutations and substitutions on these blocks. As a result
the cipher text size is always a multiple of the block size. The mentioned drawbacks
of stream cipher concerning unrecoverable errors caused by block lost can also occur
depending on the chosen mode of operations. [78, 80, 81]
Today, one of the most popular block ciphers is the ‘Advances Encryption Standard’
(AES) cipher [78, 77]. It replaced the ‘Data Encryption Standard’ (DES) cipher,
because DES has a poor performance and o�ers only a 56 bit security, which is not
secure anymore as pointed out by NIST [82]. AES o�ers three di�erent key lengths:
128 bits, 192 bits, and 256 bits. The choice of the used key length depends on the
available resources of the hardware and of the security request by the user. In the
case of sensor networks limiting factors are the available resources, as briefly de-
scribed in Section 2.2. In 2007 Großschädl et al. showed that AES performed well
on sensor network hardware [83]. AES supports a block length of 16 bytes. In the
case of bigger block length di�erent handlings for encryption are possible. The ‘Elec-
tronic Code Book’ (ECB) block cipher mode uses the resulting block of cipher text
produced by the encryption algorithm without any further modifications. When en-
crypting the same block of data independent of its location in the stream, the result
will be the same cipher text. If this cipher mode is used, an attacker may be able
to collect information and later on be successful. Instead, a solution is preferable
where the resulting cipher text looks random. The ‘Cipher-Block-Chaining’ (CBC)
mode makes this possible. The CBC mode uses the preceding cipher block in or-
der to alter the result for the current cipher block. Connecting the plaintext block
with the preceding cipher text block with the XOR function does this. Assuming
that the output of each cipher text block is random, the performed CBC mode is
comparable to the usage of a random number in order to alter each input block and
prevent them from repeating themselves. When the process begins only one cipher
text block is available, so that the XORing with the preceding block is impossi-
ble. In this case an initialization vector, a random number, is used instead. For a
successful decryption the user needs to know this initialization vector and the key.
When CBC is performed, an attacker can disturb the decryption if the cipher text
blocks are changed or rearranged. A defense strategy to mitigate the influence of this
attack is the usage of message integrity mechanisms. This means a second crypto-
graphic round is processed over the source data as described in the book written by
Kaufman et al. [78]. Protocols such as the ‘Transport Layer Security’ (TLS) pro-
tocol still use the CBC mode. For integrity checks TLS uses also ‘Hashed Message
Authenticity Codes’ (HMACs). [83, 78, 82, 80, 81]

The second security mechanism deals with the problem, how to exchange a key over
an insecure network. The solution for this task is the public key cryptography,
which assumes a pair of related quantities (public and private) associated with each
party [78]. In comparison to the public quantity the private one is never published
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and stays secret. Di�erent public key algorithms that vary in their supported func-
tionalities and characterized in reference [77] exist.
The most noted algorithm is the RSA algorithm named after its inventors Rivest,
Shamir and Adleman [77]. Before using RSA the spadework must be done by gener-
ating a public and private key. In order to generate the key pair the following steps
must be performed whereas the steps (1)-(3) are used to calculate the public key
Èe, nÍ and the step (4) for the private key Èd, nÍ [77, 81]:

1. Choose to large numbers p and q.

2. Calculate n = p ú q.

3. Choose a number e that is relatively prime to the Euler function
„(n) = (p ≠ 1) ú (q ≠ 1).

4. Choose a number d out of the range {0, .., n ≠ 1}, whereas (e ú d) mod „(n) = 1.

If a message m < n is encrypted with a public key, the cipher text c is calculated
by the formula c = me mod n. The private key is required for performing the de-
cryption with the formula m = cd mod n. A similar calculation way is performed if
a signature is used. The owner of the private key computes the signature s with the
formula s = md mod n. The formula m = se mod n is used if the signature must be
verified, but it requests the knowledge of the corresponding public key. [77, 81]
Kleinjung et al. analysed the security o�ered by the RSA algorithm [84]. They
concluded that it is not secure anymore to use a 768-bit modulus for RSA and that
a 1024-bit modulus will become insecure in the next decades. As recommended by
the NIST report, using 2048-bit RSA keys will be secure until 2030 [82]. Assuming a
network consisting of resource constrained hardware, such as used in wireless sensor
networks, using 1024-bit or 2048-bit RSA keys requires a lot of memory, calculation
capacity, and energy for performing the RSA algorithm. For completeness’ sake it
must be mentioned that researchers from the mathematic field believe that elliptic
curves cryptography can be an alternative to RSA. In this dissertation the focus is
on RSA, because in the planned application scenario a hardware platform using a
trusted platform module is integrated which currently only supports RSA. Thus, it
is referred to literature (e.g. reference [77]) for further information about elliptic
curve cryptography. [84]
In order to rule the application of asymmetric cryptography, Public-Key Cryptog-
raphy Standards (PKCS) were developed. The most important PKCS rules the
procedure how something is encrypted with RSA, because RSA can be misused,
because an attacker is able to guess the content of the RSA encrypted message.
An example is given in the book written by Kaufman et al. [78]. The PKCS#1
issues the encryption with correct message formatting which prevents the afore-
mentioned problem with the misuse of RSA. In version 1.5 of PKCS#1 a padding
field is inserted that consists of a minimum of eight random nonzero bytes. A de-
tailed description can be found in RFC 2313 [85]. The padding was replaced in
version 2 of PKCS#1 by the optimal asymmetric encryption padding (OAEP), be-
cause an attack was discovered on protocols such as SSL and TLS relying on RSA
PKCS#1 padding. In this attack an eavesdropper was able to recover a key that was
encrypted with RSA from a SSL server in around one million messages. The OAEP
adds an element of randomness to the message, which makes the deterministic RSA
encoding more probabilistic. In addition, OAEP prevents partial decryption of the
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cipher text or other information leakage. A detailed description can be found in
reference [86] and a security analysis under RSA in reference [87]. [78, 85, 86, 87]
The third security mechanism introduced in this section is the usage of hash func-
tions [78]. The task of a hash function is to transform a message m of arbitrary
length into a hash h(m) with a fixed length. The hash should have the following
characteristics [88]: Independent of m, it is computationally easy to calculate h(m).
For a given h(m1) it is computationally infeasible to find another m2 ”= m1, where
h(m1) = h(m2). This assumption is known under the term hash collision. In ad-
dition, a hash function h is called a strong hash function if it is computationally
infeasible to find a hash collision for any two m1 ”= m2. With this characteristic
a single bit change in the input should flip approximately half of the bits in the
output. Therefore, it is not possible to predict the influence of input changes on the
output and an attacker has to observe a large number of messages in order to get an
idea of the used h(m). Assuming a hash function with a 128 bit output (e.g. MD5)
the attacker requires 264 di�erent messages to find two messages with the same hash
value with 50% probability. With today’s computers calculation can be performed
easily, so that a MD5 is no longer secure. An alternative is the SHA-1 algorithm
standardized by NIST, which produces a 160 bit hash value [82]. At the moment
SHA-1 is assumed to be secure by o�ering 80 bits of security. [82, 78, 80, 81]
In order to perform a hash function on input data several rounds of the algorithm
are applied. In each round several operations such as bit shifting, binary operations
or addition with a constant value are performed. It is not defined how many rounds
are performed. The goal is to produce a function that fulfills the aforementioned
characteristics of a strong hash and at the same time can be executed quickly with
the used software and on the used hardware. [78, 80, 81]
In this dissertation hash functions are an interesting possibility to o�er message
authenticity and digital signatures. In comparison to the asymmetric cryptography
where a complete message is signed with the RSA private key, only the constant
length hash value of the message is signed. The result is a faster performance even
for longer messages and is also applicable for short messages. Additionally, hash
functions ensure message integrity. This can be guaranteed if the underlying hash
function is secure. It can than be proven that a ‘Hashed Message Authenticity Code’
(HMAC) has the following two properties [88]: First, it is impossible to find two in-
puts that have the same output. Second, an attacker cannot compute the proper
hash function without knowing the used key.

3.3.1.2 Public Key Infrastructure

As mentioned in the beginning of Section 3.3 the Internet Security Glossary gives
di�erent definitions for security terms. For the term Public Key Infrastructure (PKI)
the following definition is presented:

‘A system of Certificate Authorities (and, optionally, [. . . ] other supporting
servers and agents) that perform some set of certificate management, archive
management, key management, and token management functions for a com-
munity of users in an application of asymmetric cryptography.’ [76]

In addition, it defines where trust is derived from during exchange of public keys.
The IETF working group Public-Key Infrastructure X.5093 focused on this topic.

3IETF working group Public-Key Infrastructure X.509: http://datatracker.ietf.org/wg/pkix/

http://datatracker.ietf.org/wg/pkix/
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They defined a complex model for deploying a certificate-based architecture to the
Internet dealing with the design of X.509 certificates. The X.509 certificate consists
of the following components: A public key of the entities and the identification along
with technical information (e.g. certification validation period).
The identity of an entity is established via a common name of the entity
(e.g. server’s web address, individual name). A certificate authority (CA) signs
this certificate with its private key. Two questions arise in this context: First, who
can function as a certificate authority? Second, how can the user ensure that the
received certificate is not signed by a malicious entity? Kaufman et al. described
several solutions for these questions focusing on establishing and extending trust
in their book [78]. In the Internet several commercial certificate authorities exist
(e.g. Microsoft, Telekom) that are trusted by web browsers. Users are able to add
their own trusted authorities to the list (e.g. company, university). Those trustwor-
thy certificate authorities can issue certificates for intermediate certificate authorities
that issue a certificate to an end entity (e.g. sta� member of company). If an entity
receives a certificate, which was signed by an intermediate certificate authority, it
does not know that the entity can check its trustworthiness by using its certificate.
The entity tries to trace back the certificate to its original certificate authority and
can than decide if it is trustworthy or not. This technique is known under the term
chain of trust. [78]
The performed functionality of the security mechanism PKI also includes publishing
of certificates in repositories, revoking certificates, and registering of entities in or-
der to sign certificates. For further information about this functions it is referred to
RFC 5280 dealing with Internet X.509 public key infrastructure certificate and cer-
tificate revocation list (CRL) profile [89] and to the IETF working group Public-Key
Infrastructure X.509.

3.3.2 (D)TLS Protocol

Due to the rise of IP communication, as described in Section 3.1, the request for
secure data transmission occurred. Protocols using TCP on the transport layer pre-
ferred the ‘Transport Layer Security’ (TLS) protocol. It is described in detail in
the book ‘SSL and TLS Essentials. Securing the Web’ written by Thomas Stephen
[90]. Because of the inclusion of UDP on the transport layer the TLS protocol
showed a drawback. Which means, if a packet loss occurred, the following packets
could not be authenticated anymore. In order to solve this problem, the ‘Data-
gram Transport Layer Security’ (DTLS) protocol was developed and standardized in
RFC 4347 [91]. Developers of the DTLS protocol modified the existing TLS protocol
in the areas essential in order to support unreliable transport. [23]
For further understanding a brief introduction to the TLS protocol is given, followed
by the design decisions and functionality of the DTLS protocol. In 2004 Nagendra
Modadugu and Eric Rescorla published a paper concerning the modification request
of the TLS protocol in order to support secure data transmission via the unreliable
transport protocol UDP [23]. This reference will be the information base for the
characterization of the (D)TLS protocol.
The TLS protocol was developed for reliable transport (e.g. TCP) [22]. The pro-
tocol provides a secured communication channel for application protocols in order
to support server authentication, confidentiality, and message integrity of the com-
munication channel. As an option TLS also o�ers the authentication of clients if
requested. For authentication purposes TLS uses public key based digital signatures
supported by certificates. The server’s certificate contains the server’s domain. The
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server has two possibilities to authenticate itself: Either authentication by perform-
ing a decryption of a secret encrypted by the server’s public key or authentication
by signing a short-dated public key. [22, 23]
In comparison to the server authentication the client authenticates itself by signing
a random challenge. The certificates of clients contain random identities. In order
to establish a secure communication channel, a handshake protocol is performed
between the two communication entities. For the TLS handshake a reliable trans-
port protocol is assumed and it is requested to follow the message order. The TLS
handshake consists of the following message exchanges [23]:

1. The client sends a ClientHello message to the server in order to initiate the
TLS handshake. This message includes several information, such as supported
TLS version, supported algorithms and compression techniques, and a random
nonce.

2. The server answers with three messages in a row:

• The ServerHello message is send to the client in order to announce the
server’s choice of TLS version, algorithm selection, and a random nonce.

• The Certificate message contains the server’s certificate chain.
• The ServerHelloDone message is send to the client in order to announce

the completion of message transfer.

3. The client chooses a random PreMasterSecret. This secret is used as the basis
for each side’s keying material. The client sends the following messages to the
server in a row:

• The ClientKeyExchange message includes the encryption result of the
PreMasterSecret under the server’s RSA public key.

• The ChangeCipherSpec message is send in order to announce the changing
to the newly negotiated protection suite.

• The Finish message contains the Message Authentication Code (MAC)
of the previous handshake message. This message is encrypted with the
new protection suite (e.g.: AES + SHA-1).

4. The server finishes the TLS handshake by sending two messages in a row:

• The ChangeCipherSuite message is send to the client in order to confirm
the change to the protection suite.

• The Finish message concludes the TLS handshake by the server.

Today di�erent applications (e.g. Voice over Internet Protocol (VoIP)) prefer un-
reliable transport over UDP for performance reasons. Yet, the introduced TLS
protocol requires a reliable transport protocol such as TCP. In order to o�er the
TLS security functionality for unreliable transport protocols, a solution (especially
for handling packet loss during the handshake) was essential. The solution was the
Datagram TLS protocol, which o�ers the same security features as TLS only for
unreliable packet transport. The DTLS solution is, therefore, also applicable for
wireless sensor networks, which prefer UDP on the transport layer. [23]
In comparison to TLS minor, but important, modifications are essential for the
DTLS protocol in order to transfer the functionality of TLS to unreliable connec-
tions such as UDP [23]. The TLS protocol works over TCP and requests reliable,
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in-order packet delivery, and replay protection. Those features are not supported
if a datagram transport is used. Therefore, this section deals with the requested
modifications in order to o�er the equivalent security features of TLS for DTLS. [23]
Developers of DTLS assume that DTLS records fit within a single datagram in order
to avoid fragmentation handling [23]. The advantage of this request is that the DTLS
layer does not need to bu�er partial records, so that memory is
saved and space for other operations (e.g. performing of security mechanisms) is
o�ered. [23]
If fragmentation is supported, problems occur if fragmentation parts are lost. In
addition, the question occurred how long the fragments must be bu�ered before
discarding them. The last two mentioned challenges do not occur if only a signal
datagram is used. DTLS records can extend the maximum transmission unit. It
is no problem, because IP fragmentation is performed and the IP re-assembly is
transparently handled by the kernel as pointed out by reference [23]. As a result of
the previously mentioned assumption and the resulting advantages the DTLS record
format is expanded with a epoch and sequence number field compared to the TLS
record format. The epoch numbers protect record payload by verifying the used
cipher state. These numbers also prevent ambiguities in case of renegotiation of the
session (see example in reference [23]). The epoch field is sized to 16 bits. The
sequence numbers protect against replay attacks, but in comparison to TLS they
must be mentioned in DTLS. These numbers are incremented by one for each record.
In case of renegotiation of the session, the cipher state can change and the sequence
number is reset to zero. The sequence number field is sized to 48 bits. The func-
tionality of replay attack protection is performed using replay window mechanisms.
Packets with sequence numbers not matching this window are discarded. The DTLS
protocol requires other cipher suites than TLS 1.0, basically because of the unreli-
able connection support and the possible not in-order receiving of records. In TLS
version 1.1 the cipher suite AES-128 in CBC mode with SHA-1 and HMACs is pro-
posed as briefly characterized in Section 3.3.1.1. This cipher suite can be used for
DTLS and requires an explicit initialization vector for the first encryption operation.
For authentication purposes during the handshake RSA can be used as performed
in the example for this dissertation. [23]
The performed DTLS handshake is nearly the same as introduced in the previ-
ously mentioned characterization of TLS [23]. Two modifications are required for
the DTLS handshake in order to prevent denial of service attacks, because of the
unreliable transport protocol is used. Those attacks can be prevented by perform-
ing a cookie exchange technique before a proper handshake is performed. Here the
server provides a cookie that must be replayed by the client. Therewith, the client
proves that he is able to receive packets at its announced IP address to the server.
The aforementioned TLS handshake is extended by the following messages that are
performed before the proper TLS handshake [23]:

1. The client sends a ClientHello message to the server including a cookie. The
cookie can be an empty cookie or potentially one from a prior exchange.

2. The server has two possibilities to react:

• If the server is unable to verify the received cookie, the server sends a
HelloVerifyRequest message to the client in order to check its liveness
of the DTLS client. This HelloVerifyRequest message includes a cookie
(e.g. keyed hash of the clients IP address).
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• If the server can handle handshake latency (e.g. accepting session IDs of
the client) than the server skips the HelloVerifyRequest message and
sends the ServerHello message directly. Then the TLS handshake starts
directly.

3. If the client received an HelloVerifyRequest message by the server it responds
with a ClientHello message analog to the client’s starting point in the TLS
handshake.

During the handshake the client and the server agree on the key exchange algorithm
based on the used cipher suite. The cipher suite itself is a set of encryption and
hashing algorithms. If X.509 certificates are used in order to establish an identity,
it is required to use negotiated signature algorithms (e.g. RSA) for signing pur-
poses. DTLS prefers to use RSA. An alternative could bethe usage of pre-shared-
keys. The resulting key material protects the upcoming message exchange with
symmetric cryptography. The key material consists of keys for block cipher, an ini-
tialization vector for CBC mode, and a key for the hashed message authentication
code (HMAC). Each communication direction has its own key material whereas it
is derived from a combination of two keyed HMACs based on the MD5 and SHA-1
hash functions. In order to produce enough key material each HMAC function is
applied recursively and its output is concatenated. The finally used master secret is
constructed by XORing the outputs from the HMAC chains. [23]
As mentioned in the message exchange prior to the TLS handshake a session ID
can be used by the client in order to resume a DTLS session. This possibility al-
lows reducing the communication overhead if an old session is resumed. A detailed
description of the reuse of session IDs is presented references [23, 81]. The DTLS
handshake requires a reliability mechanisms for a successful performance due to the
underlying unreliable transport protocol. Therefore, DTLS includes a simple mech-
anism. The sender transmits its current set of messages (e.g. message set (2) of
TLS handshake consists of three messages); then waits until an answer is received
in the handshake from the destination. The destination will only answer the sender
if it has received all previous handshake messages correctly. If an interrupt occurs,
the handshake has to be performed again. [23, 81]

3.3.3 Trusted Hardware Component

Today’s notebooks o�er the opportunity to use an integrated Trusted Platform
Module (TPM) in order to secure a system and its data. A detailed description
of the Trusted Computing strategy can be found in the book ‘A Practical Guide
to Trusted Computing’ written by David Challener et al. [92]. The TPM chip is
located on the hardware’s main board of (e.g. notebook). It supports RSA key
generation, built-in RSA encryption and decryption, and secure key storage. The
aim of the development of such a chip in cooperation with the software on the system
was to increase the reliability and trustworthiness of a system. [92, 81]

As published by the Trusted Computing Group4 a Trusted Platform Module consists
of the following four main components: The cryptographic processor, a microcon-
troller, is responsible for the RSA operation performance, the SHA-1 hashing, and
the random number generation on the chip. Available memory is separated into a
persistent storage and a versatile memory. In the persistent storage the firmware

4Trusted Computing Group: http://www.trustedcomputinggroup.org/

http://www.trustedcomputinggroup.org/
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of the trusted computing module, the endorsement key, and the storage root key
are securely stored, because they cannot be passed on outside the TPM. On the
outside only derivates of the persistent stored keys are used. In comparison to the
persistent storage the versatile memory includes the storage itself, the attestation
identity keys, and the platform configuration registers. The last main component
of a trusted platform module is the component responsible for the secure input and
output from the trusted platform module. [92, 81]
The main work is done by the TPM microcontroller. Together with the RSA func-
tionality di�erent keys can be stored. Each key depends on the machine configura-
tion. This machine configuration is build up on the hardware and the software of the
machine during booting, which build a chain of trust. The result is the Storage Root
Key from which di�erent storage keys can be derived. The storage root key is stored
in the secure key storage together with information about the system’s integrity. In
order to encrypt data of the system, the derived storage keys are used which are
stored on the notebook’s hardware. If arbitrary data is encrypted with such a stor-
age key, they are sealed to the unique status of the system. Access requests are only
successful if the TPM check is positive otherwise they fail. [92, 81]

Especially, the previously mentioned opportunity to store the root storage key in
persistent storage, requires an attacker to spend considerably more e�ort and time
to extract the stored keys compared to a flash storage. Thus, it is considered that
the trusted platform module is tamper resistant. This behavior makes the trusted
platform module interesting for wireless sensor network research, because it is as-
sumed that an attacker wants to gain physical access to the deployed sensor nodes.
If a trusted platform module is included in the sensor hardware and is used for pro-
viding security, it can be used to uniquely identify hardware in the deployed sensor
network. The highest type of security can be gained with the integration of such
trusted platform modules in encryption procedures at the moment. At the moment
the only available sensor node platform including a TPM chip is the OPAL node
produced by CSIRO [33] and is integrated in the deployed wireless sensor network
in this dissertation.

3.4 Summary and Findings

As described at the beginning of Chapter 3, IP communication is a requirement for
the successful integration of wireless sensor networks into the Internet of
Things [1]. Therefore, di�erent approaches exist to bring IP communication on
constrained hardware such as sensor nodes. Section 3.1 gave an overview of three
commonly used approaches - ZigBee, 6LoWPAN, and BLIP. All approaches have in
common that they use less resources to scale well on di�erent network sizes and to al-
low stack exchanges below the application layer with less modifications. Concerning
security issues it was pointed out that 6LoWPAN supports link and network security
in order to support confidentiality and integrity protection [68]. Due to the fact that
BLIP is an implementation of 6LoWPAN for the operating system TinyOS, it o�ers
the same security standard as specified in RFC 4919. In order to optimize data
transmission within the network itself, the IPFIX protocol was analysed in Section
3.2. Due to its push-protocol character and its template-based design, the IPFIX
protocol is interesting for sensor networks. In addition, it can be adapted to di�er-
ent data types (e.g. flow data, sensor data). Today, security concerns (e.g. Who
knows or gets access to what kind of information?) in the population grow which
requires a secure transmission solution independent of data types. In Section 3.3
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security risks are briefly characterized together with defense strategies. The defense
strategies focus on security protocols and trusted hardware components dealing with
cryptography and existing protocols in order to establish a transport layer security
solution, such as (D)TLS.
The characterized solutions in this chapter and the background information on wire-
less sensor networks will inspire the design decisions for the developed solutions in
this dissertation, which are presented in the following Chapters 4 to 5.
Regarding the mentioned research questions on e�ciency the following contribution
has been made in this chapter:
(E1) Is the IP Flow Information Export (IPFIX) protocol a viable solution for
transmission of sensor data in wireless sensor networks?

Yes. As assumed in Chapter 3 IP communication is supported by constrained
hardware and it became interesting to transfer standardized protocols to con-
strained hardware as used in wireless sensor networks. The IPFIX protocol
was introduced in Section 3.2. The message structure of the IPFIX protocol
is very interesting for wireless sensor networks, because it separates meta in-
formation and data in di�erent messages. It works over UDP, which is the
preferred transport protocol for sensor networks. IPFIX is flexible concern-
ing its message structure and reduces retransmissions of known information
(e.g. meta information). A drawback is the additional overhead of 20 bytes
caused by the IPFIX headers, which reduces free space in the payload of each
message. But this drawback can be solved as described in Chapter 4.

Regarding the mentioned research questions on security the following contribution
has been made in this chapter:
(S1) Is it possible to secure data transmission in wireless sensor networks with
known standards from IP networks?

Yes. Concerning security Section 3.3 gave a brief overview of solutions used in
IP networks in order to secure data transmissions within a network. In order
to answer research question S1, selected security solutions focused on secu-
rity protocols (cryptographic functions, public key infrastructures), (D)TLS
protocol, and trusted hardware component using a trusted platform module.
Throughout this section it became obvious that not every solution is interest-
ing and contributing to wireless sensor networks, because of limited resources,
especially in memory and computational capacities. But the given overview
influenced the design decision for the realized security solution in this disser-
tation and is presented in Chapter 4.
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As described in Chapter 2 and 3, wireless sensor networks are specialized IP networks
where the components are resource limited regarding power supply, memory, and
computational capacity. The application range is manifold and usually measured
and transmitted information includes sensitive data, so that only authorized entities
are allowed access. This fact becomes very important, because today’s established
wireless sensor networks usually work over IP due to the integration into the Internet
of Things [1]. As pointed throughout Chapters 3.1 to 3.3 di�erent solutions in
common IP networks exist, which are very interesting for sensor networks in order
to achieve their requirements for IP communication and e�cient data transmission
support within the network together with secure data transmission between di�erent
entities. But those solutions are too bulky for the limited hardware. The solution for
this challenge is a restriction of algorithms to address computational and memory
limitations and compression (e.g. headers) to reduce network overhead.

In the upcoming sections of this chapter interesting protocols for wireless sensor
networks dealing with data transmission (cf. Section 4.1), in-network aggregation
(cf. Section 4.2), and security issues (cf. Section 4.3) are presented. Selected
protocols inspired the design of the protocols developed during this doctoral thesis.
This chapter includes the required adaptations of the protocols for the constraints
of the wireless sensor network’s hardware. The final implementation is described in
detail in Chapter 5, followed by the evaluation and comparison to related protocols
in Chapter 6. In Section 4.4 it is motivated why a special graphical user interface
was developed and how it visualizes the deployed wireless sensor network. A proof
of concept of the graphical user interface functionalities is shown in the evaluation
chapter.

4.1 E�cient Data Transmission
A possible way to save resources is the improvement of data transmission. In a
wireless sensor network, data is transmitted together with its meta information
resulting in relatively big messages; sometimes including redundant information
(e.g. data source). Those messages need more resources, especially energy, for
transmissions due to long periods of full radio activity. In order to solve this prob-
lem an e�cient data transmission protocol was developed in this dissertation with
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focus on reducing redundant information (e.g. meta information). Related works
in wireless sensor networks dealing with this topic are COAP and sMAP, briefly
characterized in Section 4.1.1 as inspiration for the development of the TinyIPFIX
protocol. The IPFIX protocol known from common IP networks is also interesting,
but currently does not fit the limited resources. Therefore, an adaptation is essen-
tial, which results in the implemented TinyIPFIX protocol developed during this
doctoral thesis. TinyIPFIX will be presented in Section 4.1.2.

4.1.1 Related Protocols

Chapter 3 motivated the usage of standards in wireless sensor networks. It was
pointed out that the main task for the components is data collection, followed by
transmission towards the sink. The standard push-protocol IPFIX is an appro-
priate candidate for e�cient data transmission, because it has a template-based
design [20]. Data values and meta information are sent in separate messages. An-
other advantage is the high flexibility of the protocol gained by minimal configuration
requirements (e.g. new templates based on sensor’s meta information) when new
vendors are integrated. Those characteristics can also be found by the XML based
COAP and the JSON based sMAP implementation. Both approaches are inspired
by the ‘Representational State Transfer’ (REST) architecture developed for web ser-
vices [93, 94]. Sections 4.1.1.1 to 4.1.1.2 briefly describe protocols, which inspired
the design decisions for the developed transmission protocol TinyIPFIX in this dis-
sertation. A comparison to these protocols will be presented during the evaluation in
Section 6.1.4.

4.1.1.1 Constrained Application Protocol

Today’s development of networks with machine-to-machine applications such as
building automation has increased in lock step with web service applications. The
working group Shelby et al. developed the Constrained Application Protocol (COAP),
which is undergoing the standardization process by the IETF at the moment [95, 96].
This protocol is an implementation of the REST architecture for constrained hard-
ware used in wireless sensor networks. COAP itself works over UDP with a simple
retransmission mechanism. Retransmissions are reliable due to unique message IDs
(URI) for each request. COAP requests are equivalent to HTTP requests using XML.
It o�ers functionalities for interactions between applications and end-points following
the REST Method/Response model [93]. Resource discovery is possible and di�erent
basic web concepts, such as URIs and content-types, are supported. Those func-
tionalities allow COAP an interaction with HTTP causing less overhead fitting con-
straint hardware requirements and o�ers compression possibilities. COAP supports
four message types which are indicated in the header field T: Confirmable message
(CON), Non-Confirmable message (NON), Acknowledgment message (ACK), and
Reset message (RST). [93, 95, 96]
The COAP header is four bytes long and includes a version field (Ver), type field
(T), option counter field (OC), code field (code), and the Message ID field, fol-
lowed by options and individual payload, which are both optional as illustrated
in Figure 4.1. Version field determines the COAP version used. As marked with
dashed lines the fields Options and Payload are optional and their amount is in-
dicated in the OC field. The code field indicates if a message is a request, a re-
sponse or if it is empty. More details of messages and code types can be found in
reference [96].
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Ver
Options

T OC Code Message ID
Payload

0 7 8 311 2 3 4 15 16

Figure 4.1: COAP message format [bits]

A sample COAP message flow between two clients (A and B) and a server, requesting
di�erent data, looks as follows: Client A requests a temperature value and client B
a light value. Both clients send out a message of type CON with individual Message
IDs, GET request and individual Tokens. In the case of client B, the request cannot
be fulfilled and causes the server to answer directly. The server responds with an
ACK message referring the specific Message ID, Token, and the search result. In
the case of client A, the server needs some time to look up the answer. In order
to prevent retransmission of the request by client A, the server answers with an
ACK only. After the server looked up the answer for the request, it composes the
appropriate message including the reference token, the content, and a new Message
ID. Client A responds to the server’s message with an ACK and Message ID. [96]

4.1.1.2 Simple Measurement and Actuation Profile Protocol

The wide variety of physical information (e.g. water, weather, occupancy, envi-
ronment) and the call for e�cient data exchange motivated Dawson-Haggerty et
al. to develop the Simple Measurement and Actuation Profile (sMAP) protocol
in 2010 [97]. The design of sMAP is inspired by REST web services. REST defines
a set of architectural principles - known as RESTful, which a web service must be
aware of. In RESTful architectures each device provides a special RESTful web ser-
vice. HTTP is used for communication where standardized URLs are used. sMAP
uses the ideas of RESTful web services which allow direct publishing of data. sMAP
itself is located between producers of physical information and consumers known as
applications (e.g. storage, debugging, virtualization, authentication). [97]

(a) JSON format (b) XML format

Figure 4.2: Message format comparison

In comparison to COAP, sMAP uses the JavaScript Object Notation (JSON) for-
mat for object exchange. JSON utilizes a common programming language pattern
which simplifies the implementation. Figure 4.2 illustrates a structure compari-
son between JSON and XML messages. The JSON message shown requires only
72 characters in comparison to the XML message with 177 characters. This short
example shows the size advantage of the JSON format.

In addition, sMAP uses an embedded binary HTTP (EBHTTP) version to match
sensor hardware requirements. Supported methods are GET, POST, DELETE,
and PUT. In comparison to HTTP, EBHHTP produces minimal transport and
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space overhead, delivers without an acknowledgment mechanism, and eliminates
unused headers. Those devices can have several resources. Web services with sMAP
scale with millions of clients which makes it very interesting for wireless sensor
networks. [97]

4.1.2 Design Decisions for the TinyIPFIX Protocol
The introduced protocols COAP and sMAP showed that the compression of meta-
data in sensor networks help to obtain the transmission e�ciency. They also prefer
support of HTTP, TCP/IP, and web services in order to publish collected data
in the Internet in order to give authorized persons or organizations access to it.
Both protocols scale well in networks with hundreds of entities. In comparison to
those protocols the standard IPFIX prefers the reduction of network overhead by
separation of data and meta information into di�erent messages. This solution is
practical in networks with redundant information as it is used in sensor networks
where each message includes data and meta information. Meta information is often
redundant and, therefore, it is assumed in the wireless sensor network in this dis-
sertation that for each sensor node its meta information stays the same over long
period of time; regardlessly of sensing intervals [20]. An update of meta informa-
tion can only happen if other sensor combinations are activated on the sensor node.
For example, the sensor board MTS300 for sensor node IRIS o�ers the sensor com-
binations <light, sound> or <temperature, sound> [31]. Another example of a
meta information update is the change of aggregation functionality as described in
Section 4.2.2.
Today it becomes interesting to use well-known and widely-used network standards
as motivated throughout Chapter 3, which calls for an adaptation of those proto-
cols to the new requirements of wireless sensor networks. Due to the previously
inspired design decisions by the application protocols COAP and sMAP and the re-
quirements occurred due to IP communication support the favored standard should
support data separation and work with TCP/IP. As introduced in Section 3.2, the
flow protocol IPFIX is an interesting protocol for a wireless sensor network due to its
push-protocol characteristic, template-based design, flexibility, and high e�ciency.
Before it can be used in wireless sensor networks the protocol has to be modified
corresponding to the resource constraints such as limited message size as realized
within the scope of the bachelor thesis by Thomas Kothmayr [98].

In the wireless sensor network experiments performed in this doctoral thesis the
maximum transmission unit is limited to 127 bytes due to the RF transceiver CC2420
of the hardware [18] and the used BLIP stack as described in Section 3.1. Here
12 bytes are spent for the TinyOS message header (cf. Figure 5.3) and the rest for
individual payload [25]. Normally, the payload consists of measured data values, its
meta information, and some information about the source node such as ID and a local
time stamp. In the developed application protocol TinyIPFIX, the template-based
design of the IPFIX protocol is used, which means that the individual payload in the
TinyOS message consists of an IPFIX message [20]. The IPFIX message can either
consist of a Template Record or a Data Record together with required IPFIX headers
(cf. Figure 3.3). The Template Record includes the meta information of the data
and the Data Record includes the data values itself. [98]
The design space of the developed TinyIPFIX protocol consists of four areas that
need to be adapted to fit the requirements and constraints of a cyber-physical
system [12]: standardization, resource e�ciency, usability, and flexibility.
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The first area is called standardization. Sensor devices measure data, which have a
specific format and must be represented accordingly. This representation has to be
general and universal, meaning that a protocol should be able to uniquely distinguish
each measurement type. A measurement type is defined as a reading from a specific
model of a sensor, which carries information about data type, accuracy, precision,
and conversion to scientific units, rather than a dangerously simple description such
as temperature. In the case of TinyIPFIX, the sensor measurement type is identified
by an individual Type ID and Enterprise Number (EID), which are registered with
the Internet Assigned Number Authority (IANA) [74]. This ensures adaptability to
other platforms or new measurement types. Since an TinyIPFIX Template only car-
ries syntactical meta data for the measurements sent in an TinyIPFIX Data packet,
the semantics for that data still needs to be published. If the Enterprise and Type
IDs have been labeled globally unique, a public repository for this semantic data,
presented as XML markup, becomes feasible.
The second area focuses on resource e�ciency, because resources of sensor nodes are
limited in terms of power, memory space, and computational capacities
(cf. Figure 2.2). TinyIPFIX is evaluated with regard to its memory requirements
and energy consumption. Additionally, a TinyIPFIX-Aggregation framework is im-
plemented, which o�ers in-network aggregation mechanisms for data pre-processing.
By leveraging in-network aggregation, additional energy savings can be achieved
through transmission reduction.
Third, the development needs to deal with usability. The benefits of using IPv6 in
sensor networks were detailed in a previous work presented by Jonathan Hui and
David Culler [63]. For the presented implementation in this doctoral thesis it was
chosen to send TinyIPFIX packets via the BLIP implementation [99], which sup-
ports IPv6 and UDP. With this setup the established wireless sensor network can
smoothly be integrated into an existing IP-based network infrastructure. Such an
infrastructure can be the system developed in the project AutHoNe5, which provides
di�erent functionalities such as knowledge sharing and remote access, as well as an
autonomic mechanism to integrate new devices into building networks [13]. Another
example are online visualization tools, such as COSM, which require internet access
for a live upload of data.
The forth area focuses on flexibility. Implemented solutions, such as TinyIPFIX,
must be flexible in order to support di�erent application areas and vendors at the
same time. This performance request is proven by runs of numerous real world tests
of TinyIPFIX in building application scenarios on di�erent vendor hardware as well
as in a large wireless sensor network deployment on the Harvard Sensor Network
Testbed (Motelab) [100].

Before implementing the TinyIPFIX protocol on sensor nodes some adaptations
are necessary. Type ID and the Enterprise ID identify sensor measurement data.
In order to enhance interoperability, they need to be standardized. For today’s
home networks, typical environmental data such as temperature, brightness, and
humidity can be measured by sensor nodes. Therefore, standard Type IDs can be
issued. Until now, Enterprise IDs for sensor data did not exist, and, therefore, they
had to be chosen and registered by IANA [74]. An example for the used hardware
(e.g. IRIS, TelosB, OPAL) in the deployed wireless sensor network is shown in
Table 4.1. The example shows that the Enterprise ID is independent of hardware

5Autonomic Home Networking Project partly funded by the German Federal Ministry of Education and
Research under grant agreement no. 01BN070[2-5].
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platform and platform vendor, but depends on sensor and vendor of the technical
unit. [20, 98]

Hardware Platform Vendor Enterprise Type
platform vendor Sensor technical unit ID ID
TelosB Advantic Sys. Temperature Sensiron SHT11 3841 33025
TelosB Advantic Sys. Humidity Sensiron SHT11 3841 33026
TelosB Advantic Sys. Light Hamamatsu S1087 3845 33025
IRIS Crossbow Inc. Temperature Panasonic 3843 32771

ERT-J1VR103J
IRIS Crossbow Inc. Light TAOS TSL2550 3846 33282

Table 4.1: Exemplary information for IANA registration

Following registration, the new Enterprise ID can be used to identify sensor node
measurement data. At that point, new Type IDs can also be used to describe typical
sensor data, like temperature or brightness values. Semantics and type length need
to be included in the ID standardization in order to ensure interoperability. The
next generation of sensor nodes will have the ability to measure other types of data
(e.g. gas concentration), which will result in new IDs. However, the common base
for transmitting data is still IPFIX, which also supports the interoperability between
devices due to the fact that it is not influenced by hardware specifications. [20, 98]

When essential modifications, such as header compression as described in
Section 4.1.3, are done, sensor nodes act as Exporters and transmit their mea-
surement data using TinyIPFIX in a wireless sensor network. When a sensor node
boots up, it has to announce its Template Record before sending its measurement
data to the Collector (cf. Section 3.2). This has to be done only once, because
a Collector bu�ers the Template Record to decode Data Records. Depending on
the chosen application the network structure may change. In order to ensure a
successful decoding in this case, the sensor nodes repeat their Template Records
periodically. Data Records do not have to contain anything but the measurement
data, because all meta information has already been sent in the Template Records.
A short header containing the number of transmitted values and the referenced Tem-
plate ID only accompanies Data Records. This Template ID verifies the Template
Record used. Several Data Records (e.g. light and temperature) can be put into a
single message until the maximum transmission unit is reached. All records within
a packet, which can be decoded with a single template, form a Data Set as shown in
Figure 3.3. [20, 98]

As described in Section 3.2 the original size of the IPFIX header is 20 bytes. In
order to transmit as much data as possible in one message, it is essential to reduce
overhead caused by additional headers. Therefore, the IPFIX message header must
be reduced to the absolute minimum size necessary for TinyIPFIX. Compression
techniques to accomplish this goal are presented in Section 4.1.3. [20, 98]

4.1.3 Specification of Header Compression Techniques

Three compression techniques for IPFIX headers (IPFIX message and Set header)
were developed and implemented in this dissertation. The defensive compression
approach is an initial run to reduce overhead, followed by a modified compression
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version (cf. Section 4.1.3.2). Finally an aggressive compression approach is intro-
duced in Section 4.1.3.3, which reduces overhead of the additional headers (IPFIX
message header, Set header) by 85%. The compression techniques are described in
the upcoming sections related to references [101, 98, 20].

4.1.3.1 Defensive Compression

The first technique is based on the idea of introducing a pre-header that specifies
di�erent field sizes separately, which results in a pre-header size of two bytes as
shown in Figure 4.3 [101, 20, 98].

0 9 10 317 8 13 14 17 18 21 22 25 26

Figure 4.3: TinyIPFIX pre-header: defensive header compression [bits]

The Version field is shortened down to five bits. This is possible, because the
IPFIX protocol used today is version 10. The size defined here allows a IPFIX
protocol support up to version 31. The field Length (L) is one bit long which
results in two possible values. The field L identifies the length in the following
header where zero means one byte, and one means two bytes. The same size coding
adjusted to two bytes is given to the fields Export Time (ET), Sequence Number
(SN) and Observation Domain ID (D), which can stand for a maximum field size of
four bytes in the following header. The Template Offset (TO) field is two bits long.
If TO = 0, the decoder node should use the last received Template Record for the
decoding purposes of an incoming Data Record. If TO = 1, the previous Template
Record is used. If TO = 2, the pre-previous Template Record is used. In case
the TO is given for a Data Message, two bytes for the SetID can be saved. If
TO = 3, the field is ignored and a proper statement of the Template ID is expected
in the header. The Single Set Flag (S) field is one bit long and indicates if the
TinyIPFIX message consists of one single TinyIPFIX set. If only one set is expected,
the explicit set length statement in the header can be omitted, because it can be
recalculated from the total message length. The pre-header is concluded by the
one bit long Template Set Flag (T) field. If T = 1, the first set in the IPFIX
message is a Template Set with SetID = 2, which results in an omission of two
bytes for Set ID definition. [101, 20, 98]
The worst case scenario results in a full sized pre-header with two bytes, because
all fields have their maximum field size and nothing can be omitted. In total,
the header for TinyIPFIX has the size of 22 bytes (two bytes pre-header plus
16 bytes IPFIX message header plus four bytes IPFIX Set header). In the best
case scenario, all header fields can be fitted to one byte and the Set Header can be
omitted as shown in Figure 4.4a. [20, 98, 101]
It is obvious that message Length and Observation Domain ID can be shortened to
one byte. If more compression is required to fit the message in 102 bytes, it is some-
times possible to find and remove duplicate values in the original message. Usually,
the field named Observation Domain ID refers to Node ID with a single byte, which
allows up to 256 nodes. Given that data rates are usually low in wireless sensor net-
works, even if the counter Sequence Number rolls over after 255 messages, there is
no detrimental impact. Thus, this field can be shortened to one byte. Depending
on the application it is essential to transmit a timestamp to make reordering of the
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messages at the sink and the analysis of other nodes possible. In general, sending
a starting timestamp solves this problem. This allows following timestamps from
the same node to be recalculated based on the known measurement and sending
time intervals. The same strategy allows reduction of the Export Time field size to
one byte as well. In the best case, the type of field recalculation strategies makes
it possible to reduce the IPFIX header size from 20 to six bytes in the defensive
compression approach. [20, 101, 98]

4.1.3.2 Modified Defensive Compression

Figure 4.4b shows more modifications in the pre-header, which reduce the overall
IPFIX headers from 20 bytes down to three bytes by omitting fields reserved for
Export Time (ET), Observation Domain (D), Set ID, and Set Length [101, 98].
In comparison to Figure 4.3 the Version field in the first step is deleted. The
fields L, ET, S, and D have the same functionality and dimension as before. The
field Template Offset is dropped followed by the field Single Set Flag as be-
fore. The field Template Set Flag is replaced by a new field called SetID Lookup
Index, which is only present if the Single Set Flag is set. Normally, IPFIX Ex-
porter provides only a limited number of Templates, which makes sizing of this field
to a two byte size su�cient. The SetID Lookup index therefore tries to fit the
most commonly used values for the SetID into one byte. Its value is interpreted as
follows [98]:

• SetID Lookup Index = 0: SetID lookup is ignored, and a proper SetID
definition follows after the IPFIX message header.

• SetID Lookup Index = 1: SetID = 2 is given as two, thus message contains a
Template Set.

• SetID Lookup Index = {2..63}: reserved.

• SetID Lookup Index = {64..255}: SetID is given as 192 plus value when
converting to normal IPFIX. The message contains a Data Set referencing the
according template.

From now on the resulting compressed TinyIPFIX header is referred to as the
modified defensive approach.

4.1.3.3 Aggressive Compression

The third more aggressive compression approach reduces overhead once more by one
or two bytes as shown in Figure 4.4c [101, 98]. It starts by limiting the capabilities
of IPFIX to those required in wireless sensor networks. The IPFIX packet length is
limited to 1,024 bytes, which exceeds the maximum transmission unit of 127 bytes
defined by the IEEE 802.15.4 standard used by the RF transceiver CC2420 [18] and,
therefore, requires packet fragmentation [69]. In this activated header compression
approach, only one set of templates or data is transmitted. [101, 98, 69]
Figure 4.4c shows the pre-header of the aggressive approach where the SetID Lookup
Index field is moved even further forward within the header and shortened to four
bits. It acts as a lookup field for the SetIDs. The bits marked E1 and E2 control
the presence of the field Ext.SetID and the length of the field Ext.SequenceNumber
respectively. If E1 ”= 0 and E2 ”= 0, those optional fields are expected. Due to the
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low sampling rate in typical wireless sensor networks, the Sequence Number field
has been shortened to one byte. Since TinyIPFIX packets are always transported
via a network protocol, which specifies the source of the packet, the Observation
Domain can be equated with the source of a TinyIPFIX packet and the field can be
dropped from the header. The specification of a 32-bit time stamp in seconds would
require the time synchronization across a wireless sensor network and produces too
much overhead. Thus, the Export Time field is dropped here. A detailed decoding
example is given in Section 5.1.1. [101, 98]

For common wireless sensor network settings as used in this dissertation, the typical
header size of TinyIPFIX headers is three bytes in total if the aggressive approach is
performed. Thus, a compression level of 85% is achieved as compared to the standard
IPFIX message and Set header shown in Figure 3.4. In Section 5.1.1 the resulting
message structure under TinyOS assuming a MTU of 102 bytes is illustrated in
Figure 5.4.

IPFIX Message Pre-header

IPFIX Message Header

0 7 8 165 6

(a) defensive compression (best case)

IPFIX Message Pre-header

IPFIX Message Header

L ET SN D S SetID Lookup Index

0 7 8 162 31

(b) Modified defensive compression

IPFIX Message Pre-header

SN
E1 E2 SetID Lookup Index Length

Ext. Sequence Number
Ext. SetID

0 7 8 162 31

(c) Aggressive compression

Figure 4.4: TinyIPFIX message structure comparison [bits]

4.2 In-network Aggregation

Section 2.3 introduced the need for energy saving methods (e.g. activity modes,
software based methods) due to limited resources of sensor nodes. This section in-
troduces in-network aggregation as a software solution to save resources, especially
energy. Di�erent aggregation types exist, which all result in transmission reduction.
Aggregation performance costs energy for computation, but it reduces message flow.
In the field of in-network aggregation two main approaches exist today: (1) message
aggregation and (2) data aggregation. The latter is also called data pre-processing
in literature. [102]
The first approach is a combination of two or more messages into a new aggre-
gate message without data pre-processing. The second approach evaluates data
transmitted from one sensor node to another and computes aggregate messages
with this data based on value type requests and aggregate functions. In general,
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this can be performed centrally at the sink. Depending on the chosen applica-
tion (e.g. only average values are requested) it can be an advantage to perform
data aggregation within the sensor node network iteself. As a consequence, the
number of transmissions to the next hop is reduced and less energy is consumed.
In order to achieve in-network aggregation, sensor nodes with required resources
(e.g. computation capacity, memory) must be available in the network.

In this dissertation an in-network aggregation technique called TinyIPFIX-
Aggregation is presented, which was implemented within the scope of the bache-
lor thesis by Benjamin Ertl [102]. The remainder of this section briefly characterizes
di�erent aggregation algorithms in Section 4.2.1 as inspiration for the development
of TinyIPFIX-Aggregation framework. TinyIPFIX-Aggregation will be compared to
related work during the evaluation in Section 6.2.4. Finally, design decisions will be
discussed with respect to the TinyIPFIX-Aggregation framework implementation in
Section 4.2.2.

4.2.1 Related Aggregation Techniques

In this section the in-network aggregation techniques TAG, AIDA, and SIA are
briefly characterized. Those techniques are representatives for a large number of
aggregation techniques developed for wireless sensor networks. The hardware of
the used sensor node defines the applicable aggregation technique, because each
technique requires a di�erent amount of resources. The techniques presented in this
section inspired the development of the TinyIPFIX-Aggregation framework.

4.2.1.1 Tiny AGgregation Service

In 2002 Madden et al. presented a Tiny AGregation (TAG) service for ad-hoc sensor
networks [103]. This approach is based on in-network data pre-processing, because
applications often depend more on data aggregations rather than raw sensor data.
Because the structured query language (SQL) o�ers an intuitive way to formulate
aggregation queries, TAG uses a syntax similar to SQL. This solution allows the
user to express simple, declarative queries and have them distributed and executed
e�ciently in low-power networks. Today ad-hoc network devices can identify each
other and route data without prior knowledge or assumptions about the network
topology. Thus, it does not matter if the network topology changes. In the eyes of
researchers, aggregation is a central task and should be provided as a core service
by the system’s software. [103]

The aggregation queries are intelligently distributed and executed in a time and
power-e�cient manner. In conclusion, the idea of TAG is to process aggregates in
the network by processing data as it flows through sensors, discarding irrelevant
data, and combining relevant readings into more compact records when possible.
Users post aggregation queries from a powered, storage-rich base station. Operators
that implement the query are distributed over the network by piggybacking on the
existing ad hoc networking protocol. Sensors route data back towards the user
through a routing tree rooted at the base station. As data flows up this tree, it
is aggregated according to an aggregation function and value-based partitioning
specified in the query. [103]

Figure 4.5 shows the setup of a wireless sensor network consisting of six nodes
where each node records values for temperature and light [103]. The measurements
are forwarded towards the root (here: NodeID = 1). The expected data flow is
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Figure 4.5: Wireless sensor network performing TAG

shown in the left part where no pre-processing of data is performed. In contrast the
right part shows the same network with grouped aggregate applied to the setup as
performed by TAG. The nodes with ID = {1, 3, 4, 5} show the tables running in the
background on each node when TAG is performed. The tables include information
about the group a�liation (column 1) and the AVG value (column 2). Next to those
tables parenthesized expression can be found including node IDs that contribute to
the average. [103]
As mentioned before, TAG needs an ad-hoc routing algorithm. TAG must be able to
deliver query requests to all nodes in a network. TAG must also be able to provide
one or more routes from every node to the sink, where aggregation data is being
collected. Those routes must ensure that at least one copy of the message arrives at
the sink. [103]

4.2.1.2 Adaptive Application-Independent Data Aggregation

He et al. developed an aggregation mechanism called Adaptive Application-
Independent Data Aggregation (AIDA) for wireless sensor networks [104]. AIDA
isolates aggregation decisions into a module and is a member of a group of novel ag-
gregation algorithms. This module - AIDA - is located between the network and the
data-link layer in a common stack. The existing MAC and network-layer protocols
in the wireless sensor network can be used without any modifications. [104]
In comparison to other aggregation mechanisms, the AIDA approach di�ers by the
following behavior: An isolation of aggregation decisions from applications is per-
formed by integrating an intermediate layer, which can perform adaptive aggrega-
tion. The component is generalized. It can be used for a wide range of applications
and data types without causing rewriting operations for support reasons. Timely
delivery and protocol overhead is taken into account to adjust strategies for aggre-
gation depending on network tra�c and equipment requirements. The upper layer
is allowed to decide how the information is compressed in order to make a lossless
aggregation performance possible for AIDA. As a result of those behavior strategies,
AIDA has the ability to concatenate network units into an aggregate. Therefore,
AIDA uses a novel adaptive feedback scheme to schedule the delivery of those ag-
gregates to the MAC layer for transmission. The goal of the AIDA approach is to
maximize utilization of the communication channel with energy savings coming as
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an ancillary benefit. With significant costs incurred from channel contention, packet
header overhead, and data padding for fixed sized packets this approach abates. Such
costs vary depending on data aggregation degree at forwarding nodes in accordance
with current local tra�c patterns. [104]

The following design decisions, among others, were important for the AIDA devel-
opment. Depending on the application, it is essential to properly aggregate named
data from a common source; one must associate both: location and time in order
to ensure that information is not lost or inappropriately merged. Any aggregation
performed must, therefore, be time and direction sensitive in order to ensure that
data received at the requester remains meaningful. In general, more aggregation is
always better. But tra�c levels vary, if aggregation performance varies as commu-
nication and throughput are optimized. Therefore, AIDA utilizes feedback control
based on network tra�c conditions when making aggregation decisions to adaptively
optimize bandwidth while minimizing system energy consumption, which is under-
exploited by previous aggregation schemes. Based on the design decisions AIDA
performs aggregation transparent to other components, which allows AIDA to func-
tion independently of other protocols. In general, packets are aggregated through
network unit concatenation. The resulting overhead is eliminated by the aggrega-
tion component, which combines di�erent network units into a single outgoing AIDA
payload. [104]
The final implemented architecture is based on the idea of separating the functions
into two components: AIDA Aggregation Function Unit (AFU) and AIDA Aggre-
gation Control Unit (ACU). The AIDA AFU aggregates and disaggregates network
packets, so called units. In comparison the AIDA ACU manages the control timer
settings and fine tunes the specified aggregation degree. It is responsible for the
decision of how many packets to aggregate and when to invoke such aggregation. It
is a feedback-based adaptive component, which makes online decisions based on lo-
cal network conditions. The AIDA ACU is responsible for the available aggregation
schemes [104]. In mode No Aggregation a normal network stack is used, because
packets are passed directly to the MAC protocol. If the mode Fixed Scheme (FIX)
is performed, each AIDA payload consists of a fixed number of aggregated network
units, which means degree of aggregation (DoA) is equal to NF IX . The resulting
packet will be passed to the MAC layer. In the AIDA output queue monitoring
case, mode On-Demand Scheme is performed. Here it is ensured that there is al-
ways an AIDA payload resident for MAC layer dequeuing and transmission. The
last aggregation mode - Dynamic Feedback Scheme (DYN) - is a combination of the
mode On-Demand Scheme and Fixed Scheme (FIX). In the DYN mode the degree
of aggregation (NDY N) threshold is adjusted dynamically corresponding to the traf-
fic conditions in the network. [104]
In AIDA, di�erent transmission possibilities are supported as well. If only one
network unit is ready, unicast is used. If all network units have the same desti-
nation, AIDA aggregates them with the same destination specified and performs
manycast. Multicast is performed if network units have di�erent destinations, be
aggregated and use the MAC broadcast address as the destination. Each receiver
determines individually which units are needed. The fourth possibility is broadcast
where all aggregated network units are broadcast messages. [104]
The packet format is modified in the way that AIDA adds meta information to a
packet in the form of a header. In this header the aggregation format is specified.
It is placed in front of all aggregated network units and is included in the AIDA
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data units, which are passed to the MAC Layer for transmission. A detailed AIDA
header analysis can be found in reference [104].
For evaluation purposes it can be observed that AIDA itself would cause header
overhead. Due to aggregation of several network units into one MAC payload, the
overhead is reduced. Resource saving can be gained by aggregating multiple upper
layer payloads into a single transmission. The actual savings concerning transmission
costs depend on the chosen transmission type.

4.2.1.3 Secure Information Aggregation in Sensor Networks

The Secure Information Aggregation (SIA) technique was developed by Przydatek
et al. in 2003 [105]. The idea of this approach is to have so called aggregator
nodes in the network. Collected raw data from the sensors will be processed locally
and the aggregator will transmit the result to the remote user. Research has to
face the possibility of physical tampering as well as limited resources in such a
network. Security functionality is also necessary in the network. SIA achieves all
goals, because it performs aggregation and validation. The approach is known as
aggregate-commit-prove. [105]
The SIA configuration consists of several nodes deployed around a home server.
The sensors collect data and transmit them to a home server, which is responsi-
ble for a statistical analysis. Commonly, network nodes lack enough resources to
transmit data over long distances. Sinks, therefore, often exist as an intermediary
between home server and sensor nodes. In general, sinks have more resources than
nodes, which collect data. Therefore, they are good candidates to perform aggrega-
tion functionality. In SIA the aggregator forwards all data to the home server and
authenticates the information from each sensor. The home server then can verify
everything and can perform an analysis. [105]
The SIA approach aggregate-commit-prove consists of the following steps: First of
all the aggregates, such as MAX, MIN, and AVG, of sensor nodes’ raw data are cal-
culated by aggregators. In the next step, the aggregators reply to the home server.
The reply consists of the aggregation result and a commitment to the data collection.
The correctness of results is essential. Therefore, the home server and the aggregator
perform e�ective interactive proofs. Forward secure authentication is performed in
SIA in order to ensure authentication. In this technique each sensor node shares an
individual key with its home server. This key is updated at the beginning of each
time interval using a one-way function. The updated key is used to compute the
MAC on sensing data during that time interval. [105]

4.2.2 Design Decisions for TinyIPFIX-Aggregation

One technique for saving energy and computational capacities is in-network aggre-
gation as motivated in Section 2.3 and published in reference [106]. Aggregation
calls for so called aggregator nodes in a wireless sensor network. In general, those
aggregator nodes have more resources and are located at selected positions within
the network as assumed by the previously introduced aggregation techniques in
Section 4.2.1. Depending on their aggregation technique and algorithm structure
they require large resources of memory, computational capacity, and energy. For ex-
ample, TAG requires memory for hosting the tables on each node. Whereas AIDA
requires memory for the AIDA unit itself, which expands the network stack due
to its plugin between network and MAC layer. In comparison SIA requires com-
putational capacity in order to perform its security authentication procedures. All
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known aggregation techniques have the reduction of resource usage to a minimum
in common in order to perform on limited devices. [105, 104, 103, 106]
One possibility of aggregation is to bundle a number of individual messages into one
message without any modifications (e.g. pre-processing). Depending on the applica-
tion this approach is combined with pre-processing techniques within the network,
where an aggregation function (e.g. MAX, MIN, AVG) is executed on the data
(e.g. temperature). This global idea was transferred to the developed TinyIPFIX
protocol in order to build the extension TinyIPFIX-Aggregation framework. The fol-
lowing two aggregation techniques are implemented in the TinyIPFIX-Aggregation
framework related to reference [102]:

1. Message Aggregation: Aggregation of several data messages in one packet.

• Type A: Data Records refer to same Template.
• Type B: Data Records refer to di�erent Templates.

2. Data Aggregation: Data pre-processing within the transmission way to the
gateway using aggregation functions.

The first aggregation type, referred to as message aggregation in the
following, can easily be performed, because message transmission is dimensioned to
127 bytes whereas 102 bytes can be used for individual payload
(e.g. TinyIPFIX messages) [18]. In the case of TinyIPFIX this mode can be sub-
divided into two sub-cases. In the first possibility - Type A - several Data Records,
which refer to the same Template are transmitted in one message as shown in the
right part of Figure 3.3 where two Data Records are transmitted in one packet.
The second possibility - Type B - is the combination of two di�erent Data Records
in one message, which refer to di�erent Template Sets. In this case the combined
Data Set must refer to all needed Template Sets for decoding purposes. If the set-
ting illustrated in Figure 4.6 is assumed and the transmitted messages between the
aggregator nodes (node ID = 3,6,0) towards the sink are observed, the number of
transmissions is reduced by one between each aggregator compared to a common
setting without aggregation (cf. Figure 5.1). [102]
The second type of aggregation, called data aggregation, uses aggregation functions
such as f = max {a, b} or f = avg {a, b} or f = min {a, b}. The chosen aggre-
gation function depends on the application. For example, if only the maximum
temperature in a room is interesting as shown in Figure 4.6 in the upper left room,
the aggregation function f = max {a, b} can be used. In this case the number of
transmitted messages to the gateway node (node ID = 0) can be reduced by one in
total. [102]
An advantage of aggregation is energy saving due to minimizing transmission amount
as illustrated by the previously mentioned examples. But simultaneously a disad-
vantage occurs, as proven by Krishnamachar et al. in reference [106]. If aggregation
is performed within the network, data is not directly forwarded to the next hop,
which results in some transmission delay due to calculation time for aggregation re-
sult and energy consumption for processing. The delay depends on the aggregation
mechanism, which must be performed. Another kind of delay occurs if requested
values for calculation are delayed. In this case, the calculation process is interrupted
and enforces a delay in communication towards the next hop. [102, 106]
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4.2.2.1 Specification of TinyIPFIX-Aggregation

Due to application requirements and limited resources of components in wireless
sensor networks, aggregation techniques are an attractive add-on to optimize the
performance of a network and save resources at the same time. The TinyIPFIX-
Aggregation framework o�ers the user two modes of aggregation with the previously
described characteristics: (1) message aggregation and (2) data aggregation. Both
techniques work with the TinyIPFIX message format as illustrated in a building
scenario in Figure 4.6. [102]
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Figure 4.6: Simplified message flow in home scenario performing aggregation

The functionality of the protocol for message aggregation is shown in the lower room
in Figure 4.6. TinyIPFIX messages, up to a certain amount, are aggregated into
newly generated appropriate TinyIPFIX messages. The degree of aggregation is
defined as the amount of TinyIPFIX messages aggregated in one TinyIPFIX mes-
sage. The degree of aggregation depends on the aggregator’s available memory as
well as the number of sensor nodes in communication range of the aggregator, the
acceptable message delay, and application constraints. In the case of message ag-
gregation, information about the source of Template and Data Sets is essential for
reconstructing data. Data is not allowed to be lost during the aggregation pro-
cess. This requirement is addressed in message aggregation performed in algorithm
A. The underlying decision and operation tree of algorithm A is summarized in
Figure B.1 in the upper part and consists of the following steps [102]:
In the first step of algorithm A, the underlying TinyIPFIX protocol requires the
announcement of related templates, which are bu�ered by the aggregator node to a
maximum amount is equal to the degree of aggregation. In addition, incoming Data
Sets are bu�ered before they are allocated to the corresponding Template Sets, which
were stored during the first step. In the case of an unknown Template Set the Data
Set is dropped, because the interpretation is impossible. [102]
If the maximum amount of bu�ered Template Sets is reached, the aggregator node
announces the aggregated Template Set to the network as the third step of the al-
gorithm. This announcement can happen before the aggregated Data Set is ready
for transmission, which minimizes transmission delays. After the Template Set an-
nouncement the aggregated Data Set is prepared. [102]
In the following step updated Data Sets are allocated to their bu�ered Template



58 4. Design Decisions and Specifications

Sets and sent after the degree of aggregation has been reached. This step will be
repeated periodically whenever aggregates are ready for transmission and the cor-
responding Template Set is known in the network. When receiving a new Template
Set by the aggregator node, bu�ered Template Sets are updated and the procedure
starts with step three again. [102]
In contrast, the upper room in Figure 4.6 shows the execution of data aggrega-
tion, which is also known in literature as data pre-processing. On the first look the
resulted messages transmitted by the aggregators are shorter than in the case of mes-
sage aggregation. The idea of this implementation is that the aggregator computes
aggregates on the received sensor readings from the sensor nodes by applying aggre-
gate functions on specific values, such as MIN, MAX or AVG. Because bidirectional
communication is provided, aggregate functions and sensor reading types can addi-
tionally be selected and changed during operation. Selecting the aggregate function
and value type via UDP-Shell commands does this. The underlying algorithm B for
data aggregation consists of the following steps and is summarized in the lower part of
Figure B.1 [102]:
In algorithm B data pre-processing aggregation is driven by the user request for
specific sensor readings. The user can define if the aggregation function MAX or
MIN or AVG should be performed as well as the degree of aggregation as marked
with the bold blue dashed box in Figure B.1. As a consequence of pre-knowledge
the recipient of the aggregated data already has the knowledge of the meaning
of the expected data. Thus, the announcement of the modified Template by the
aggregator node can be omitted. As in the previous algorithm, the aggregator
bu�ers all incoming Template Sets from sensor nodes until the limit of the bu�er or
the degree of aggregation is reached. [102]
In the next step, incoming Data Sets are bu�ered. If enough Data Sets are bu�ered,
the previous user defined aggregation function is selected and performed on the
stored Data Sets. Before the computation can start the sensor’s readings must be
converted from the sensors’ encoding of the measurement to an universal format.
The aggregator, therefore, holds a lookup table for the data values based on the
previously announced Template Sets. With the help of this table the aggregator
can identify the desired value type of the measurement and computes the aggregate
function on all bu�ered values of the same type. [102]
Finally, a newly generated Data Set for the demanded value type incorporating the
aggregated values is generated and transmitted to the next receiver. Depending on
the network structure the next receiver can be another aggregator node or a node
with forwarding functionality without modification or the sink of the network. It
might happen that additional information is added to the aggregated values in the
aggregation Data Set. In this case it is essential that the receiver can decode the
information properly. [102]
4.2.2.2 Specifiation of Neighbor Discovery Strategies

For completeness’ sake it must be mentioned that depending on the application sce-
nario of a wireless sensor network a neighbor discovery strategy is required before
performing any specific algorithm (e.g. aggregation). In order to support the devel-
oped protocols in this doctoral thesis in di�erent applications a neighbor discovery
algorithm is included, which is based on common ideas from IP networks briefly
described in the following.
Neighbor discovery is an important process for networks without a fixed link struc-
ture and is standardized in RFC 4861 [107]. Neighbor discovery protocols are re-
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sponsible for link management within a network using IPv6 communication with
multicast service. As described in Chapter 3 wireless sensor networks are integrated
into the Internet of Things, and, therefore, require neighbor discovery in order to
find a routing topology towards the gateway. Additionally, neighbor discovery is
essential for a successful aggregation execution in order to process data within a
network. Depending on the application scenario developers distinguish between two
neighbor discovery techniques: (1) static/predefined neighborhood and (2) dynamic
neighborhood. [102, 107]
In the first type the communication links are static and predefined, which means
the position and location of each sensor node is known with respect to all others in
a network. Those scenarios can be found in monitoring scenarios with fixed loca-
tions (e.g. home scenarios, structural / health / environmental monitoring). In this
case, the context analysis is based on fixed pre-knowledge. Here the neighbor dis-
covery is not very dynamic and updates happen only when nodes enter or leave the
network. [102, 107]
If sensor nodes are deployed free, which means without a fixed network structure, a
neighbor discovery phase is essential, which characterizes the second type of neigh-
bor discovery techniques. Those situations can be found in emergency cases such as
fire fighting or military scenarios, i.e. the sensor nodes are thrown out of a helicopter
and must organize a working infrastructure on their own. The first performed op-
eration after landing is the neighbor discovery phase in order to establish a working
network to transmit collected data to a mobile sink. Although various neighbor
discovery techniques exist, all of them have the following steps in common [107]:

1. The sensor node broadcasts a beacon with its individual information
(e.g. ID, location, time).

2. Receiving nodes answer with their personal information, and add the trans-
mitting node to their neighbor table.

3. This update of the neighbor table is done also by the sender.

In general, information of link quality is also added to the neighbor table in or-
der to optimize routing, which implies a high dynamic in the network. Varia-
tions in link quality can cause the table entries to be updated, i.e. as nodes en-
ter or leave the network. If nodes have less memory resources as characterized in
Section 2.2, the neighbor table is limited to those neighbors with the best link
qualities [108].

The TinyIPFIX-Aggregation framework introduced in Section 4.2.2.1 supports a
combination of both neighbor discovery types, called (1) static communication and
(2) dynamic aggregation node discovery [102].
The static communication is used if the wireless sensor network structure and com-
munication links are known before deployment. In this case only minor updates
are expected. The communications link between a sensor node and its aggregator
is hard-coded consisting of the aggregator’s IPv6 address and the UDP-Port num-
ber. Each aggregator listens to an individual UDP-Port. This setup is shown in
Figure 4.7a. [102]
In the case of a more dynamic network, the TinyIPFIX-Aggregation framework sup-
ports an automatic aggregation node discovery procedure as illustrated in
Figure 4.7b. This procedure allows an individual connection of sensor nodes to
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a free aggregator in their range. The aggregator itself has a predefined degree
of aggregation. For example, DoA = 2 means two sensor nodes can connect to
this aggregator. [102]

(a) Type 1: Static/predefined (b) Type 2: Dynamic

Figure 4.7: Neighbor discovery strategies performed by the aggregation framework

For the performance of the dynamic discovery procedure, the BLIP stack sup-
ports the ‘Internet Control Message Protocol for the Internet Protocol Version 6’
(ICMPv6) [109]. An aggregator broadcasts an ICMPv6 message to the network in-
cluding a predefined message type code 200 and its IPv6 address. If an unconnected
sensor node receives this message, it stores the aggregator’s address. From this time
on this sensor node addresses all its TinyIPFIX messages to this addressed aggre-
gator. As a drawback of the first received message from an unconnected node the
aggregator binds the node and reduces the degree of aggregation by one. The aggre-
gator broadcasts this message type code 200 until it reaches its predefined degree
of aggregation. In this case the aggregator changes its message type code to 201,
which indicates that the receiving sensor node cannot use him as next hop anymore.
Now the sensor node must address its packets directly to the sink. If a connection
to the aggregator is lost, for example due to node deletion, the aggregator sends out
the message type code 200 again and the procedure rolls over again (repeats). [102]
Due to application changes, such as reduction or raise of the degree of aggrega-
tion, it is useful to run updates of the aggregators on the fly. The implemented
UDP-Shell supports this function [102]. The degree of aggregation can be reduced
down to one and raised back to its original value. If DoA = 1, the aggregation
is a simple forward function as performed in networks without any aggregation
functionality. In addition, the UDP-Shell allows to update the performed aggre-
gation function. The TinyIPFIX-Aggregation framework supports the aggregation
functions MAX, MIN, and AVG. More available functions are mentioned during the
implementation description in Section 5.4. [102]

4.3 Security Considerations
As motivated in Section 3.3 security is important everywhere - especially in wireless
sensor networks, because e�ective attacks are possible on all layers and the trans-
missions usually include sensitive data. In order to ensure more secure transmission,
messages should be encrypted. Therefore, di�erent mechanisms such as AES or RSA
exist.
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In this doctoral thesis a TinyDTLS solution for constrained devices was integrated
into the existing wireless sensor network which was implemented within the scope of
the master thesis by Thomas Kothmayr [81] in cooperation with CSIRO ICT Centre
(Australia)6. The reminder of this section briefly characterizes di�erent security
mechanisms in Section 4.3.1 as inspiration for the developed DTLS solution. Finally,
the developed TinyDTLS solution is introduced in Section 4.3.2.

4.3.1 Related Security Mechanisms

In this section di�erent cryptographic methods and key management strategies are
characterized. Those approaches are standardized and adapted to hardware con-
straints of wireless sensor networks. They influenced the decision to develop a DTLS
solution for sensor devices, called TinyDTLS .

4.3.1.1 Cryptographic Methods

It is necessary to combine the mechanisms, such as nonce, timestamp, and in-
dex/counter, with cryptographic methods. Due to limited resources, used methods,
as described in Section 3.3, are not practical for wireless sensor networks, because
too many resources are required. In order to transfer those cryptographic methods
to wireless sensor networks, they must be analysed with respect to code and data
size, processing time, and power consumption considerations.
Cryptographic methods can be divided into public key cryptography and symmetric
key cryptography. The public key algorithm RSA (Rivest, Shamir and Adleman)
is common but is not useful for wireless sensor networks, because of computational
overhead. For the same reason the Di�e-Hellman algorithm can be rejected. Car-
man et al. proved that it is more e�cient to use symmetric key cryptographic
algorithms or hash function, because they require fewer resources [110]. During an
energy consumption analysis of RSA and AES on a MC68328 DragenBall processor
it turned out that an AES with 128-bit block only consumes 0.104 mJ instead of
42 mJ when RSA with 1,024-bit block is performed. If low power techniques and
sensor node constraints are kept in mind, it is possible to adapt common public
key algorithms to wireless sensor networks. Mainstream researchers work with RSA
and Elliptic Curve Cryptography (ECC). It is important that ECC can work with
smaller keys than RSA and support an adequate level of security. [110, 81]

A well tested algorithm, called TinyPK, using RSA and ECC cryptography was
developed by Watro et al. [111]. The algorithm was developed for the require-
ments of MICA2 nodes using TinyOS. The idea of this implementation was it to use
a modified version of the Di�e-Hellmann protocol, which o�ers an authentication
check of nodes in a wireless sensor network. Each node uses a static Di�e-Hellmann
key pair with a text string processed via a certificate authority private key as a
credential. With those keys and credentials a kind of handshake can take place
between two parties to verify each other and to determine the session key for the
communication. [111, 81]
Another approach of ECC on sensor nodes was implemented by An Liu and Peng
Ning, called Tiny-ECC [112]. They used MICA2 nodes as well and based their
approach on TinySec, which was developed by Karlof et al. [113]. It is a link
layer security architecture o�ering two di�erent security modes. The TinySec-
AE mode o�ers an authentication encryption in which data payload is encrypted

6CSIRO ICT Center - Information and communication technologies http://research.ict.csiro.au/

http://research.ict.csiro.au/
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and the packet is authenticated by a CBC-MAC. The TinySec-Auth mode au-
thenticates the whole packet. For a comparison of both modes Karlof et al. as-
sumed an application data amount of 24 bytes. The TinySec-Auth mode performed
better than the TinySec-AE mode due to smaller overhead (44 bytes instead of
40 bytes), faster packet transmission in 26.7 ms instead of 28.3 ms, and required only
0.000165 mA per hour. Result showed that the TinySec-Auth mode compared to the
TinySec-AE mode saved more resources for constraint hardware and o�ered more
security at the same time. [112, 113, 81]
The above mentioned algorithms work with symmetric cryptography, which is not
as expensive in operations as asymmetric cryptography. In general, asymmetric
cryptography is often deferred to the gateway node (e.g. SPINS [114]). Those
special nodes have more resources and, therefore, can easily perform asymmetric
cryptography, provide authentication, and secure data aggregation.

4.3.1.2 Symmetric Key Management Solutions

Next to encryption algorithms key management is very important. Researchers,
therefore, focus on this topic at the moment. They discuss di�erent manners for key
establishment and key distribution. One objective is the support of node addition
and revocation. In general, key management must support key setup, key distribu-
tion, and key revocation mechanisms. [115, 116, 81]
Di�erent key management strategies exist that are influenced by hardware resources,
network structure, node deployment, and environmental factors of the application
[115, 116]. The research groups Xiao et al., Zhang et al., and Wang et al. presented
surveys covering key management schemes [117, 56, 9]. Those surveys have in com-
mon that existing key management protocols for wireless sensor networks can be
divided into distributed, centralized, and probabilistic protocols. [81]
One representative of distributed key schemes is the Peer Intermediaries for Key
Establishment (PIKE) protocol developed by Chan and Perrig [118]. In this class
of key establishment protocols one or more sensor nodes are involved as a trusted
intermediary to facilitate key establishment. PIKE is designed to address the lack of
scalability of existing symmetric-key distribution schemes. All existing schemes in-
cur linearly increasing cost in either communications per node or memory per node.
PIKE achieves a trade-o� by achieving overheads in both communications per node
and memory per node. This is a highly desirable point in the design space of key
distribution protocols. PlKE establishes keys between any two nodes regardless of
network topology or node density. This makes it applicable to a wider range of
deployment scenarios than random key predistribution, which requires a network
deployment with high, uniform node density. Besides the key distribution center
approaches that have a high communication overhead, PIKE is more resilient than
previous approaches against sensor node compromise. PIKE enjoys a uniform com-
munication pattern for key establishment, which is hard to disturb by an attacker.
The distributed nature of PIKE also does not provide a single point of failure to
attack, providing resilience against targeted attacks. In contrast to the currently
popular random-key predistribution mechanisms, PIKE has the advantage that key
establishment is not probabilistic, so that any two nodes are guaranteed to be able
to establish a key. [118, 81]
In 2002 Eschenauer and Gligor proposed a probabilistic key predistribution scheme
recently for pair-wise key establishment. This scheme is called Basic random key
management system [119]. The main idea is it to let each sensor node randomly
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pick a set of keys from a key pool before the deployment, so that any two sensor
nodes have a certain probability to share at least one common key. Chan et al.
further extended the idea of Eschenauer and Gligor and developed two key pre-
distribution techniques, called Q-composite random key predistribution scheme and
Basic random-pairwise keys scheme [120]. The q-composite key predistribution also
uses a key pool, but requires two nodes compute a pairwise key from at least q-pre-
distributed keys that they share. The random pairwise keys scheme randomly picks
pairs of sensor nodes and assigns each pair a unique random key. [119, 120, 81]

4.3.1.3 End-to-End Security Solutions

Previously described key management systems in Section 4.3.1.2 use symmetric-key
cryptography. The described networks require that the keys be distributed before
deploying the sensor nodes. Those schemes do not scale well and often only o�er link
layer security instead of end-to-end security. Thus, security of the entire network is
at risk if an attacker can compromise a few nodes. In a network, which supports
end-to-end security, it does not matter if the underlying network infrastructure is
only partially under the user’s control as pointed out in reference [121]. An o�ce
scenario, which includes a common infrastructure for metering and climate-control
purposes, is an example where end-to-end security is favored. Here the infrastructure
is shared but the users are still able to keep their devices’ data private from other
members of the network. The provider of the infrastructure does not need to support
security mechanisms if a protocol like DTLS is used, which is integrated between
the transport and application layer in the used stack (cf. Figure 5.2). The required
security is established between the communicating applications.

The protocol IPsec, standardized in RFC 4301 [60], is a network layer security
protocol and is embedded in the IPv6 standard. Due to this it can be used when
TCP or UDP is chosen as transport protocol. The IPsec protocol provides the
following security mechanisms beyond a key exchange mechanism: Authentication
and integrity is provided through the IPsec Authentication Header protocol [61].
In addition, confidentiality is provided through the included IPsec Encapsulated
Security Payload protocol [62]. In the light weighted version of IPsec, developed
by Raza et al. in 2010 [122], the protocol was adapted to the energy and memory
constraints of sensor networks. Therefore, a compression technique for the IPsec
headers was developed in order to reduce the network overhead. Currently, the
existing implementation works with manually deployed keys instead of performing
a key exchange as provided by the standardized IPsec protocol. [122, 81]

As mentioned in Section 3.1, the protocols and algorithms (TinyIPFIX,
TinyIPFIX-Aggregation, neighbor discovery) developed in this thesis should be in-
tegrated in the application layer in order to be independent of the stack structure
below, which allows stack exchange. This fact indicates why it cannot be assumed
that the stack below the application layer supports end-to-end security. Sardouk et
al. described in their article ‘Data Aggregation in WSNS: A Survey’ another more
powerful reason to bring end-to-end security to wireless sensor networks [123]:

‘To tackle the problem of data integrity and confidentiality in WSN, two meth-
ods are proposed: the hop-by-hop encryption and end-to-end encryption. How-
ever, both of them are based on encryption mechanisms to insure confidentiality
and integrity, while trust-based security methods are recently used to insure a
better data integrity.’ [123]
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Furthermore, Sardouk et al. assumed support of aggregation functionality, which
was located on the application layer, as it is done in this dissertation by TinyAggre-
gation [123]:

‘In hop-by-hop encryption, the aggregator nodes decrypt the received sensor
nodes data to aggregate them. Thus, the aggregator nodes are vulnerable to at-
tack. End-to-end encryption overcomes this vulnerability by keeping the sensor
nodes data encrypted till arriving to the sink. Hence, it provides end-to-end
privacy between each sensor node and the sink. Indeed, aggregate encryption
data is not an easy issue. [. . . ] In end-to-end encryption, the deployment of
higher level of security is easier than hop-by-hop encryption. That is due to
the ability of the sink to execute more complicated algorithms and store more
data.’ [123]

Protocols addressing the previously mentioned issue, which o�er application layer
security, are Sizzle [124], SSNAIL [125], and Tiny-3-TLS [126]. Such protocols make
assumptions of the underlying transport layer (e.g. reliability) and include key
exchange mechanisms. Those key exchange mechanisms are based on asymmetric
cryptography and ported to wireless sensor networks. [124, 125, 126, 81]
The protocol Sizzle is based on elliptic curve public key cryptography, and rep-
resents a secure web server stack, including HTTP and SSL [124]. The protocol
supports server and client authentication handshakes as well as session resumption.
For a successful handshake and data transfer phase a reliable connection is required;
for example, TCP can be used here. The research group implemented Sizzle for
TelosB platforms and compared needed resources for a SSL implementation using
RSA handshake and ECC based handshake. As a result the RSA handshake was
completed after six seconds and needed 850 bytes of RAM. In comparison, the
ECC based handshake only needed one second and 650 bytes of RAM. In total both
handshake protocols required 2.8 kB of static RAM for their whole
application. [124, 81]
Nearly the same amount of handshake time is needed for the implementation of
SSNAIL protocol [125]. A SSL implementation using ECC during the handshake
phase is performed by SSNAIL. In contrast to Sizzle a light weighted TCP/IP stack
is used for communication purposes. The SSNAIL protocol provides 80 bits of se-
curity through 160-bit ECC keys and 1,024-bit RSA keys. But RAM consumption
is two times higher on average than the Sizzle implementation. [125, 81]
In 2006 Fouladgar et al. presented a trust delegation protocol for wireless sensor
networks called Tiny-3-TLS [126]. This protocol is based on TLS and considers
the authentication of a sensor node with a receiver (= remote terminal) outside a
network. In general, a gateway is used as an intermediary, which removes the bur-
den of asymmetric cryptography from the sensor nodes and supports them in the
TLS handshake with the receiver. The established Tiny-3-TLS protocol assumes
a common shared key between the gateway and the sensor node. If the gateway
is fully trusted and a common key is established, only one symmetric decryption
and encryption operation must be performed by the sensor node. In the case of a
partially trusted gateway, a Di�e-Hellman key exchange protocol must additionally
be performed. [126, 81]

4.3.2 Design Decisions for the TinyDTLS Solution
Depending on the results of the previously discussed approaches in Section 4.3.1
focusing on public key cryptography and the attack possibilities on wireless sensor
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network as presented in Section 3.3, a standard-based approach across all com-
munication layers scales best for heterogeneous networks. Furthermore, by taking
advantage of the capabilities of a new embedded platform, a stronger two-way au-
thentication handshake is adopted instead of the one-way authentication performed
in Sizzle [124]. The chosen implementation must also support network updates which
can happen if a node fails or enters the network.

The TinyDTLS solution presented in this doctoral thesis is a security architecture
implementation based on standards across the whole network stack. It is assumed
that the internet is connected by IPv6 and parts of the sensor nodes also support
IPv6 communication by running an implementation of 6LoWPAN such as BLIP
(cf. Figure 3.2). The implementation provides end-to-end security for sensor
networks connected to the Internet and supports UDP on the transport layer.
IEEE 802.15.4 is used for the physical and MAC layer. [81, 121, 127]
As mentioned before it is planned to add new features to the established stack by
adding it on the application layer, which is also the case with the Datagram TLS
(DTLS) implementation presented in this thesis. Such an implementation on the
application layer has advantages and disadvantages at the same time. Easy mod-
ifications of the security implementation are possible and can be deployed to the
devices directly with other applications at the same time. [81, 121, 127]
As a drawback this implementation method makes some assumptions on lower layers.
Those assumptions can be reliability and packet size during transmission. In order
to solve the reliability problem, DTLS was chosen, because it implements its own
reliability mechanism during the handshake phase. DTLS itself is a modification
of TLS for the unreliable UDP and inherits its security properties [23]. The DTLS
implementation supports authentication, integrity, and confidentiality that are just
a part of general security goals previously presented in Section 3.3. [81, 121, 127]

In the developed TinyDTLS implementation the focus lies on end-to-end commu-
nication security applications and relies on other schemes for low communication
layer security. A typical scenario could be a shared o�ce building where each party
subscribes to only a part of the sensor readings. Those parties wish to keep the
data they subscribe private from other parties. In order to reduce network costs,
they share a common communication network. This simple and intuitive example
shows the request for proper authentication of data publishing devices and access
control throughout a network. These problems can be solved by adding an Access
Control Server (ACS) into the established architecture, which is a trusted entity.
Compared to the commonly used sensor hardware the server hardware has much
more resources, where for example the access rights for the publishers of the secured
network can be stored. In order to fulfill this requirement unique identities for each
publisher are needed. In the Internet this requirement can be solved with the help of
public key cryptography, where identifiers provide X.509 certificates. Those certifi-
cates contain the public key of an entity and its common name together with other
information. The certificate is signed by a trusted third party - called Certificate
Authority (CA). As a result the signature allows the receiver to detect modifications
to the certificate and the certificate authority verifies the identity of the entity that
requested the certificate. The administrator of the network can either run such a
certificate authority or one of the established Internets certificate authorities can be
used. [81, 121, 127]

Today notebooks o�er the opportunity to use an integrated Trusted Platform Module
(TPM) for the above described purposes. Such a TPM is a cryptographically chip.
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This chip supports RSA key generation, built-in RSA encryption and decryption,
and secure key storage. The aim of the development of such a chip in cooperation
with the software on the notebook was it to increase the reliability and trustwor-
thiness of a system. The main work is done by a TPM microcontroller. Together
with RSA functionality a storage root key can be stored, which depends on the ma-
chine configuration (cf. Section 3.3.3). This machine configuration is built upon the
hardware and the software of the machine during booting. This key is the root for
all required derived keys. If it is lost or damaged, data cannot be restored. A more
detailed description of the Trusted Computing strategy can be found in the book
‘A Practical Guide to Trusted Computing’ written by David Challener et al. [92].

The research institute CSIRO in Australia showed that RSA could be used in sen-
sor networks. Therefore, they developed the sensor platform OPAL which has a
Trusted Platform Module embedded [128, 33]. Currently, the certificate of a Trusted
Platform Module equipped publisher and the certificate of a trusted certificate au-
thority must be stored in the publisher prior to development, which means that
an update during boot phase is not possible as suggested in common notebook
solutions. [128, 33, 81]
In general, a wireless sensor network also consists of sensor nodes without such a
special chip; therefore authentication via the DTLS pre-shared key cipher-suite will
be supported in the future. In this case a small number of random bytes are cho-
sen which are preloaded to the publisher before deployment in order to derive the
actual key. This newly established secret must also be available for the access con-
trol server, which will disclose the key to devices with su�cient authorization. The
described system architecture is summarized in Figure 4.8. [81, 121, 127]
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Figure 4.8: Overview of DTLS system architecture

4.3.2.1 Specification of Secure Communication Channel Establishment

For better understanding the setup shown in Figure 4.8 is used as the established
network. It is assumed that a data publisher is an OPAL node or a TelosB node.
If a data publisher wants to join the network, the node needs to establish a secure
connection to a pre-configured subscriber. As mentioned in Section 4.3.2 the nodes
in the wireless sensor network can have di�erent capabilities and, therefore, must
chose the appropriate DTLS cipher suite. [81, 121]
If the publisher is a node with an embedded TPM chip, it can perform a fully
authenticated handshake with the subscriber. In this case, the subscriber acts as
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the DTLS server during this handshake. The publisher and the subscriber trans-
mit their RSA certificates in X.509 format. As mentioned in Section 4.3.2 those
certificates have been signed by a trusted certificate authority with its private key.
This guarantees that the certificate has not been modified. Publisher and subscriber
can be sure of each other’s identity if both keep their respective RSA private keys
secret. [81, 121, 127]

In the presented architecture sensor nodes are the most vulnerable entities in the
network. If an attacker can gain access to such a sensor node - called physical
tampering - he can also gain access to the stored information, such as the private key.
As a result he can compromise the sensor node and receive full access to the network.
In order to prevent this, the RSA private key must be stored in a tamper-proof TPM
chip and never be passed on outside. As a consequence all operations using this RSA
key must be performed in this chip. In addition, the attacker has a lower chance to
perform physical tampering and the authentication during the handshake phase is
guaranteed. During the handshake the publisher checks the identity information of
the subscriber’s certificate against the pre-configured identity. The subscriber has
the option to do the same with the access control server in order to verify the access
rights of the publisher. [81, 121, 127]

ClientHello*
ClientHelloVerify*

ClientHello

Finished

ChangeCipherSpec,      Finished

ServerHello, Ceritifcate,
[Certificate Request], ServerHello Done

[Certificate], ClientKeyExchange, 
[CertificateVerify], ChangeCipherSpec

Client Server

[ ] omitted message during server authenticated handshake         

       encrypted                      *   optional messages  

Figure 4.9: A fully authenticated DTLS handshake

Figure 4.9 illustrates the message flow of a fully authenticated DTLS handshake.
Individual messages are grouped according to their direction and occurrence se-
quence. The first two steps are optional messages in order to protect the server
against Denial-of-Service (DoS) attacks (marked with *). The client has to prove
that he can receive and send data by resending its ClientHello message in step
3 with the cookie sent in the ClientHelloVerify message by the server. The
ClientHello message contains the protocol version supported by the client as well
as the cipher suites that it supports. In the next step the server answers with
its ServerHello message that contains the cipher suite chosen from the list of-
fered by the client. The server also sends a X.509 certificate to authenticate itself
followed by a CertificateRequest message if the server expects the client to au-
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thenticate himself. The ServerHelloDone message only indicates the end of step 4.
If requested and supported, the client sends its own certificate message at the be-
ginning of step 5. The ClientKeyExchange message contains half of the pre-master
secret encrypted with the server’s public RSA key from the server’s certificate. The
other half of the pre-master secret was transmitted unprotected in the ServerHello
message. The keying material is subsequently derived from the pre-master secret.
Since half of the pre-master secret is encrypted with the server’s public key, it can
only complete the handshake if it is in possession of the private key matching the
public key in the server certificate. Accordingly, in the CertificateVerify message
the client authenticates himself by proving that he is in possession of the private
key matching the client’s public key. He does so by signing a hashed digest of
all previous handshake messages with its private key. The server can verify this
through the public key of the client. The ChangeCipherSpec message indicates that
all following messages by the client will be encrypted with the negotiated cipher
suite and keying material. In step 6 the Finished message contains an encrypted
message digest of all previous handshake messages to ensure that both parties are
indeed operating based on the same unaltered handshake data. Finally, the server
answers with its own ChangeCiperSpec and Finished message to complete the
handshake. [81, 121, 127]
If the sensor node is a platform without a TPM chip, it has to perform a
variation of the TLS pre-shared key cipher suite [81]. In this case, pre-installed
random bytes are used as protokeys. Those bytes are used to derive a pre-shared
key for a session. The publisher sends its identity during the ClientKeyExchange
message of the handshake instead of a certificate. In addition, the publisher adds
some randomly generated bytes to its pre-shared key identity in order to form a ses-
sion identity. In the next step the publisher derives the pre-shared key by applying
a hash-based message authentication code (HMAC) function to the session iden-
tity with the protokey as key. The subscriber authenticates with the access control
server and requests the pre-shared key for the publisher’s session identity. In this
scenario the access control server is the only fully trusted entity allowing safe storage
of the protokey. Based on the session identity and the protokey the access control
server generates the pre-shared key for the subscriber. This key is transmitted to the
subscriber via the established (D)TLS secured connection. Here a chain of trust is
assumed. [81, 121, 127]
In comparison to the previously presented approach with a TPM including pub-
lisher the publisher in this case places less trust in the subscriber. The publisher
requests an authentication of the subscriber by the access control server together
with the generation of a session key. Due to the embedding of a third party
(the access control server) the authentication in this scenario is weaker than in
the TPM scenario. [81, 121, 127]
If the DTLS handshake is independent of the chosen authentication method, it is
possible to establish an IP communication for upcoming data transfer between sub-
scriber and publisher (cf. Figure 4.10) [81]. It is now assumed that a subscriber
wants to establish a communication with a special publisher. [81, 121, 127]
First, the subscriber requests an access ticket from the access control server. There-
fore, the subscriber must verify the requested publisher and the communication
type. Communication types can be read, write or read/write. If the access
right check performed by the access control server is positive, it sends the corre-
lated request to the publisher. This request is an information tuple consisting of
peer address, connection type, and connection timeout. An attack is unsuccessful,
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because the connection between publisher and access control server is encrypted.
Now it depends on the publisher whether the access is allowed or not. If the pub-
lisher accepts the request, a DTLS handshake is initialized with the subscriber to
establish a secure connection, followed by the data transfer between subscriber and
publisher. [81, 121, 127]

DTLS Handshake

Access Control Server Subscriber Publisher

Access Ticket
Accept 
Ticket

Data Transfer

DTLS Handshake

Connection 
Request

Subscriber

Figure 4.10: Connection establishment for data transfer

4.4 Graphical User Interface
Today the call for graphical user interfaces (GUIs) occurs everywhere. Users want
to work by clicking buttons without typing long commands into terminals. On the
one hand the graphical user interface should be user friendly and intuitive usable.
On the other hand, it should support di�erent vendors and user requirements. In
general, those challenges cannot be solved with one graphical user interface for all
possible applications. Thus, many di�erent and individual solutions exist, which
are developed for one special application (e.g. simulation, visualization [129]). The
design decisions can be influenced by available solutions mapping other requirements.
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4.4.1 Related Work

Currently graphical user interfaces for wireless sensor networks are mostly available
for simulation tools. Those simulation tools are restricted to special node hard-
ware and operating systems. For example, the simulator AVRORA just supports
TinyOS 1.x and the platforms MICA and MICA2 [130]. If someone wants to test
the programs on higher versions of TinyOS, it is not possible and the code must be
re-programmed following the requirements of TinyOS 1.x. The same problem occurs
if the program was developed for other platforms except MICA and MICA2.
Another simulation tool called TosGUI was developed 2002 with the goal to simu-
late di�erent network topologies in order to analyse the performance of the planned
network [131]. This tool also requires the program code to follow TinyOS 1.x re-
quirements. Both simulation tools are open source and based on Java. Another open
source tool is TOSSIM [132]. All existing simulation tools have the disadvantage
in common that a whole network is configured and the user cannot make updates
during runtime.

4.4.2 Design Decisions and Specifications for the GUI

The graphical user interface developed during this doctoral thesis was implemented
in Java within the scope of the bachelor thesis by Andre Freitag [133]. It allows the
user to setup the network during runtime. The user can program the sensor nodes
as needed by following an application specific menu where hardware can be specified
in detail and which code should be performed. The user can also define the ID of
the node, which should be unique for each node. Additionally, the user can verify
the communication channel in order to allow the activation of independent wireless
sensor networks at the same time. [133]
The established graphical user interface was especially developed for the performed
solution for TinyIPFIX and the optional extensions introduced in Section 4. The
supported operation system of the applications is TinyOS 2.1.1 and currently all
available platforms working with this operating system are supported. The structure
of the implemented graphical user interface can be subdivided into the following
tasks (cf. Figure 4.11) [133]:

1. Configuration of the programming code for individual platforms.

2. Displaying the current running status of the wireless sensor network.

3. Exporting data to di�erent analysis tools.

4. Importing analysis and visualization results.

As indicated in Figure 4.11 the graphical user interface is integrated on the server
side. Data received by the sink is transmitted via a wired connection to the server.
In comparison to Figure 5.7 the received data is now transmitted to the graphical
user interface instead of the AutHoNe infrastructure. In this case, the logical control
communication link is a bidirectional link in order to allow communication to the
GUI-components as well as from the GUI to the components in the wireless sen-
sor network. The latter is used if the sensor nodes are programmed with updates.
All logical control communication links within the graphical user interface are bidi-
rectional in order to ensure information exchange between all components. [133]
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When data is received, the data is forwarded to the so called WSNDriver [133]. The
WSNDriver performs decoding procedures in the following two directions using an
XML file as input [133]:

1. Decoding of TinyIPFIX packets received from the wireless sensor network into
virtual representation data format for graphical user interface.

2. The other way round.

If TinyIPFIX packets are received from the wireless sensor network, the WSNDriver
translates those received TinyIPFIX packets. The used XML file includes informa-
tion about the hardware and equations in order to calculate the measured values
into formats (e.g. hexadecimal into decimal) required for upcoming tasks (e.g. visu-
alization). From this point on the whole data is available in a virtual representation
of the wireless sensor network within the graphical user interface. [133]
In the performed decoding step the TinyIPFIX data packets are decoded according
to the corresponding templates and additional information is added to each entry,
such as value type and value unit. If the received TinyIPFIX packet includes an
aggregated data packet, it is split into its components from this stage on. If the vir-
tual representation was built, the included GUI Framework and the Export/Import
Client within the graphical user interface only work with this virtual representation
of the data instead of the original data. [133]
The virtual representation of the wireless sensor network is implemented in the class
WSN, which is subdivided as illustrated in Figure D.2 representing an UML illus-
tration for an exemplary sensor network analog to reference [133]. The class WSN
includes information about nodes and the topology of the wireless sensor network.
The class WSN is connected to the two classes WSNTopology and WSNNodes
o�ering information about the links within the network (respectively about the
data transmitted by the nodes). Those two classes are connected to the class
WSNNodeTopology::Link which o�ers information about source and target. The
class WSNNodes has an additional connection to the class WSNNode::Datum in-
cluding information about the type, value, and unit represented by the sensor node.
Figure D.2 shows an example. [133]
This virtual representation is picked up by the layout of the GUI framework, which
supports the previously mentioned tasks discussed in detail in Sections 5.4.1
to 5.4.3. The underlying framework of the graphical user interface can be subdivided
into two parts: (1) common interface and (2) modules including drivers and data
handlers. [133]
The common interface is represented by the class WSN. The interface o�ers the
requested information of the underlying wireless sensor network. This support also
includes data import of the network towards the modules as well as adding or delet-
ing of modules. The latter includes the required drivers and data handlers, which
both are called WSNModules. The class WSN has only information about nodes
and topology. Everything else must be handled by the modules, which include more
information about the wireless sensor network architecture. For example, the class
WSNDriver is responsible for the information extraction from the network com-
ponents in order to submit the information to the model. This support is only
possible, because it has detailed information about the real topology and supports
required functions (e.g. manipulation, node shut down). The interactions between
the di�erent components are illustrated in Figure 4.12. [133]
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Figure 4.12: UML draft of framework structure

The framework o�ers di�erent events in order to support manifold functionalities
as described in the upcoming sections. The events include calls for update nodes,
update topology, or interact with modules. If nodes enter or leave the wireless
sensor network, the class WSN recognizes this first. It decides for which module
this information is interesting and shares it via a forwarding procedure. Due to
the virtual representation of the real world wireless sensor network the update is
independent of the underlying architecture. In order to extend the functionality of
the classes WSN or WSNModule new events are defined and added. A more detailed
description is given in Section 5.4. [133]

4.5 Summary and Findings

This chapter described design decisions for the developed secure data transmission
solution in this dissertation keeping the constraints of wireless sensor networks and
related protocols from IP networks in mind. The first two Sections 4.1 and 4.2
focused on data transmission in sensor networks. Here related protocols from sensor
networks were introduced. Those protocols together with the collected information
in Section 3 inspired the finally realized protocols in this dissertation. First of all,
the e�cient data transmission protocol TinyIPFIX was developed based on the stan-
dard IPFIX together with compression techniques in order to reduce the occurring
overhead by IPFIX message and Set headers. It is followed by an extension, called
TinyIPFIX-Aggregation, in order to reduce the tra�c within the network by pre-
processing data on selected points within the wireless sensor network.
Due to the connection between data and sensible information as well as the integra-
tion of wireless sensor networks to the Internet of Things, a secure data transmission



4.5. Summary and Findings 73

had to be established. Therefore, this chapter in Section 4.3.1.3 pointed out what se-
curity options already exist in wireless sensor networks and why end-to-end security
became important. End-to-end security was already supported by IPsec included
in the 6LoWPAN stack (respectively by BLIP as a derivate of 6LoWPAN) as a
network security feature [68]. In order to support stack exchange below the applica-
tion layer, as motivated in Section 3.1, and ‘to tackle the problem of data integrity
and confidentiality’ in wireless sensor networks [123], it was essential to support
end-to-end security on the application layer. Finally, a developed end-to-end secu-
rity solution, called TinyDTLS, was presented including a sensor node with special
hardware (TPM chip).
Last but not least, a graphical user interface was established and introduced in order
to optimize user’s comfort. The graphical user interface uses a virtualization of the
deployed wireless sensor network in order to be flexibly adaptable to other settings.
It o�ers the opportunity to configure hardware, to manage network components, to
visualize network status and data, and to store collected information.
Regarding the mentioned research questions on e�ciency the following contribution
has been made in this chapter:
(E1) Is the IP Flow Information Export (IPFIX) protocol a viable solution for
transmission of sensor data in wireless sensor networks?

In Section 3.4 this research question was answered with ‘Yes’. It was mentioned
that a drawback is the additional overhead of 20 bytes caused by IPFIX headers
(IPFIX message and Set header) that reduce free space in the payload of each
message. In section 4.1.3 header compression techniques were introduced in
order to solve the drawback. Three di�erent compression techniques were
developed that had a pre-header in common: defensive compression, modified
defensive compression, and aggressive compression. This pre-header specifies
the field sizes of the IPFIX message and Set header. The pre-header in the
aggressive compression technique has a minimum size of three bytes which
means a compression of 85% (cf. Figure 5.4).

(E2) Is it possible to combine data pre-processing techniques (e.g. aggregation)
with the IPFIX protocol within the network?

Yes. Depending on the chosen application scenario for the deployed wireless
sensor network it might be interesting to pre-process data within the network
itself. This work incorporates the reduction of network tra�c throughout the
whole network. Section 4.2 introduced existing aggregation techniques in wire-
less sensor networks such as TAG, AIDA and SIA. Those protocols are very
specified and were developed for special applications. In the case of IPFIX a
general pre-processing technique was chosen that only aggregates data. There-
fore, the TinyIPFIX-Aggregation framework was developed o�ering message
and data aggregation. For this extension support new templates had to be
specified for IPFIX and a neighbor discover algorithm had to be integrated.
Additionally, a user can manually log on the aggregator node in order to mod-
ify the performed aggregation within the network (e.g. degree of aggregation,
performed aggregation function from AVG to MAX).

Regarding the mentioned research questions on security the following contribution
has been made in this chapter:
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(S1) Is it possible to secure data transmission in wireless sensor networks with
known standards from IP networks?

In Section 3.4 this research question was answered with ‘Yes’. It was men-
tioned that restrictions concerning resource consumption existed. Section 4.3
introduced security considerations and a brief overview was given of existing
security protocols for wireless sensor networks. First, di�erent cryptographic
methods (e.g. RSA, AES, TinyPK, TinySec, Tiny-ECC) were characterized,
followed by symmetric key management solutions (e.g. PIKE, solutions by
Echenauer and Gligor), and end-to-end security solutions (e.g. IPsec, Sizzle,
SSNAIL, Tiny-3-TLS). All introduced protocols require di�erent resources of
the sensor nodes, and, therefore, nodes can be exhausted quickly. Due to the
comparison of the di�erent approaches, it was pointed out that a standard-
based approach across all communication layers scaled best for heterogeneous
networks. Depending on the technology development of embedded platforms
(e.g. OPAL including TPM chip) more security functions can be supported
that allow authentication of the participating parties.

(S2) Can DTLS be performed on strongly constrained hardware as used in wireless
sensor networks?

Yes. DTLS can be performed on constrained hardware. Section 4.3.2
described the required modifications for a DTLS transfer on wireless sensor
networks. In this dissertation a new platform, called OPAL, was integrated
in the wireless sensor network. This platform includes a Trusted Platform
Module that allowed it to work with certificates. Therewith, a strong two-way
authentication handshake can be adopted to the communication participants
in the wireless sensor network. The included TPM chip on the platform al-
lowed it to save the RSA private key to be stored in a tamper-proof location
and prohibit to pass it outside. As a consequence all operations using this
RSA key had to be performed in this chip. All these characteristics a�ect the
attacker’s work. The authentication, which uses certificates during the hand-
shake phase in a standard DTLS handshake (cf. Section 3.3.2), o�ers the same
properties as authentication performed via the conventional TLS protocol in
the Internet. In the case of a platform without a TPM chip, it was shown that
a weaker authentication can be supported by using a variation of the TLS pre-
shared key cipher suite. Here the publisher places less trust in the subscriber
and required an authentication of the subscriber by the access control server
together with the generation of a session key.
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As shown in Section 2.5 the application area of wireless sensor networks is man-
ifold but the main tasks - collecting data and transporting it to a sink - are the
same; the intermediate operations and protocols can vary. A home monitoring
scenario was chosen to validate the TinyIPFIX protocol and its extensions. The
implemented protocols - TinyIPFIX and its extentions - are flexible in order to sup-
port di�erent applications and hardware vendors at the same time, as mentioned in
Section 4.1.2. They currently require the operating system TinyOS 2.x. Protocols
and functionalities (e.g. UDP-Shell, certificate creation) can be ported to another
operating system (e.g. Contiki) with little changes as well as used with other hard-
ware (cf. Section 2.4.3).

Throughout the wireless sensor network experiments in this dissertation the operat-
ing system TinyOS 2.1.1 with BLIP support is used as the operating system of choice
together with Berkeley Motes IRIS and TelosB, which support IEEE 802.15.4/Zig-
Bee and work on the 2.4 GHz band [31, 32].
For the IRIS platform two di�erent sensor boards are available. The MTS400 has
either a temperature and humidity sensor combined or a barometric pressure com-
bined with a temperature sensor on board as well as a light sensor and voltage.
GPS is optional and included in MTS420. The MTS300 includes sensors for light,
temperature, and acoustic together with an acoustic actuator. Due to the physical
positioning of the sensors on the board MTS300, it is not allowed to activate the
temperature and light sensor at the same time, because the activation can damage
both sensors. If an application uses the MTS300, either the 3-tuple temperature
sensor, acoustic sensor and acoustic actuator are activated or the 3-tuple light sen-
sor, acoustic sensor and acoustic actuator. This fact must be taken into account
when deploying the wireless sensor network. For technical details it is referred to
the ‘MTS/MDA Sensor Board Users Manual’ from Crossbow Inc. [31].
The TelosB node produced by the company Advantic is a MTM-CM5000-MSP sensor
node with an external antenna including on board sensors for temperature, voltage,
and humidity [32]. The TelosB platform is also o�ered by Crossbow Inc., but not
used here to prove the protocol’s support in a wireless sensor network consisting
of di�erent vendors’ hardware. In addition, TelosB nodes produced by Advantic
include an antenna with a better radio range compared to TelosB node produced
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by Crossbow Inc., which doubles the radio range to 300 m outdoors and 40-50 m
indoors [32, 31].
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Figure 5.1: AutHoNe setup: simplified TinyIPFIX message structure

The assumed basic scenario for the implementation description is illustrated in
Figure 5.1. The left part of the figure shows a building scenario, as assumed in
the AutHoNe project, consisting of three rooms where sensor nodes are deployed.
Here sensor nodes (marked white) are only data collectors and aggregator nodes
(marked grey) forward received individual messages without modification towards
the sink (node ID 0). The functionality of intermediary nodes (marked grey) can
di�er depending on their performed protocols (e.g. message/data aggregation).
After collected data is received at the sink, the data is forwarded to the server.
The server includes the required infrastructure in order to translate the received
data by using XML-based meta data. The translated data is further forwarded
to applications, such as the Knowledge Agents as part of the AutHoNe infrastruc-
ture, in order to make the collected sensor data available for management units
(e.g. Autonomic Manager to coordinate functionality of lightning or heating con-
trol). The above described wireless sensor network consists of various hardware
from di�erent vendors in order to proof the flexibility of the developed protocols
independent of the application scenario in this dissertation. Therefore, protocols
used must allow integration of new vendors or setups (e.g. other sensor tuples)
with a minimum of manual configuration. The established wireless sensor net-
work uses IPv6 for communication purposes, because it was decided that BLIP
is the IP communication support of choice for the experiments in this dissertation,
which is included in the operation system TinyOS 2.1.1. as an existing implemen-
tation [70]. Today, in the Internet of Things it is assumed that networks use IPv6
instead of IPv4, where di�erent arguments exist for this decision such as extended
address space [63, 1]. If IPv4 is required on the server side, a parser must be in-
tegrated on the server for translation purposes. In the presented wireless sensor
network experiments UDP is chosen as the transport protocol of choice, because
todays’ available wireless sensor network deployments prefer to use UDP.

The final network stack developed during this doctoral thesis is shown in
Figure 5.2. Marked in bold in the application layer are the newly developed protocols
and supported functionalities (e.g. UDP-Shell required for TinyIPFIX-Aggregation)
by the wireless sensor network in the experiments. Due to previously described re-
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quirements and limited sensor node hardware (cf. Section 2.2), protocols with little
overhead are needed.

Figure 5.2: Structure of established network stack

The upcoming Sections 5.1 - 5.4 document the implementation of the TinyIPFIX
protocol and the new features introduced to the application layer. These features are
TinyIPFIX-Aggregation and DTLS support on the sensor node plus export/import
support and a graphical user interface (GUI) for configuration purposes on the user
side.

5.1 Implementation of the TinyIPFIX Protocol
The developed TinyIPFIX protocol fulfills the requirements for e�cient data trans-
mission of sensor data in wireless sensor networks and allows a high level of flexibility
for hardware changes (e.g. using TelosB instead of IRIS) and application require-
ments as introduced in Section 3.2 and Section 4.1. TinyIPFIX is located in the
application layer. Therefore, it does not require changes in the protocol specifica-
tions if the underlying stack is exchanged (e.g. use 6LoWPAN implementation of
Harvan and Schönwälder [67] instead of BLIP [71]). However, when adapting IPFIX
to wireless sensor networks their particularities have to be taken into account. The
next section thus briefly describes the message format used by the operating system
TinyOS, followed by the resulting packet structure with TinyIPFIX messages as
the individual payload and the corresponding wiring of the implemented protocol
components under TinyOS.

5.1.1 TinyOS and TinyIPFIX Message Format

In general, wireless sensor networks with the presented hardware in
Section 2.2 use TinyOS as operating system. The main advantages of TinyOS are the
modular structure and the ability to work over the communication standard IEEE
802.15.4 (cf. Section 2.4.1). A maximum transmission unit of 127 bytes is supported
by the RF transceiver CC2420 an IEEE 802.15.4 compliant radio transceiver [18].
Figure 5.3 shows the default message structure under TinyOS as described in ref-
erence [25]. Grey marked fields are generic ‘Active Message fields’ defined in the
TinyOS library tos/types/AM.h and the payload marked with red dashed lines is
defined by the application (e.g. TinyIPFIX) [25].
The TinyOS packet starts with a one byte sized Length field specifying the mes-
sage length in total. The following two bytes long Frame Control Field (FCF)
results from the communication standard IEEE 802.15.4. The next field is the
Frame Control Field (FCF) for ordering purposes with one byte dimension. The
Destination PAN identifier (DestPAN) specifies in two bytes the address of the
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0 23 24 717 8 47 48 63 6431 32

Figure 5.3: Packet structure under TinyOS [bits]

Personal Area Network (PAN). In the next two bytes field Addr the address of
the destination node is specified. The chosen active message type is specified in
the one byte AM field. The AM information can be compared to a UDP port, which
the communication partners agreed upon. The Grp field is a user defined group
identifier, which can be optionally used in order to specify multiplexing techniques
(e.g. partitioning). The second to last field is variable in size and includes the indi-
vidual payload (marked red dashed). This field has a range up to 102 bytes and on
default 28 bytes. The maximum transmission unit depicts the maximum size. The
TinyOS packet is concluded with the Cyclic Redundancy Check (CRC) field. [25]
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Figure 5.4: Exemplary TinyOS message showing details of payload structure

In the case of TinyIPFIX the maximum transmission unit is extended to 127 bytes al-
lowing a maximum payload of 102 bytes on the MAC layer as the maximum size sup-
ported by IEEE 802.15.4. The resized individual payload field o�ers enough space to
transmit TinyIPFIX messages. The TinyIPFIX message starts with the IPFIX head-
ers (pre-header, IPFIX message header, Set header) that have a range from 22 bytes
in worst case down to three bytes in the optimal case with aggressive compression
(cf. Section 4.1.2). The resulting packet structure is illustrated in Figure 5.4 where
the components are listed with their sizes.
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The user can select the performed header compression technique by activating the
corresponding flag in the file ipfix.h. The following opportunities are
available [98]:

• COMPRESSED_HEADER = 0 activates the aggressive compression.

• COMPRESSED_HEADER = 1 activates the uncompressed header version
with 22 bytes header size (worst-case).

The implementation is specified in the file tinyipfix.nc. The next part of the
TinyIPFIX packet is either a Template Record or Data Record.

dumping data on serial port  
len: 90
00 ff ff 04 00 52 00 41 
42 0a 40 
20 01 06 38 07 09 12 34 00 00 00 00 ff fe 04 00 
20 01 06 38 07 09 12 34 00 00 00 00 ff fe 00 12 
04 01 d2 04 00 2f 9e 9e
04 27 16 01 00 00 04 80 a0 00 02 f0 aa 00 aa 80 a1 00 02 f0 aa 00 aa 80 
a4 00 04 f0 aa 00 aa 80 a5 00 02 f0 aa 00 aa
serial_input_ipv6_compressed()
serial_input()
--- select() fired ---
serial_input()
--- select() fired ---
serial_input()
--- select() fired ---
serial_input()
--- select() fired ---
serial_input()
dumping data on serial port  
len:64
00 ff ff 04 00 38 00 41 
42 0a 40 
20 01 06 38 07 09 12 34 00 00 00 00 ff fe 04 00 
20 01 06 38 07 09 12 34 00 00 00 00 ff fe 00 12 
04 01 d2 04 00 15 00 d9 
08 0d 17 01 f5 01 ce 00 01 d4 c2 04 00
serial_input_ipv6_compressed()
serial_input()
--- select() fired ---

    Payload with TinyIPFIX message including
Data Record

TinyOS Serial Forwarder Header

tinyos@tinyos-desktop: ~/code/tun

Payload with TinyIPFIX message including 
Template Record 

TinyOS Serial Forwarder Header

Figure 5.5: Tunnel recording of TinyIPFIX transmission using BLIP

Figure 5.5 shows a transmission example for Template and Data transmission using
TinyIPFIX in a TinyOS packet in hexadecimal format, where blue boxes indicate
the TinyOS Serial Forwarder Header7 and red boxes the individual TinyIPFIX pay-
load. In between those boxes information required by the chosen IP communication
protocol (here: 6LoWPAN in compressed version using long addresses [69]) is con-
tained, e.g. IP addresses, port information, and payload length.
In the example shown, the value len indicates a Template transmission of 90 bytes
length (respectively a Data transmission with 64 bytes). Those figures include all
headers and individual payloads except the ones for IEEE 802.15.4. In the shown
data transmission only one Data Record is transmitted including values for temper-
ature, sound, node time, and node ID.

7Source: http://docs.tinyos.net/tinywiki/index.php/Mote-PC_serial_communication_and_

SerialForwarder_(pre-T2.1.1)

http://docs.tinyos.net/tinywiki/index.php/Mote-PC_serial_communication_and_SerialForwarder_(pre-T2.1.1)
http://docs.tinyos.net/tinywiki/index.php/Mote-PC_serial_communication_and_SerialForwarder_(pre-T2.1.1)
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Data transmission could include several Data Records, because the maximum pay-
load size of 102 bytes is not scooped. Assuming the additional Data Records refer
to the equal Template, three additional Data Records would fit into the message.
With the underlying BLIP stack the maximum IPFIX payload size can be expanded
up to 1,024 bytes, because BLIP supports packet fragmentation.
Recorded payload of the template transmission (marked red dashed) shown in
Figure 5.5 is 39 bytes long and can be decoded as follows:

• {04 27 16} æ TinyIPFIX header in aggressive compression format whereas
{27} indicates a total TinyIPFIX payload of size 39 bytes.

• {01 00} æ Set ID (here: 256)

• {00 04} æ Number of Template Fields (here: 4)

• {80 a0 00 02 f0 aa 00 aa} æ Template Fields for Temperature value which
include the following information:

– {80 a0} æ Type ID
– {00 02} æ Data Length ID in bytes
– {f0 aa 00 aa} æ Enterprise ID (here: 403767130)

• {80 a1 00 02 f0 aa 00 aa} æ Template Fields for Sound value

• {80 a4 00 04 f0 aa 00 aa} æ Template Fields for Node Time

• {80 a5 00 02 f0 aa 00 aa} æ Template Fields for Node ID

As can be recognized in the Template Record, the Enterprise ID is, in this case, al-
ways the same, because all values are collected with one node and all measurement
components are produced by the same hardware vendor. In this case, the IANA ID
{f0 aa 00 aa} was assigned to this hardware vendor. The Type ID is unique for
each value. Four values are transmitted in the Template Record. The Data Length
ID depends on the value size specified by the developer. [98]
The recorded payload of data transmission (marked red dashed and dotted) shown
in Figure 5.5 has a length of 13 bytes. The first three bytes {08 0d 17} build the
TinyIPFIX header indicating that the aggressive compression technique is activated
due to its dimension. It can also be verified by the flag definition in file index.h
where COMPRESSION_HEADER was set to zero. This hexadecimal sequence must be
translated into binary format, which results in the term
{000010000000110110111} and can be interpreted based on the knowledge of the
header structure introduced in Section 4.1.3.3 as follows [98]:

• {00} æ E1=0 and E2=0 æ The optional fields Ext.Sequence Number and
Ext.SetID are not expected.

• {0010} æ Set ID Lookup Index which specifies the referred Template for
decoding purposes (here: 256).

• {0000001101} æ Length of payload including TinyIPFIX header and Data
Record (here: 13 bytes).

• {10111} æ Sequence Number (here: 23).
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The remaining 10 bytes in the payload include the TinyIPFIX data itself whereas
the following information is interpreted by using the referred Template with ID 256
and the stored XML file on the gateway as an input:

• {01 f5} æ Temperature value: 24.11¶C

• {01 ce} æ Sound value: 462

• {00 01 d4 c2} æ Node Time: 117.18 sec

• {04 00} æ Node ID: 1024

5.1.2 TinyIPFIX wiring under TinyOS 2.1.1

As a first step the TinyIPFIX protocol was implemented and modified to the require-
ments of sensor node hardware as discussed in Section 4.1. The sensor nodes periodi-
cally collect data. The measured raw data is then transported to the
TinyIPFIXlibrary. The task of this library is limited to encoding and prepar-
ing Data Records in TinyIPFIX format. The Template specified the value or-
dering in the Data Record previously. Finally, the prepared packet is forwarded
to the Network Handler and transmitted via UDP in the wireless sensor network
towards the sink. The Template Record must be announced before data itself
is transmitted in order to ensure a successful decoding of outgoing Data Records
(cf. Section 4.1.2). Now the sensor node can transmit its TinyIPFIX packets in-
cluding Data Records. [20, 98]

Figure C.1 illustrates the simplified application wiring in TinyOS. The term wiring
describes the semantics in which way all components under TinyOS are linked with
each other [25]. Red encircled are the main operative components. The generic
components (e.g. IPFIXDataSampler-16C representing temperature or light) can
exist multiple times, because only one value can be reported by each module instance.
The control flow of main operative components (interface) can be split into the
following steps [20, 98]:

1. ControllerC queries the sensors.

2. ControllerC reports the sensors’ values to tinyIPFIXC.

3. tinyIPFIXC is now responsible for the construction of the TinyIPFIX packets.

4. tinyIPFIXC transmits the TinyIPFIX packets encoded in a byte array back to
the ControllerC.

5. Those byte arrays are forwarded to the NetworkHandlerC by the ControllerC.

6. Finally the NetworkHandlerC implements the network communications
depending on the transmission protocol used and the packet can be trans-
mitted.

The collection of sensor data was implemented via an interface. This interface
must ensure an adaptation with minimal changes to the application code. Each
sensor measurement is linked to an IPFIX Field and an Enterprise ID. Currently,
Enterprise IDs for sensor data are not yet registered by IANA, which must be done
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before a real implementation (cf. Table 4.1). Those IDs must include semantics
(e.g. purpose and value range) and type length. All these semantics are essential to
ensure interoperability. If a new vendor wants to use TinyIPFIX, the corresponding
Enterprise IDs and the ID similar to those in Table 4.1 must be specified. [20, 98]
As a result required TinyIPFIX Templates can be generated automatically at the
start of a sensor node when the node queries all connected sensors with the pre-
known semantics. These semantics are known to compile time for each TinyIPFIX
application. For example, the compiling command ‘SENSORBOARD=mts400 make
iris blip’ specifies a data collector using sensor platform IRIS with sensor board
MTS400 and supports routing by BLIP. [20, 98]
Data Records are constructed in the following way: Periodically the sensor node’s
hardware sends out a read command to its sensor board. This read command is ad-
dressed to all connected sensors on the previously specified sensor board. In return
sensors answer with their individually measured values. Depending on the latency
of the network the order of incoming values vary from the order of read commands.
In order to ensure the correct value order in the resulting Data Record each sen-
sor needs to be associated with its respective Field ID, Enterprise ID, and Field
Length. The implemented bidirectional interface IPFIXDataSampler supports this
design. Each sensor is linked to exactly one IPFIXDataSampler. Figure C.1 has
two IPFIXDataSampler links, which means that in the wiring shown two di�erent
sensors (here: Temp and Light) are linked [20]. Those multiple wirings allow flexible
extensions in the implementation (cf. Figure 5.6). [20, 98]
The required components are initialized in lines 7 to 9 with their corresponding
aliases. In lines 12 and 13 hardware sensors are connected to IPFIX wrappers, fol-
lowed by connecting the wrapped sensors to the applications in lines 14
and 15. The arrow indicates the connection established between components. Those
arrows point from the user of an interface to a provider of the same interface. The
creation of the IPFIX Template is based on the wiring, which is discussed in detail
in reference [98].

  1   configuration ControllerAppC{}
  2   implementation{
  3 components ControllerC as App;
  4  
  5 // Component Intitialize 
  7 components new IPFIXDataSampler16C(0x80A0,0xF0AA00AA) as Temp;
  8 components new IPFIXDataSampler16C(0x80A2,0xF0AA00AA) as Light;
  9 components new TempHumc() as TempSens, new TaosC() as LightSens;
10
11 // Connection of hardware sensors to IPFIX wrappers 
12 Temp.Sensor -> TempSens;
13 Light.Sensor -> LightSens;
14 App.Sampler -> Temp;
15 App.Sampler -> Light;
16   }
17  module ControllerC { ...
18 uses interface IPFIXDataSampler as Sampler;
19   }
20  implementation {...}

Figure 5.6: Example of wiring IPFIXDataSampler providers to CollectorC [98]

If a node enters the established wireless sensor network, the first task is the an-
nouncement of the Template Record used, followed by the Data Records after data
acquisition. Figures A.1 and A.2 show the performed tasks in the style of the inter-
face AggregatorC.nc, because it is the same procedure as performed by TinyIPFIX
itself just with little modifications in variables. Those tasks can be used for every
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construction of sets. Both task blocks are embraced with signaling calls to indicate
either start or end of the set construction. In this example the Template ID of 256
is included in the Data Set calls in order to ensure the successful decoding later on
in the system. The big di�erence between both task blocks is in the FOR-Loop. For
Template calls the Field ID, the Field Length, and the Enterprise ID is specified. In
comparison, in Data Set’s FOR-Loop the value and the size of the value are speci-
fied. Those two lines are based on the standardization by the IETF for the IPFIX
protocol [19] and the IANA registration [74].
Figure 3.3 indicates that a Set can include several Records where each Record con-
sists of one or more Fields. Those cases can also be captured by the described calls
with help of wiring TinyIPFIX under TinyOS with multiple interface links.

5.2 Implementation of TinyIPFIX-Aggregation Framework
The TinyIPFIX protocol itself is an e�cient data transmission protocol, which can
be extended by optional functions. The TinyIPFIX-Aggregation framework is such
an optional function. Compared to Figure 5.1 the aggregator nodes (marked grey)
support aggregation techniques related to Section 4.2.2.
Figure 5.7 shows the modified scenario setup. The upper wireless sensor network
infrastructure illustrates the message flow when aggregator nodes perform message
aggregation compared to data aggregation in the lower wireless sensor network
infrastructure. First of all, it can be recognized that the number of messages in
the wireless sensor network is reduced on the communication paths from aggregator
nodes toward the sink. In the case of performing aggregation within the wireless
sensor network, new Template and Data Sets are required depending on the aggre-
gation mode used. The aggregation control logic for both cases is described in the
next section.
In Section 4.2.2 the design decisions for the implementation of the TinyIPFIX-
Aggregation framework were discussed and implemented within the scope of the
bachelor thesis by Benjamin Ertl [102]. In the established wireless sensor network
the User Datagram Protocol (UDP) is used on the transport layer included in BLIP.
In order to perform aggregation in such a network the incoming UDP messages
must be redirected from the radio control to the aggregator interface instead of
direct transmission to the next hop in the network. This functionality is performed
by the aggregator, which listens to a predefined and pre-bound UDP-port specified
during compiling of the protocol code. The sensor node that performs aggregation
knows this UDP-port and its own IPv6 address. [102]
If the aggregator receives UDP packets, an internal signaling event is activated. This
signaling event is performed by the main application component to the aggregation
component by interface commands. In general, after receiving this signaling event
the aggregator needs to make two decisions regarding the received packet [102]:

1. The aggregator must distinguish between compressed and uncompressed
TinyIPFIX packets (cf. Section 4.1.2).

2. The aggregator must distinguish between Template and Data Set.

In the presented network setup the aggressive compression approach for TinyIPFIX
headers is performed as shown in Figure 4.4c. The decision concerning the com-
pression type of the TinyIPFIX packet is determined by the first two header bytes.
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If the hexadecimal value 0x000a is coded in those two bytes, the received packet is
an uncompressed TinyIPFIX packet; otherwise it is a compressed packet. The pre-
header of the aggressive approach includes a SetID Lookup Index field, which can
have two values. If SetID Lookup Index = 1, the packet includes a Template Set;
otherwise a Data Set. The above mentioned pre-work is included in the decision tree
for the TinyIPFIX-Aggregation framework in the first grey diamond - called Data
preprocessing - illustrated in Figure B.1. [102]
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Figure 5.7: AutHoNe setup: aggregation support in simplified message structure

5.2.1 Algorithm for Message Aggregation Functionality
In the following, it is assumed that message aggregation is performed which is il-
lustrated in the left part of Figure B.1 and in the upper left part of Figure 5.7.
The functionality was implemented in the aggregation control procedure part of
AggregatorC.nc shown in Figure B.2 [102].
If those decisions are made, the next step is forwarding Template and Data Sets.
The receiving reader function is responsible for pre-processing of data. It checks the
data’s source in order to ensure the correct assignment of Template and Data Sets
for upcoming operations. This is a very important step, because decoding can
only be successful if the order of the included Data Fields corresponds to the order
announced in the Template Fields in the referred Template Set
(cf. Figure 3.3). [102]
Based on this pre-processing the aggregator is able to recognize new information
such as new Template and Data Sets or updates. All this pre-processing takes place
in the internal bu�er of the sensor node. If updated information is received, exist-
ing information is overwritten in the bu�er. In this case, the aggregation control
receives a signal indicating if aggregation can be performed or not. In the latter
more incoming packets are requested before the aggregation can be performed. In
the case of receiving an unknown Template Set, the bu�er is extended by this infor-
mation together with the IPv6 address of the source node. If unknown Data Sets
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are received, they are bu�ered only if the new Template Set was bu�ered before;
otherwise they are discarded. [102]
Every time an update of the bu�er occurs the aggregation control validates the sta-
tus of the aggregation component. This validation includes the predefined degree of
aggregation (DoA) and the predefined bu�er number of Template and Data Sets. If
predefined thresholds are reached, aggregation control goes on with pre-processing.
Depending on the bu�ered data, the aggregation control disposes of the construction
type - aggregated Template Set or aggregated Data Set - and the destination - next
sensor node or sink directly. The corresponding procedures are activated. [102]

5.2.2 Algorithm for Data Aggregation Functionality

Now it is assumed that the TinyIPFIX-Aggregation framework performs data aggre-
gation (cf. Figure B.1 right part, and Figure 5.7 lower left case). Data pre-processing
routines are the same as in mode 1 with the only exception that the aggregation con-
trol logic does not decide to pre-process received data instead of performing message
aggregation. The kind of performed aggregation function is user-driven on request.
Therefore, it is already known which aggregation function (e.g. MAX, MIN, AVG)
should be performed on what kind of data (e.g. temperature, humidity). Those
requests have input on the receiving packets and the expected raw data itself. [102]

As pointed out before, each aggregator has a predefined degree of aggregation and
a bu�er size for Templates and Data Sets. When the threshold of bu�ered Data
Sets is reached, the task makeAggregateData in AggregatorC.nc is activated. An
aggregated value over the bu�er set is computed. The activated task generates a
new TinyIPFIX Data Set based on the requested aggregated value. At the same
time the task makeAggregateTemplate computes the newly required Template Set
to insure successful decoding at the next hop or sink. Both tasks are shown in
Figures B.3 and B.4. [102]

5.2.3 Update Support of Aggregation Functionality

During the system run the aggregation mode can be modified by user input. The
user can become connected directly to an aggregator node using the implemented
UDP-Shell via netcat [102]. For successful performance the IPv6 address of the ag-
gregator and the communication port must be known. The default aggregation type
is message aggregation. [102]
If the user is connected, he can decide if the degree of aggregation or the performed
aggregation function should be modified. In the first case the subroutine - called
doa - is activated. Here the degree of aggregation can be reduced down to DoA = 1,
which is equivalent to normal forwarding without any modification; the degree of
aggregation can be increased up to the previously hard coded maximum threshold
before node deployment. [102]
If the user wants to modify the performed aggregation function, the subroutine -
called select - is used. The user can decide between MAX, MIN, AVG, and ALL
together with the sensor value he wants to perform the function on, such as temper-
ature, sound or light. [102]
Other o�ered subroutines in the UDP-Shell are poll and sendOff. If poll-mode
is activated, the aggregator directly transmits its bu�ered Template and Data Sets
without performing any aggregation to the next hop. In the sendOff- mode all sensor
nodes connected to the aggregator are requested to re-address their
packets. [102]
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The last possible mode is called reset. This mode recalibrates the connected ag-
gregator in order to perform message aggregation in the default setup and not data
aggregation anymore. It can also be used to be able to jump between the subrou-
tines of the UDP-Shell. Depending on the application scenario new subroutines can
be integrated by modifying the TinyOS ShellCommandC component, e.g. to ask for
the current node configuration. [102]

5.3 Implementation of the TinyDTLS Solution
Corresponding to the described strategies in Section 4.3.2 for secure data commu-
nication and transmission in a wireless sensor network, the already established net-
work is extended with an DTLS implementation within the scope of the master
thesis by Thomas Kothmayr [81]. Figure 5.8 illustrates the implemented solution.
The implemented DTLS code parts are adapted to the hardware resources of the
OPAL nodes that include an onboard TPM chip [33]. The underlying operating sys-
tem is still TinyOS 2.x which supports routing by BLIP implementation and UDP
transport. [121, 81]
The implemented DTLS client supports server authenticated and fully authenticated
DTLS handshakes. Those handshakes are secured via RSA X.509 certificates. The
DTLS server implementation is based on OpenSSL 1.0.0d [134]. The server solution
was chosen due to the general characteristic of a wireless sensor network where mul-
tiple sensor nodes plan to transmit their data on a secure way (e.g. using DTLS) to
the sink. The following subsections give further details about the DTLS client and
server side solution as well as the management of certificates. [121, 81]
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Figure 5.8: Overview of the established DTLS implementation

5.3.1 TinyDTLS Client Implementation

Due to the expected memory consumption IRIS and TelosB nodes are too
limited. Therefore, the OPAL node is the technology of choice, which also has a
TPM chip included. The global goal for the presented implementation is still the
elegant support and usability of components achieved by encapsulation as shown in
Figure C.2 [81]. The legend is the same as in Section 5.1.2. The implemented client
has to perform the following three steps [121, 81]:
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1. Client must issue a connection command.

2. Client has to wait for an event which signals the completion of the DTLS
handshake.

3. Client can start with data transmission.

From this point on no further action by the client has to be performed if certificates
from the DTLS handshake are stored. The completion of a DTLS handshake is
indicated by an event signal. Another signaling event occurs if the client receives
any data. [121, 81]
As discussed in Section 4.3, in order to ensure secure communication, cryptographi-
cally operations must be performed. In the presented solution the cryptographically
operations are divided into two groups. The first group - the symmetric primitives,
such as SHA-1, MD5, AES, and an abstract HMAC module - were implemented
as software components. Whereas the second group - the RSA functionality - is
supported via hardware solution. For the hardware solution the TPM chip is used
and is accessed through corresponding drivers. [121, 81]
Another problem that had to be faced was the size of the maximum transmission
unit. This was solved by the implementation of a fragmentation layer. This layer
is responsible for the interactions between the network and the implemented
DTLSFragmentationLayerP. One of the tasks of this layer is the fragmentation of
messages to meet the maximum transmission unit requirement. Another task is the
outgoing packet modification with a DTLS header. Once a secure connection is
established another task for this layer is the de- and encryption operation of mes-
sages. If those messages have the required format, they are passed on in plain text
to higher layers for further processing. The fragmentation layer is also responsible
for bu�ering tasks. Those can occur if messages cannot be passed on directly to
their destinations. [121, 81]
On the same level as the fragmentation layer, a second layer exists. This second
layer, called the handshake message layer, mainly supports message parsing of re-
ceived packets as well as synthesizing of outgoing handshake messages as needed
for secure connection establishment or session key establishment. As indicated in
Chapter 4 di�erent message types exist in the established network. Di�erent mod-
ules handle those di�erent message types. In Figure C.2 those modules for di�erent
DTLS messages are called DTLS...P and drawn in normal boxes. [121, 81]
A special role in the established solution has the handshake layer implemented with
the module DTLSHandshakeP, which uses both mentioned layers. This module is re-
sponsible for the current state of the activated DTLS handshake and also manages
the DTLS reliability mechanism. Those tasks are performed in a state machine. If
an expected message is missed, it indicates a resend after a predefined time interval.
If the missing messages are received, the connection establishment follows the nor-
mal task row until a secure connection is established again and data transmission
can start indicated by a signaling event of the DTLSNetworkP module. [121, 81]
The cipher suite TLS-RSA-with-AES-128-CBC-SHA is supported in the established
DTLS handshake protocol [121, 81]. This cipher suite supports 128 bits of security
and is also fast on the microcontroller used [83].

5.3.2 TinyDTLS Server Implementation

In contrast to the DTLS client solution for the DTLS server implementation nearly
no resource limits exist, because its functionality is implemented on the gateway.
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It is assumed that the gateway consists of a sink, which is the ‘connector’ between
wireless and wired environment and a PC or a server with unlimited resources.

As illustrated in Figure 5.8 an OpenSSL solution was implemented. In comparison to
the standard OpenSSL 1.0.0d implementation di�erent modifications are essential.
Here modifications are divided into groups: (1) dealing with hardware requirements
and (2) dealing with message handling during the handshake performance [121, 81].

The first group of modifications is essential to support compatibility with the TPM
hardware on the OPAL node used [121, 81]:

• First, the padding for RSA signature verification uses RSA Cryptography Stan-
dard PKCS#1 version 2 instead version 1.5 [135].

• Second, the client has to sign a SHA1 hash instead of the concatenation of a
MD5 and SHA1 hash which would have a size of 36 bytes, and would be too
long for the TPM used.

The first mentioned modification concerning the padding is based on the fact that
a client sends out a 32-bytes nonce encrypted with the server’s public key in the
ClientKeyExchange message during the handshake using RSA. In the case of the
TPM integrated in the OPAL platform a optimal asymmetric encryption padding
is applied if an encryption is performed using RSA keys. For the presented imple-
mentation OpenSSL was modified in the following way: If decryption with PKCS#1
version 1.5 has failed, decryption of the ClientKeyExchange message is retried by
using the optimal asymmetric encryption padding. [121, 81]
The second mentioned modification deals with the required modifications of the
hashes in the client’s CertificateVerify message. Here the client has to sign a
SHA1 hash instead of the concatenation of a MD5 and SHA1 hash, which would
have a size of 36 bytes and would be too long for the TPM used. Thus, the MD5
part was removed. The resulting modified OpenSSL followed the same principle as
with the RSA padding: If the verification via a signature over SHA-1 and MD5 fails,
the verification of the signature over a SHA-1 hash is just reattempted. [121, 81]
The previously mentioned modifications seam to violate the TLS standard, but do
not weaken security significantly [81]. The performed optimal asymmetry encryp-
tion padding by OPAL’s TPM is a stronger padding than the PKCS#1 version
1.5 padding. Therefore, it is concluded that security is not weakened. Using only
a SHA-1 hash instead of a concatenation of SHA-1 and MD5 weakens due to the
change in hashes security. It is considered that security is still the same, because
the SHA-1 provides 80 bits of security and adding the MD5 hash with a provision of
64 bits of security does not equal 144 bits of security. In order to break the hash
codes an attacker must perform 280 + 264 operations which does not even equal 81
bit of security, because log2(280 + 264) < 80.00003. [121, 81]

The second group of modifications deals with handling of missing messages dur-
ing the handshake performance. Normally a server concludes its handshake with
the messages ChangeCipherSpec and Finished. After that it clears its bu�er and
monitors DTLS handshake messages during a running connection. Those messages
sent by the server are essential for the client to conclude the handshake on its side.
Problems occur if one of these messages is lost and the client attempts to resend
the message. Those requests will not be recognized by the server, because the
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server believes the handshake has successfully been completed. In the established
implementation importing bug fixed from DTLS v1.2 down to the used DTLS v1.0
implementation solves this problem. The bug fix requires resending of the last server
messages if something is received before it is expected. [121, 81]
The third group of modifications is needed to allow enough reaction time for wireless
sensor network components. An example is the timeout value, which must be big
enough to allow data processing on receiving data in order to avoid retransmissions.

The available OpenSSL solution does not provide a ready-made server application.
Each user has to implement his own server in order to utilize the security function-
ality provided by the OpenSSL framework. In the case of this dissertation a DTLS
proxy application was implemented in order to mediate between the DTLS speaking
clients and the existing server application. The presented solution is a DTLS-proxy
application [81]. On the one hand, the proxy handles the connections with the
wireless sensor network by accepting DTLS handshake requests of the sensor nodes
and, on the other hand, directly performs decryption operations of received DTLS
application messages. As a result of decryption, data is available in plain text which
is forwarded to the application (e.g. packet listener). The communication between
sensor nodes is still encrypted. The forwarding via UDP is based on the known IP
address and the specific port, which is stored in the DTLS-proxy working as a kind
of lookup table for further operations. This implemented multiplexing solution via
DTLS-proxy prevents re-implementation of a complete DTLS server for each new
application. [121, 81]
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Figure 5.9: Packet transmission captured by Wireshark on channel tun0
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Figure 5.9 shows a Wireshark8 recording on channel tun0. In the recorded case
the OPAL node has the address fec0::c and gateway has the address fec0::64. The
first seven black marked and encapsulated messages build the DTLS handshake.
Normally, the DTLS handshake consists of six message exchanges (cf. Figure 4.9).
Due to the limited message transmission unit, the fourth message of the protocol
must be split into two messages (marked with no.12 and no.13) with 548 bytes
(resp. 514 bytes length). In the example shown, the OPAL node sends 672 bytes of
information and receives 1,297 bytes from the gateway during the handshake.
After the successful DTLS handshake the IRIS nodes with MTS300
(nodeID=1103 resp. 0x44f) or MTS400 (nodeID=1104 resp. 0x450 and nodeID=1102
resp. 0x44e) are activated as measurement entities. They use TinyIPFIX as trans-
mission protocol as indicated by the following recorded packets, for example the
orange marked packet.

The OPAL node used also performs TinyIPFIX-Aggregation with DoA = 2
(cf. Section 4.2.2). After a few seconds the measurement devices with ID 1104
and 1102 are assigned to the OPAL node. From this point on data from those IRIS
nodes are transmitted via the DTLS secured connection to the gateway.
The unassigned IRIS node with ID 1103 still transmits its data via an
insecure UDP connection to the gateway, which is indicated under Wireshark with
destination port:ipfix and protocol: UDP. This situation can change in two
cases: Either another OPAL node enters the network establishing a secure connec-
tion to the gateway and becomes the free node assigned or the currently integrated
OPAL node increases its degree of aggregation by one.

5.3.3 Management of Certificates

In the presented implementation di�erent certificates are essential. Each node and
each server within the network needs a certificate. Depending on the size of the
deployed wireless sensor network the amount of certificates calls for a management
solution for the certificates. Because the server side works with OpenSSL, the current
implementation also uses management functionalities provided by OpenSSL, such
as certificate creation. [121, 81]

For the presented solution a self-managed certificate authority (CA) is implemented
which allows the creation of virtually identical certificates. In general, the certifi-
cation creation for a client includes the following step. The sensor node presents
a so called Certificate Signing Request (CSR) to the certificate authority including
information about the node (e.g. common name, location, institution), and a SHA-1
hash signed with the node’s private key. In the current wireless sensor network the
client is an OPAL node with a TPM chip. Currently this cannot be programmed
with a specific private and public key pair. Instead the TPM generates the key pair
manually, whereas the private key does not leave the secure storage of the TPM. A
template Certificate Signing Request is, therefore, generated with the node ID and
institution = CSIRO as the producer of the hardware. [121, 81]
Due to missing keys on the OPAL nodes, a throwaway RSA key is generated and the
information is signed with it. A new calculated signature is then generated in the
TPM and replaces the previously used signature with the TPM’s signature. Then
the finally produced certificate signing request is sent to the certificate authority
to obtain the required X.509 certificate for the sensor node in order to perform the
DTLS handshake as described in Section 4.3.2. Another drawback of the OPAL

8Wireshark - the world’s foremost network protocol analyzer http://www.wireshark.org/

http://www.wireshark.org/
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hardware is the so called factory default mode [33]. This means: all used OPAL
nodes in the wireless sensor network have the same TPM chip and also use the
exact same key pairs. Developers at the producer CSIRO currently work on this
problem to produce individual key pairs on new hardware deployments in order to
allow key pair computation during the Certificate Signing Request phase directly on
the sensor node. [121, 81]

5.4 Implementation of the Graphical User Interface
As motivated in Section 4.4 the existing graphical user interfaces for wireless sensor
networks focus on simulation scenarios and not on real-time systems. Therefore, a
graphical user interface was developed during this dissertation in order to support
configuration of the used hardware and to visualize collected data. On the one hand,
the developed graphical user interface supports the established algorithms and pro-
tocols such as TinyIPFIX, TinyIPFIX-Aggregation, and data import/export. On
the other hand, it can be used for other application scenarios using modified al-
gorithms. This flexibility is realized by working with a virtual representation of
the real sensor network and the implemented options requiring user information
(e.g. code location, hardware specification) in order to configure the whole system.
The graphical user interface has a modular structure, which gives the user the op-
portunity to integrate new extensions (e.g. include new visualization tools, code
buttons for programming purposes) with fewer overheads. [133]

After a detailed description of the realization of the virtual representation of a wire-
less sensor network in Section 4.4, this section focuses on the support to configuring
sensor devices (cf. Section 5.4.1), the included visualization functionality of the
real-time network status (cf. Section 5.4.2), and the included data export/import
functionality (cf. Section 5.4.3). [133]

5.4.1 Configuration of the Network Components

The implemented graphical user interface supports compiling of programming code
as well as the installation of sensor nodes. Independently from the interface the user
has to mount the node hardware to an USB port. In the next step the user starts
programming tool Eclipse9 and activates the interface implementation. Now the
user switches to the browser and connects to localhost:8000. Then the graphical
user interface becomes visible for the user. From this stage on, the user only works
with this interface instead of using terminals with command lines. [133]

The user can now see which menu options are available in the graphical user interface
and which programs were activated due to the interface starting via eclipse. Started
components are indicated with green rakes on the home screen
(e.g. HTTP Server, TinyIPFIX Listener, module for TinyOS). Some components,
which are indicated by an encircled exclamation mark (e.g. COSM Uploader), are
not activated from the beginning. For example, the COSM Uploader is started if
the user decides to upload measurement data to the online visualization tool COSM.
In the blue box WSN Administration the user can see the di�erent available menu
options of the graphical user interface. [133]

In order to program individual components of the wireless sensor network, the user
must change to the submenu option TinyOS in menu Hardware (cf. Figure D.1).

9Eclipse: http://www.eclipse.org/

http://www.eclipse.org/
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The interface gives the user the information about the supported operating systems,
which in this case is TinyOS 2.1.1 together with the included modules. The modules
include an interface to program the base station, the individual nodes as well as the
activation of the IP Tunnel. [133]
Before starting recording of collected data within the wireless sensor network, hard-
ware must be programmed. Therefore, the user jumps into the submenu Program
BaseStation or Program Nodes. Both submenus are structured similarly and con-
sist of six steps [133]:

1. The user must specify the hardware used. Here he can decide between di�erent
vendors such as TelosB, IRIS or MICA for example.

2. If a node is programmed and should support data collection, the user must
specify the attached sensor board in a second step. In this case the common
used sensor boards such as MTS300 or MTS400 are included.

3. Under the section Extras optional available support can be chosen by clicking
on the option. Due to the fact that the planned application must support IP
communication the option blip is activated by default.

4. Now the user must specify under the option Directory what code should be
performed by the node. In this case the user can choose between performing
an aggregation, data collection or others. The field to the right of this option
selection indicates the location of the requested directory.

5. As a result of the previous selections in steps one to four the make command
for step five is constructed. The user must now click on the button make to
start the compiling process. If this is done, the user can specify the connected
port of the hardware, and the individual ID of the node if needed.

6. Corresponding to this verification the installing command is constructed which
can be activated by the user by clicking on the button install in the sixth
step.

If this command was successfully executed, the user can repeat the steps one to
six for the next hardware. During the execution of step five and six performed
commands are displayed in the box underneath the install button in order to
give a visual feedback of the process status together with the information about the
required ROM and RAM. [133]

As indicated at the beginning of Section 5.4 a general graphical user interface does
not exist at the moment. Thus, compiling and installing of programs must be
done via a terminal. In order to give the user a comfortable way to perform those
tasks, the developed graphical user interface was extended. The submenu Program
Nodes was extended by an input possibility, called others, for the user to verify
manually what code should be performed. In this case the user can specify the folder
of the code in step five, followed by starting the compiling process and installing
the program on the sensor node by pushing the corresponding buttons. Due to
the manual input the graphical user interface is independent from the underlying
installations (e.g. TinyIPFIX, aggregator or collector functionality) as well as from
the supported hardware. The design of this feature is similar to the one shown in
Figure D.1. [133]
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5.4.2 Graphical Feedback of Network Status

When the user has programmed all hardware components corresponding to steps
one to six of Section 5.4.1, the wireless sensor network can be activated. In order to
activate the network, the hardware programmed with the code for the base station
is attached to a USB port (e.g. USB01). [133]
The user now switches to the option IP Tunnel in the submenu option TinyOS. Here
the user specifies the USB port where the base station is connected and types in the
password in order to start the tunnel application. Finally, the user clicks the start
button and the IP Tunnel is established. The user then receives a visual feedback
about the running tunnel process by the box underneath. The information provided
in this box includes the activated sensor nodes in the network. At the time the
tunnel is started, the start button changes into a stop button where the user can
manual abort the tunnel as well as the wireless sensor network. [133]
After the tunnel is established the user can activate the individual sensor nodes. The
sensor nodes perform TinyIPFIX (perhaps) with extensions. They are recognized
by the tunnel application when they first send their Template Record which is done
directly after booting (cf. Section 4.1.2). [133]
If the first Data Record is transmitted, the user can switch to the submenu op-
tion Topology under menu Visualization. Here he receives a live visualization of
the current network status including a routing tree and sensor node information as
shown in Figure 5.10. In order to visualize this network information the underlying
implementation is dichotomous. The left part visualizes the routing topology of the
wireless sensor network. Therefore, the underlying implementation requires that
the information of the routing driver shell be supported by the BLIP implementa-
tion under TinyOS [71, 25]. The routing driver shell establishes a telnet session to
localhost 6106. The session supports the following commands and currently must
be opened in a terminal if commands other than dot should be performed [133]:

• The command links displays the link state of the network reported by each
node router.

• The command rebuild requests an update of the topology information of the
network.

• The command routes displays the cashed routes of the network from each
node to the sink.

• The command stats shows information of forwarded packets.

• The command conf provides information about the router’s configuration.

• The command dot allows the printing of a picture of the current network
topology.

In order to display the topology of the wireless sensor network the dot command is
performed. The resulting file is converted into a picture format such as PNG, which
is included in the graphical user interface. Due to topology changes during runtime
of the system, this graph must be updated. This update happens periodically and
is specified in the underlying JAVA implementation. Normally, those updates are
required if sensor nodes enter or leave the network as well as if routes are updated
and the intermediates change. In the graphical user interface the manual activation
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Figure 5.10: GUI - Visualization of the current network status

of the updating command is included as well. Thus, the user can request an update
whenever he wants. [133]

The right part of Figure 5.10 illustrates the active nodes within the current wire-
less sensor network. For each node special information is available. This informa-
tion is extracted from the received data after it was abstracted corresponding to
the functionality of the WSNDriver and is available due to virtual representation
(cf. Figure 4.11). For example, node 1105 transmits its NodeID, NodeTime, sound
value using MTS300, and temperature value. If a node is an aggregator, the avail-
able information of the node includes the IDs of the aggregated nodes. An example
is node 2222 in this case.

If the user wants to know where exactly a special sensor node can be found in
the current topology, he clicks on the dashed node box. As a consequence the
communication path of the node down to the sink is highlighted in the routing
graph. For example, in Figure 5.10 the user requests information about the node with
ID 2222. Therefore, the user clicks on the right part of the visualization on the node
2222 and receives the aggregation information. In this case, the node aggregates
the sensor nodes 1105 and 1103. At the same time the corresponding routing is
highlighted in the left part of the visualization starting from the source of the data
via the intermediate node 2222 down to the sink. With help of this highlighting the
user keeps track of each nodes’ data flow.

The supported Listener by TinyOS was integrated into the graphical user interface in
order to allow the user a more detailed visual feedback of the running wireless sensor
network. Here the user can observe the received packet at the gateway live under
submenu TinyIPFIX in menu Visualization (cf. Figure D.3c). The resulting view
is a combination of the previously introduced submenu option Topology and the
Listener recording. Due to the live view of the Listener, the user can directly realize
if some problems occur in the system (e.g. decoding problems, format conversion
problems using XML file). [133]

5.4.3 Data Export/Import Functionality

The amount of collected sensor data depends on the network’s size, on collected
values, and on collection intervals. As a consequence this data amount can be huge.
In order to analyze this data, it is useful to display the data in plots. Depend-
ing on the plotting tools used di�erent plot types are available such as line, point
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or step diagrams. Today a variety of tools featuring this task are available as de-
scribed by Parbat et al. in reference [129]. Those tools can be subdivided into
(1) o�ine and (2) online tools.
In general, o�ine tools require a tab-delimited input file including all required infor-
mation for a correct plotting task. Representatives for o�ine tools are Matlab, R or
GNUplot. The implemented graphical user interface in this doctoral thesis supports
the analysis via o�ine tools. Therefore, received data is directly stored in a big
file. Usually, the user just wants to plot one subset of data, which generally con-
sists of measurements of one selected sensor node. The big file must, therefore, be
subdivided into its components stored in small files. This processing is performed
automatically in the background of the graphical user interface. An example re-
sult is shown in Figure D.5. The number of small files corresponds to the number
of nodes in the active wireless sensor network. In the presented example the net-
work consisted of four nodes whereas three nodes were data collectors and one node
(ID 5678) was responsible for secure data transmission via DTLS with activated
message aggregation functionality. Thus, the small file for node 5678 only includes
time stamps due to the virtual representation of the wireless sensor network as
characterized in Section 4.4.2. In order to reduce overhead in small files, some in-
formation such as Enterprise ID was deleted. Small files can then be uploaded into
di�erent o�ine tools and processed by corresponding program. In order to perform
this upload, the user must specify the location of the executing program and the
location of the stored subset file. Therefore, the user can browse an o�ered archive
by the graphical user interface, including all required information. If the executing
program is not installed on the running system, the user receives the location of the
stored files and is asked to download them (e.g. on a USB stick).
In comparison, online tools request an Internet connection in order to upload data
and to display the analysis result directly. Thus, those tools are among the cloud-
based platform solutions. A representative for online tools is COSM better known as
Pachube [136]. Online tools di�er depending on the data input format they request.
COSM requests a live stream, whereas other tools require final stored files analogous
to o�ine tools. In order to support di�erent upload possibilities the implementation
of the export client is modular as well. For each tool a special module supporting
the required data structure must be implemented and included into the graphical
user interface.
COSM is a tool, which stores the uploaded data in feeds that can be shared with
other people upon request. Each feed stores data received from exactly one sensor
node independent of the number of included sensors on the hardware. For example,
if the source node is an IRIS node with MTS300, collected values can contain sound,
temperature or brightness. For the MTS400 collected values can contain humidity,
brightness, temperature, and voltage.
What kind of data such a feed includes depends on the sensor node hardware and on
the data the user decides to upload to the homepage of COSM. COSM accepts data
in JSON, XML, and CSV format. The implemented module in this dissertation
uploads its data in JSON format and is implemented in JAVA. The reason for
choosing JSON as the upload format depends on the smaller size compared to XML
(cf. Figure 4.2).
In order to change the upload format, modifications must be done in file
CosmAPI.java. In the file WSNCosmModule.java di�erent variables concerning the
upload to COSM can be specified, such as the upload interval in seconds. The
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resulting diagrams of the visualization are imported back into the graphical user in-
terface and can be viewed under the submenu option COSM in menu Visualization
as illustrated in Figure D.6. [133]
Figure D.4 illustrates the background information including node location informa-
tion and log information resulting from TinyOS Listener. For the visualization of
data within the graphical user interface the user can choose between di�erent gran-
ularity, which is specified in the HTML file index.html. In addition, the user can
specify which subset of data should be displayed. Figure D.6 shows the di�erent
options for approximately three hours experiment duration [133]:

• All transmitted information of node 1101 is displayed including the information
about the number of COSM-uploads (cf. Figure D.6).

• Nodes 1103, 1104, and 2213 only display the sensor data, and reject the infor-
mation about NodeID and NodeTime. NodeTime is not essential to display
because it can be recalculated from the other graphics or by the log file. The
NodeID can be rejected also, because the information is visual in the dashed
box at the beginning of each feed. For visualization purposes the user has
deleted the information about the number of COSM-uploads as well.

Today the call for data access independent of a direct login to the running terminal
occurs. COSM also allows the view on recorded data during real time from external
access points, e.g. from a device located in the USA even though the running systems
stands in Germany. In order to gain access, the user logs in on the homepage of
COSM and chooses the feed of interest. As long as a feed is stored in the cloud it
can be viewed via the homepage and the graphical user interface even if the wireless
sensor network is inactive.
Currently, the responsible person for the recorded wireless sensor network can add
information about each feed on the COSM homepage. This information can include
hardware equipment (e.g. IRIS - MTS 300 with active temperature and acoustic
sensor), experiment location, date, and duration. In the future the user will be able
to publish this additional information via the developed graphical user interface,
which will support the export to the COSM homepage directly. Right now, the user
may verify whether or not experiments should be deleted in the cloud. But as a
backup the experiments are still stored in an archive linked to the graphical user
interface on the performing PC or notebook until the user deletes them manually.

5.5 Summary and findings
This chapter briefly described the implementation of the TinyIPFIX protocol with
its extensions - compression and aggregation -, as well as the TinyDTLS solution for
end-to-end security and the graphical user interface. As specified in
Section 3.1 the existing 6LoWPAN implementation supports a maximum trans-
mission unit of 127 bytes under sensor hardware, which includes the RF transceiver
CC2420. Figure 5.4 illustrated the total available packet size on the MAC layer in-
cluding TinyOS based header information and the individual payload
(e.g. IP support, sensor data). This figure shows that IPFIX data can be transmit-
ted in such a limited maximum transmission unit, even if additional overhead due to
IPFIX message/Set headers limits the individual payload. If aggressive compression
on the additional headers is performed the individual payload leaves space for sensor
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readings of 81 bytes.
Regarding TinyIPFIX-Aggregation detailed information of the performed algorithms
was presented. Additionally, the implemented UDP-Shell was characterized, which
allows the user to manipulate the aggregator nodes within a running application.
Therefore, the user can choose between di�erent options, such as select, doa or
reset.
The implementation of the TinyDTLS protocol was briefly described including an
analysis of the exchanged messages during the handshake phase. For performing the
TinyDTLS protocol using certificates for authentication purposes OPAL nodes is the
hardware platform of choice, because of its included TPM chip and its resources.
Additional memory and computational resources are higher on OPAL than on IRIS
and TelosB (cf. Section 2.2), which allows the sensor node to perform additional
functionality, such as aggregation.
Finally, the implemented graphical user interface was characterized together with
its supported functionalities in order to monitor and configure a wireless sensor
network.
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6. Evaluation of the developed Protocol
and its Extensions

In this chapter the implemented TinyIPFIX protocol together with its extensions
will be evaluated. At a minimum each evaluation part is subdivided into an analysis
focusing on memory and energy consumption, because those are the most limited
resources. In a case of unwise usage of the two resources, lifetime of a wireless sensor
network can decrease rapidly, which stands in contrast to the original goals. An ex-
ception is the evaluation of the graphical user interface where a proof of functionality
is done. Finally, it is shown that the developed application protocol fulfills the re-
quirements for a tight integration of a wireless sensor network into a cyber-physical
system in Section 6.5.

From this point on an o�ce scenario is assumed as shown in Figure 6.1. The testbed
deployed at our department consists of 14 sensor nodes with di�erent characteristics
and a gateway, which is marked black in the figure. The gateway is a component
consisting of a node with base station functionality and is connected to a server
where all applications are running. The characteristic of each sensor node is listed in
Table 6.1.

Node ID Node ID
Decimal Hexadecimal Node Type Vendor Node Characteristic

2232 0x8b8 TelosB Advantic Sys. Data Collector
2270 0x8de TelosB Advantic Sys. Data Collector
1104 0x450 IRIS Crossbow Inc. Data Collector (MTS300)
2222 0x8ae TelosB Advantic Sys. Aggregator (DoA = 2)
1108 0x454 IRIS Crossbow Inc. Data Collector (MTS300, housing compartment)
2250 0x8ca TelosB Advantic Sys. Data Collector
2243 0x8ce TelosB Advantic Sys. Aggregator (DoA = 3)
1103 0x44f IRIS Crossbow Inc. Data Collector (MTS300)
1101 0x44d IRIS Crossbow Inc. Data Collector (MTS400)
1105 0x451 IRIS Crossbow Inc. Data Collector (MTS300)
1102 0x44e IRIS Crossbow Inc. Data Collector (MTS400)
1106 0x452 IRIS Crossbow Inc. Data Collector (MTS300)
1107 0x453 IRIS Crossbow Inc. Data Collector (MTS300, housing compartment)
1110 0x456 IRIS Crossbow Inc. Data Collector (MTS400, housing compartment)
12 0xc OPAL CSIRO Aggregator (DoA = 2, TPM active)

Table 6.1: Node characteristic for department testbed (cf. Figure 6.1)
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Figure 6.1: Overview of deployed testbed at the department

6.1 Evaluation of the TinyIPFIX Protocol

From this point on we assume a wireless sensor network with the operating system
TinyOS 2.1.1. It supports IP communication using the integrated BLIP implemen-
tation over UDP. The network is deployed as shown in Figure 6.1.

6.1.1 Memory Consumption

TinyIPFIX was implemented on IRIS and TelosB nodes (cf. Figure 2.2). In order to
put memory usage in perspective, each major component is considered separately.
Because they interact with each other, memory consumption has been measured in
an incremental fashion, starting with the basic sca�old for obtaining measurements
and expanding upon that by adding BLIP and TinyIPFIX. The results are shown
in Table 6.2. [98]
It shows a maximum RAM consumption of 6,889 bytes when using BLIP and setting
the maximum TinyIPFIX package size to 1,024 bytes. Memory consumption of the
TinyIPFIX component is only 57 bytes plus twice the maximum defined TinyIPFIX
packet size [98]. With those RAM and ROM requests the TinyIPFIX implementation
can be performed on both platforms without major problems. Similar results were
measured by sensor platform IRIS. [98]

TinyIPFIX
RAM ROM packet size

Sca�old 46 2826 -
BLIP 4,738 23,012 -
TinyIPFIX 57 2,972 0

261 3,182 102
2,105 3,012 1,024

Total 4,841-6,889 28,810-29,020

Table 6.2: Memory usage of BLIP and TinyIPFIX on TelosB [bytes]
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6.1.2 Transmission E�ciency

As indicated in Section 2.2 resources (e.g. energy) of sensor devices are very limited.
In general, energy comes from two AA batteries. In order to ensure less manual input
(e.g. changing batteries) and, therefore, a long lifetime, most limiting resource must
be used wisely. Energy consumption can be reduced either by supporting energy
saving methods or reducing the amount of transmissions. Both aspects depend
on each other as mentioned in Section 2.3. The developed transmission protocol
TinyIPFIX does not limit the amount of transmission in general, but reduces the
periods of active radio due to smaller transmission units. In order to prove this fact,
transmission e�ciency is the objective of the evaluation in this section. [98]
For the analysis of transmission e�ciency the ratio of payload per byte sent using
TinyIPFIX is evaluated. Therefore, five assumptions are made [98]:

1. Exactly one Data Set or one Template Set is included in one TinyIPFIX packet.

2. All values in the Template are defined with an Enterprise ID which costs eight
bytes for each value.

3. A Data Record includes only one Data Set whereas the number of transmitted
values is defined in the referred Template Set.

4. Intervals for retransmissions of Template Record are predefined.

5. For the TinyIPFIX header the modified defensive compression technique is
used requiring three bytes (cf. Figure 4.4b).

Together with the above assumptions (1)-(5) the transmission e�ciency
teff≠T inyIP F IX can be calculated as the percentage of the payload per byte sent
as expressed by Equation 6.1 [98]. The upper boundary for transmission e�ciency
is given by Equation 6.2, where it is assumed that Ï is the product of the number
of Data Records transmitted between two Template Record transmissions (n), the
number of transmitted Data Fields per Data Set (v), and the average size of the
transmitted values per bytes (s). It is also assumed that h is the header size used
by TinyIPFIX. [98]

teff≠T inyIP F IX = Ï

h ú (1 + n) + 8 ú v + Ï
(6.1)

lim
næŒ

Ï

h ú (1 + n) + 8 ú v + Ï
= v ú s

h + v ú s
(6.2)

Figures E.1 to E.3 show the results where the transmission e�ciency was plotted
against the number of data packets transmitted between two Template Records and
s = 2 bytes was assumed. In order to illustrate di�erent types of packet configura-
tion, the number of values per packet ranges from one to 125. One value per packet
is the lowest limit, four values per packet are common for wireless sensor networks,
and 125 values per packet is the maximum packet size for IP communication. The
analysis of TinyIPFIX transmission e�ciency is split into the following cases [98]:

• Case 1: TinyIPFIX packets with default header of size 20 bytes vs header
supporting defensive approach in best-case with six bytes size (cf. Figure E.1)
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• Case 2: TinyIPFIX packets with default header of size 20 bytes vs header
supporting modified defensive approach with three bytes size (cf. Figure E.2)

• Case 3: TinyIPFIX packets with default header of size 20 bytes vs header
supporting aggressive approach with one bytes size (cf. Figure E.3)

It can be observed that the header size has a big impact on teff≠T inyIP F IX .
The impact lowers if the payload becomes larger. The e�ect of header compres-
sion remains important for the performance. Usually in sensor scenarios, a Data
Record consists of four values and 16 transmissions between two Template Record
transmissions. [98]
In comparison to a Type-Length-Value (TLV) approach data values are always trans-
mitted in one packet together with their meta information. Meta information in-
cludes the type and length of the data. In this case the transmission e�ciency
teff≠T V L is defined as follows [98]:

teff≠T V L = Ï

Ï + v ú l1 + v ú l2
(6.3)

Where Ï, n, v, s defined as above, l1 = size of the length declaration in bytes, and
l2 = size of the type declaration in bytes [98]. Assuming l1 = 1, e�ciency of a
TLV approach only depends on the average size of the transmitted fields s and the
number of possible types (l2 ). Thus, Equation 6.3 results in teff≠T V L = s

s+1+l2
. In

order to compare transmission e�ciency of the Type-Length-Value approach with
the previously evaluated TinyIPFIX transmission e�ciency the value s ranges from
one to four. The results are summarized in Table 6.3. [98]
As determined in Section 3.2 each Template Field is specified by a Type ID, a Length
ID and an Enterprise ID. In the case of IPFIX the Enterprise ID has 232 possible
values and Type ID (respectively 215 with two bytes size including the Enterprise
bit). Therefore, 247 possible types exist. According to Table 6.3 the Type-Length-
Value approach is limited to 22.2% concerning its e�ciency. If a header compression
is activated in the TinyIPFIX solution and four data packets per Template are
assumed, the TinyIPFIX solution already scales better than the Type-Length-Value
approach. The TinyIPFIX solution scales better if the number of data packets
between Template retransmissions increases. [98]

s = 1 s = 2 s = 3
28 æ l2 = 1 25.0% 50.0% 66.7%
216 æ l2 = 2 20.0% 40.0% 57.1%
232 æ l2 = 4 16.7% 28.6% 44.4%
248 æ l2 = 6 12.5% 22.2% 36.4%
264 æ l2 = 8 10.0% 18.1% 30.8%

Table 6.3: Transmission e�ciency for a Type-Length-Value approach

6.1.3 Energy Consumption

As mentioned in Section 2.2 energy resources are limited. Therefore, an energy
analysis was done in order to verify how much energy is actually spent by trans-
mitting TinyIPFIX packets. Here only TelosB nodes were used, because they are
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planned to be used for further extensions such as aggregation and the energy val-
ues are bound by networking, which is expected to be similar on other platforms.
In order to obtain measurements of the energy spent for transmitting packets, an
oscilloscope across a resistor (10�) in the circuit of an external power source was
connected to a TelosB sensor node. This methodology is described in detail in [15]
and follows the experimental setup as shown in Figure 6.2. Calculation of the power
consumption by wireless sensor node follows Equation 6.4. Where PW S is the power
consumed by the sensor node, VSEN is the voltage across the sensor node, I is the
current flow through the sensor node, RSHUNT is 10� shunt resistor, VSUP P LY is the
voltage of supply unit, and VSHUNT is the voltage across the shunt resistor [15].

PW S = VSEN ◊ I = (VSUP P LY ≠ VSHUNT ) ◊ VSHUNT

RSHUNT

(6.4)

Sensor 
Node

SEN
SUPPLY

SHUNT

Figure 6.2: Voltage measurement for calculation of energy consumption

In this case, a TelosB node features a CC2420 Radio chip, which is rated at 17.4 mA
current draw when transmitting [32]. The average transmission time was measured
over 128 samples of IPFIX, TinyIPFIX, and Type-Length-Value approach (TLV)
packets. Those include a four byte long time stamp, the two byte long node ID,
and two sensor measurements each two byte long. The size of each packet, including
meta data, is given in Table 6.4. [98]

tsend Payload Energy
Packet Type [ms] [bytes] [µJ ]
empty 10.48 0 699
TLV 28 10.93 14 730
TLV 248 11.55 34 778
IPFIX Data 11.69 30 779
IPFIX Template 12.3 48 820
TinyIPFIX Data 10.9 13 727
TinyIPFIX Template 11.71 31 780

Table 6.4: Average transmission times and energy for selected packet types

As motivated in Section 4.1.1 one possibility to optimize the transmission e�ciency
is to use a compressed data format for transmission. The previously introduced
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protocols used XML or JSON format for data transmission. Those formats include
meta information for each transmitted sensor measurement, which result in low
transmission e�ciency. Thus, a Type-Length-Value (TLV) approach comes to mind
for evaluation purposes. Priyantha et al. showed in reference [137] that a possibility
for data compressing using binary XML exists where the performed algorithm works
with an index, which is mapped to a specific XML tag, thereby reducing the size
of a message. This compression approach is comparable to a Type-Length-Value
approach where a sensor measurement would always be prefixed with an index into
a dictionary, describing the type of a value and the length of the value that will
follow in bytes. The length domination can be dropped if the type information is
subsuming it, requiring only a type declaration as the only piece of meta information.
Assuming that the measurement value itself cannot be compressed, this approach is
identical or better than any compressed XML format that uses a mapping dictionary.
Thus, it is obvious to compare the transmission e�ciency of TinyIPFIX to that of
a Type-Length-Value approach where length domination has been dropped. [98]

For evaluation purposes, it is assumed that a Type-Length-Value approach is cal-
culated on total bytes, where one byte is the minimum length of the field Type in
the Type-Length-Value approach. One byte, therefore, o�ers the opportunity to
represent 28 = 256 values. In order to compare the Type-Length-Value approach
with the typical value range of IPFIX a value range of 248 is assumed. This value
is calculated by the two bytes (=16 bits) of Type ID plus the four bytes (=32 bits)
of the Enterprise ID in a typical IPFIX packet. After the measurement analysis of
the results given in Table 6.4 it was found out that the time of energy consumption
is largely dominated by a constant factor. On the one hand, this constant factor
originates from the medium access protocol; on the other hand, it originates from
the time it takes to switch the radio from receiving to sending mode and back.
When activating low power listening the variance and average duration of transmis-
sion time increased up to one order of magnitude. As a result, the employment of
IPFIX, TLV or any other application layer protocol does not have a large impact
on overall energy usage when using the default TinyOS settings and relatively small
packages. [98]

In order to evaluate the implemented TinyIPFIX protocol on a more complex net-
work, it was remotely tested on the Harvard Sensor Network Testbed (MoteLab)10.
This wireless sensor network is located on the campus of the Harvard University and
distributed over three levels in a brick stoned house with around 184 active TelosB
nodes. The run was done with 77 TelosB nodes where 76 sensor nodes sent sensor
measurements to a single gateway node over a maximum number of six hops [100].
Several experimental runs with duration of 30 minutes were executed. [98, 100]

The start up phase took two minutes in which no sensor measurements were sent
to allow BLIP to establish routes within the network. Next, sensor nodes took
measured sensor values (here: temperature, humidity, and internal voltage), and
sent them with their node ID and time since they booted to the edge router. [98]

Every time a sensor node tried to send an TinyIPFIX or TLV packet it logged the
attempt to a database. This figure was then compared with the number of packets
captured with Wireshark on the receiving end to determine the percentage of pack-
ets that had arrived successfully. If a TinyIPFIX packet contained sensor data that
could not be parsed due to Template Record loss, it was counted as unreadable.

10Harvard Sensor Network Testbed (MoteLab), http://motelab.eecs.harvard.edu/

http://motelab.eecs.harvard.edu/
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For statistical purposes the number of sent or forwarded packets from each sensor
node was collected. [98]
The energy amount spent by the whole wireless sensor network was calculated by
multiplying statistic with the measurements for energy usage from Table 6.4. In-
puts, like routing and overhead, were not included into the calculation of energy
consumption. Packets, which could not be traced back to a TinyIPFIX Template
or Data Record, were treated like empty packets as in Table 6.4. The results of
MoteLab runs are shown in Table 6.5 [98]. The first column shows the percentage
of packets that successfully arrived at a PC connected to the edge router. The total
energy consumption for the established wireless sensor network is shown in the sec-
ond column. The last column shows the retransmission intervals for Data/Template
packages in seconds. [98]

...readable ...sent Energy
Packets... [%] [kB] [J]
TLV48 5s 99.42 1179.27 66.188
IPFIX 5s / 180s 98.41 827.8 68.246
TinyIPFIX 5s / 180s 99.42 400.7 63.024
TLV48 15s 99.68 390.9 24.491
IPFIX 15s / 480s 98.60 280.9 24.254
TinyIPFIX 15s / 480s 97.23 135.8 23.046

Table 6.5: Packet analysis on MoteLab testbed

Figures in Table 6.5 show a high overall percentage of data packets, which are
delivered and readable. TinyIPFIX packets compared to TLV packets have a slightly
lower success rate. This di�erence is caused by some Template Sets being lost
during the initial announcement, rendering the following data packets unreadable.
TinyIPFIX only transmits around 35% of the amount TLV sends with the above
settings. But high savings in the amount of transferred data did not translate to
similar savings in energy consumption. Compared to the TLV approach the wireless
sensor network performing TinyIPFIX consumes 5% less energy. This di�erence
results in a gap between the amount of energy needed to send packets of di�erent
length. [98]
These presented results indicate that more energy savings can be achieved if the
TinyIPFIX protocol is expanded with aggregation features. By limiting the amount
of meta data more sensor data can be fitted in a data packet leading to less packets
being transmitted and, therefore, an overall reduction in energy consumption can be
expected. This optimization is analysed in Section 6.2 based on techniques presented
in Section 4.2.2.

6.1.4 Comparison to related Transmission Protocols

As described in Section 4.1.1 di�erent e�cient transmission protocols for wireless
sensor networks exist, such as COAP and sMAP. Both protocols work with the
inspiration of RESTful architectures for web service. In this section the developed
TinyIPFIX protocol is compared to those protocols. A compact comparison is given
in Table 6.6. [98]

One idea of those services is the separation of information in order to improve trans-
mission e�ciency. In the case of sensor network this is the separation of measured
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values and their meta information. The protocol standard IPFIX for IP networks
supports this idea as motivated in Section 3.2. It separates data into Template
Records and Data Records, which result in smaller messages.
sMAP o�ers the opportunity to support di�erent devices in a wireless sensor net-
work. TinyIPFIX also supports this device heterogeneity. Due to the fact that
TinyIPFIX is based on IPFIX, which is a monitoring protocol and not intended for
sensor data support, the user has to specify and register the hardware by IANA as
illustrated in Table 4.1. [98]
Another idea supported by COAP is the complexity reduction of mapping tasks
with HTTP and supporting communication protocols such as UDP and TCP. Such
a mapping is also done by the developed TinyIPFIX protocol where the mapping
happens between Template Records and Data Record (cf. Figure 3.3). As the
underlying transmission protocol UDP is supported by the supported BLIP imple-
mentation under TinyOS 2.x. TinyIPFIX and COAP have the application field of
building automation and machine-to-machine applications in common. [98]
COAP and sMAP prefer compressed data formats, such as XML or JSON. Both
data formats can be supported by the TinyIPFIX implementation. Decoding itself
takes place at the server. Here decoding of received messages is done with an XML-
based meta data source format, which is used as an input by the TinyIPFIX server
application (or by the WSNDriver in the graphical user interface). In addition, data
is in parallel translated to JSON or XML format as requested in order to upload
to di�erent visualization tools (e.g. COSM). With help of the developed graphical
user interface, received data is stored in a virtual representation, as described in
Section 4.4.2, which makes it independent from a data format and supports every
format by adding a translation module. [98]

COAP sMAP IPFIX TinyIPFIX
Web service inspired YES YES NO YES

Support of information separation YES YES YES YES

Sensor node support YES YES NO YES

Heterogeneity Support NO YES NO YES

UDP support YES YES YES YES

Complexity reduction YES YES YES YES

Building automation support YES NO NO YES

Table 6.6: Comparison of features o�ered by di�erent transmission protocols

6.2 Evaluation of the TinyIPFIX-Aggregation Framework
In-network aggregation has di�erent impacts on the performance of the implemen-
tation presented in this doctoral thesis. Section 4.2.2 describes the implemented
aggregation modes in detail, which are called (1) message aggregation and (2) data
aggregation.
For the upcoming evaluation on reduction of transmitted messages a simplified
testbed is assumed. This testbed is shown in Figure 6.3a with corresponding data
packet capture in Figure 6.3b. The testbed consists of several nodes where nodes
marked in grey work as aggregators. Furthermore, it is assumed that nodes with
IDs 1, 2, 4 and 5 transmit their sensor readings on a regular basis in accordance
with the TinyIPFIX protocol described in Section 4.1.2, a template announcing the
following data sets to the next template announcement for every node.
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In order to analyse the impact of aggregation the following cases are considered:

1. No TinyIPFIX aggregation is performed on any node in the testbed. The grey
marked nodes just forward received data down to the gateway without any
modification. In this case 12 messages are transmitted in total.

2. TinyIPFIX aggregation is performed on three nodes (grey marked) in the
testbed, which only results in seven messages being transmitted in total.

Server

(a) Overview of node arrangement

|+--[fec0:0:0:0:0:0:0:45b]:4740[1115], Data: 256 received Jun 6, 2011 11:56:50 AM
|
|----- Sound (MTS300)[2] (3844 - 32769): 466
|----- Temperature[2] (3843 - 32771): 27.8 °C
|----- NodeTime[4] (1 - 32770): 73.24 sec
|----- NodeID[2] (1 - 32769): 1212
|----- Sound (MTS300)[2] (3844 - 32769): 468
|----- Temperature[2] (3843 - 32771): 27.9 °C
|----- NodeTime[4] (1 - 32770): 78.13 sec
|----- NodeID[2] (1 - 32769): 1212

|+--[fec0:0:0:0:0:0:0:4e8]:20679[1256], Data: 256 received Jun 6, 2011 11:56:54 AM
|
|----- Temperature[2] (3847 - 32769): 27.67 °C
|----- Humidity (Sensiron SHT11)[2] (3841 - 32770): 35 %
|----- Light (TAOS TSL2550)[2] (3845 - 32769): 65535 LUX
|----- Voltage MTS400[2] (3846 - 32769): 0.14 V
|----- NodeTime[4] (1 - 32770): 78.13 sec
|----- NodeID[2] (1 - 32769): 1256

|+--[fec0:0:0:0:0:0:0:4bc]:20679[12152], Data: 256 received Jun 6, 2011 11:56:55 AM
|
|----- Sound (MTS300)[2] (3844 - 32769): 465
|----- Temperature[2] (3843 - 32771): 27.9 °C
|----- NodeTime[4] (1 - 32770): 83.01 sec
|----- NodeID[2] (1 - 32769): 1212

(b) Captured packets by Listener

Figure 6.3: Testbed overview for TinyIPFIX-Aggregation evaluation

6.2.1 Memory Consumption
Due to limited resources of the used hardware IRIS and TelosB (cf. Figure 2.2),
memory consumption of the aggregation framework TinyIPFIX-Aggregation be-
comes important. Hardware choice depends on memory consumption. Memory
can be partitioned into variable RAM area and a static programmable ROM area.
Table 6.7 shows the required RAM and ROM consumption of the necessary compo-
nents for the TinyIPFIX-Aggregation framework. [102]

RAM ROM
TinyOS functionalities + BLIP 4,766 25,344
UDP Socket 2 296
UDP Shell 288 4,074
TinyIPFIX 559 2,160
TinyIPFIX-Aggregator 404 3,600
Total 6,019 35,474

Table 6.7: Memory usage of TinyIPFIX-Aggregation framework [bytes]

Most of the memory is required for TinyOS (e.g. Boot, LEDs, Timer) and BLIP.
Memory required by the applications TinyIPFIX and TinyIPFIX-Aggregator leaves
space for further applications and functions. The UDP Socket is needed for the
bidirectional communication between user and aggregator performed with inputs
in the UDP Shell. The UDP Shell allows ‘on the fly’ modifications in aggrega-
tors. The user can connect to a special aggregator node directly within the wire-
less sensor network. There the degree of aggregation and the processed aggrega-
tion function (MAX, MIN, AVG) can be updated as required in the application.
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Finally, the implementation of the TinyIPFIX protocol with its extension TinyIPFIX-
Aggregation framework requires a total of 6,019 bytes of RAM and 35,474 bytes of
ROM. With those memory requirements a TelosB node is the minimum platform to
perform aggregation. In case of message bu�er optimization in TinyIPFIX and its
applications more resources will be saved. [102]

6.2.2 Impact on Message Amount in the Network

As a result of the described setup the aggregation functionality reduces the num-
ber of transmitted messages by 42% [102]. Here a degree of aggregation (DoA) of
two messages per aggregate was assumed and the simple message aggregation was
performed. If data aggregation functionality is performed additionally, the same
result is achieved with additional reduction of the transmitted packet size due to
the computation of the aggregate function on the sensors’ values. In the positions
of the aggregation nodes marked grey, the percent reduction in forwarded messages
is calculated per Equation 6.5. [102]

MessageAmountReduction[%] = (1 ≠ 1
DoA

) ú 100. (6.5)

In the example shown in Figure 6.3a this results in a reduction of forwarded messages
in positions of the aggregation nodes by 50% with (DoA = 2) [102]. The reduction of
transmitted messages in this example is only related to the reduction of transmitted
TinyIPFIX messages. The impact of message reduction on the amount of control
messages was not taken into account. However, it is expected to be reduced due
to fewer packets being transmitted overall, which leads to less congestion in the
network. [102]

6.2.3 Energy Consumption

Parallel to message reduction, energy savings were observed. In order to achieve en-
ergy savings on radio transmissions for the aggregator, additional transmission time
for the aggregated packets must be compared to transmission time, necessary for
forwarding non-aggregated packets. As before DoA = 2 is assumed. The trade o�
between necessary average transmission energy for forwarding two TinyIPFIX pack-
ets and necessary average transmission energy for the aggregated packet for TelosB
in comparison to just forwarding functionality without any aggregation mode is
shown in Figure 6.4. [121, 127]
If data is transmitted in an aggregated format, a saving of 0.039 mJ is achieved
compared to a transmission of the same number of packets in individual transmis-
sions over the CC2420 radio of TelosB [102]. Similar results were achieved in bigger
testbeds, as shown in Figure 6.1, and in runs on Harvard Sensor Network Testbed.
Figure 6.1 visualizes the deployed testbed at our department as described at the
beginning of Chapter 6. BLIP o�ers the opportunity to request a routing tree via
an included routing driver shell which visualizes the current status of the system
(cf. Figure D.3). [102]
The implemented aggregation techniques lead to increased end-to-end transmission
latency. This occurs because a DoA > 1 requires the aggregator to wait for more
than one incoming packet before being able to perform the chosen aggregation. In
the testbeds measurement and transmission intervals were configured to relatively
high frequencies in order to test the performance at the breaking point of the sys-
tem. As a result, no latency could be observed if aggregation in both modes was
performed. [102]
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(a) Data transmission without aggregation (b) Data transmission with node 3 performing
TinyIPFIX-Aggregation protocol in mode 1

Figure 6.4: Average CC2420 energy consumption per node with TinyIPFIX

6.2.4 Comparison to related Aggregation Techniques

In Section 4.2.1 typical in-network aggregation techniques such as TAG, SIA, and
AIDA are introduced. Together with above Sections 6.2.2 to 6.2.3 the established
TinyIPFIX aggregation framework is compared to those approaches. Table 6.8
illustrates the comparison in the case of key functionalities. [102]

The original functionality of wireless sensor networks only supports unidirectional
communication. In this case, a sensor node collects data and transmits data to-
ward the sink (perhaps over several hops). The sink does not transmit data down
to sensor nodes. Thus, it can be understood as an essential functionality. Here
aggregation techniques TAG and SIA are an exception. Both were developed ex-
clusively for bidirectional communication with the purpose of aggregation function-
ality adjustment. In comparison AIDA and the TinyIPFIX-Aggregation Frame-
work can be applied in the same way in application scenarios with unidirectional
communication. Bidirectional communication is supported by all four presented
techniques. Examples for this communication type are data requests or program
updates, e.g. time intervals or key distribution, performed by the gateway. This
input should be processed from the sink down to the required data collectors in the
network. [102]

Aggregation can be supported in two ways: (1) Message aggregation or (2) Data
pre-processing. In the first case several messages are combined in one transmission
without any pre-processing. SIA is the only protocol that does not support message
aggregation. In contrast only AIDA does not support the second case when data
pre-processing is understood as aggregation mechanism. This exception is based on
missing information about the aggregated data’s application context on the operated
layer between the network layer and link layer in AIDA.

Finally, the TinyIPFIX-Aggregation framework supports all four key functionalities
(cf. Table 6.8). The framework cooperates with underlying TinyIPFIX protocol,
which allows the separation of data values, and meta information combined with a
minimum of security support.
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TinyIPFIX-Aggregation
Key Functionalities TAG AIDA SIA Framework
Communication Support

Unidirectional Communication NO YES NO YES

Bidirectional Communication YES YES YES YES

Aggregation Support

Message aggregation YES YES NO YES

Data preprocessing YES NO YES YES

Table 6.8: Comparison of features o�ered by di�erent aggregation approaches

6.3 Evaluation of the TinyDTLS Solution

As described in Section 5.3, the integrated TinyDTLS implementation supports fully
authenticated DTLS handshakes between client and server using TinyOS 2.x and
BLIP. For the client an OPAL node is essential, because the node has the required
resources and an onboard TPM chip. Currently, the node itself has no external sensor
board attached; therefore, it does not measure data itself. Therefore, in practice
the node forwards received TinyIPFIX messages via UDP using a secured DTLS
connection towards the sink. Because of its special location within the network as
a clusterhead, it only performs message aggregation. The degree of aggregation can
be adjusted to the requirements (e.g. number of nodes in communication range) in
order to transmit as much data as possible via the DTLS secured connection.

The client performs the DTLS handshake with an OpenSSL 1.0.0d server imple-
mented on the gateway as illustrated in Figure 5.8. In comparison to the standard
OpenSSL 1.0.0d implementation two modifications were essential for the develop-
ment of TinyDTLS solution in order to support compatibility with the TPM hard-
ware on OPAL. First, the padding for RSA signature verification uses PKCS#1
version 2 instead version 1.5. Second, the client has to sign a SHA1 hash instead
of the concatenation of a MD5 and SHA1 hash. For analysis purposes the per-
formed DTLS cipher suite was TLS-RSA-with-AES-128-CBC-SHA. The evaluation
incorporates aspects of the master thesis by Thomas Kothmayr [81] and the results
presented at the conferences SenSys 2011 [127] and SenseApp 2012 [121].

6.3.1 Memory Consumption

For the DTLS implementation a client and a server implementation was chosen. In
general, a common PC or a server, which has no limits concerning resources such as
power, memory, and computational capacities, represents the server side [10]. The
evaluation, therefore, focuses on the client side, which must fit the requirements of a
sensor node. In this case, an OPAL node is used, which has 256 kB Program Flash
Memory, 52 kB RAM, and an onboard TPM chip used as an additional microcon-
troller at the moment [33].
For the evaluation of memory consumption on the OPAL node a fully authenticated
handshake with 2048-bit RSA keys was performed. This key size was chosen, be-
cause it is the worst scenario and keys with a smaller size than 2048 bits are not
secure anymore for RSA. It consumes most of the memory space, especially for the
required certificate and certificateVerify messages. The required memory
resources are shown in Table 6.9 split into ROM and RAM requirements. [121, 81]
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The entries for DTLS purposes in Table 6.9 were split into DTLS Messages and
DTLS Network. The entry DTLS Messages summarizes the memory requirements
of components needed for generation and parsing of di�erent DTLS handshake mes-
sages during the initial key exchange. Additionally, the value includes the code for
generating DTLS application messages during bulk data transfer. [121, 81]
In contrast, values represented by DTLS Network summarize the components, which
are needed for fragmentation, and reassembly of handshake messages as well as the
handshake management components. [121, 81]
The category TinyOS functionalities + BLIP includes network drivers and routing
functions, which are both related to the operating system TinyOS.
In the category Application, memory requests for all code running above DTLS and
BLIP are included, such as TinyIPFIX. If the TinyIPFIX-Aggregation framework is
also installed on the OPAL node, performing message aggregation with DoA = 2,
only 9,834 bytes for ROM and 1,251 bytes for RAM are additionally required
(cf. Table 6.7). [121, 81]
In total, RAM and ROM consumption is below the memory resources of OPAL node
(cf. Figure 2.2) and leaves more space for additional functionalities implemented on
OPAL for the future. RAM is mostly required for bu�ering purposes, especially for
incoming and outgoing messages. As shown in Figure 4.9, an amount of data must
be stored temporarily during the DTLS handshake until a session is concluded.
In the current analysis setup of the established wireless sensor network, the send
bu�er was allocated 1,800 bytes and the receiving bu�er with 1,200 bytes. If the
chosen scenario varies concerning cryptographically setup and key size, bu�ers can
be reconfigured to smaller sizes. [121, 81]

Component RAM ROM
Cryptography 537 10,635
DTLS Messages 1,348 4,204
DTLS Network 3,614 3,104
TPM driver 4,356 6,406
Application 98 2,488
TinyOS functionalities + BLIP 7,284 34,775
Total 17,227 61,612

Table 6.9: Memory consumption of DTLS client implementation [bytes]

Another important analysis question is the scalability of a system, which also re-
quires memory. In the presented case 263 bytes are needed for an active connection.
In this case the scalability depends on the required states for each concurrent connec-
tion between client and server. Therefore, a connection between states and required
keying material for the cipher suite is obvious. As determined in the book ‘SSL and
TLS Essentials. Securing the Web’ by Stephen Thomas, a unique key for generating
HMAC and for encrypting messages is needed [90]. In addition, an Initialization
Vector for the CBC block cipher mode is needed. Keying material is doubled due
to the fact that di�erent keying material is needed for incoming and outgoing con-
nections. [121, 81]



112 6. Evaluation of the developed Protocol and its Extensions

In the chosen TLS-RSA-with-AES-128-CBC-SHA cipher suite the following keys were
established [121, 81]:

• a 16-byte key,

• a 16-byte initialization vector, and

• a 20-byte HMAC key.

In addition to the essential keying material, a session ID with 32 bytes size and a
master secret for each connection with 48 bytes is stored. Thus, session resump-
tion is possible for future purposes. Depending on the established connection and
required information 53 bytes are spent. Those bytes include i.a. information about
sequence numbers, connection state, and selected cipher suite.. In the established
wireless sensor networks IP communication is supported and, therefore, an additional
26 bytes are used for the IPv6 address and port information for each node. Some
memory space may be neglected due to the number of concurrent connections being
small in the final network, because of clustering and OPAL being used as cluster
head. [121, 81]

6.3.2 Energy Consumption

As pointed out during hardware description (cf. Section 2.2), energy is one of the
most limiting factors in a wireless sensor network. Every application or function
added to the default Type-Length-Value approach has the potential to increase the
overall resource consumption, which calls for wise energy management within a wire-
less sensor network.
In Section 6.1.3 energy consumption by TinyIPFIX was analysed in comparison
to a common Type-Length-Value approach. It showed that a network performing
TinyIPFIX consumes 5% less energy than a Type-Length-Value setup. Additional
energy can be saved if aggregation is performed. [20, 98]
In Section 6.2.3 it was shown that the established TinyIPFIX-Aggregation frame-
work can save about 30% of energy if a normal message aggregation is performed;
0.039 mJ for each message aggregation of two messages (cf. Figure 6.4b). This
energy saving can be extended if more messages are aggregated. Although energy
might be lost if message aggregation is performed, that loss will be relatively small
in comparison to the achievements by aggregation. [102]
The OPAL node, therefore, also supports aggregation of mode 1, because no need
for data aggregation is assumed currently. For analysis purposes common forward
functionality is assumed, which is equal to aggregation with DoA = 1. The possible
latency caused by waiting for enough bu�ered packets is omitted.
With the integration of DTLS functionality within the wireless sensor network re-
quired energy resources must be analysed again. Each additional function or compu-
tation will cause more energy consumption. In this established DTLS handshake sce-
nario the TPM chip on the OPAL node will consume most energy during the hand-
shake phase between client and server. Analysis, therefore, focuses on a TPM chip
with a 2048-bit RSA fully authenticated handshake as worst
scenario. [121, 81]

EnergyConsumption = I ú Time ú Ubattery = (Uprobe/R) ú Time ú Ubattery (6.6)



6.3. Evaluation of the TinyDTLS Solution 113

Time [ms] Energy [mJ] I=Current [mA]
Computation 35 1.56 30
Radio TX 242 17.42 18
TPM Start 836 174.47 52.2
TPM TWI 688 119.93 43.6
TPM Verify 59 12.22 51.8
TPM Encrypt 39 8.08 51.8
TPM Sign 726 151.51 52.2
Total 2,625 485.19 –

Table 6.10: Energy analysis for TPM chip for fully authenticated handshake

Figure 6.5 shows the recorded energy draw during a fully authenticated DTLS hand-
shake on an OPAL node which is summarized in Table 6.10. If the client receives
a request for performing a DTLS handshake, energy consumption significantly rises
due to starting the TPM chip. TPM activity can be split into the following five
parts where the required power is calculated with Equation 6.6 assuming a battery
voltage Ubattery = 3, 998V [121, 81, 127]:

1. TPM Start: In this phase various self tests are performed which consume
174.47 mJ. Those tests check for tampering and unauthorized commands.

2. TPM TWI : In this phase 119.93 mJ energy is spent in order to pass data to
the TPM and receive data from the TPM via the TWI bus.

3. TPM Verify: Here the verification operation is performed by the TPM which
consumes 12.22 mJ. A server certificate is presented, and must be verified by
the TPM using the stored key of the certificate authority.

4. TPM Encrypt: Here the included Nonce in the server message is encrypted
with the server’s public key requiring 8.08 mJ, followed by data transfer via
the TWI bus.

5. TPM Sign: This part is optional and only performed if the node is expected
to authenticate itself during the handshake. The high energy consumption of
151.51 mJ during this phase is a result of using the RSA private key instead
of RSA public key.

As soon as the handshake is performed a secure connection is established and the
TPM is switched o�, which is marked by a lowering of energy consumption down
to sending level. Sending and receiving levels are equally high and are a direct
result of data exchange between client and server. In addition to the previously
mentioned energy consumption, 180.71 mJ must be added for the microcontroller
activity and 270.44 mJ for the active radio. Finally, 936.34 mJ are required for a fully
authenticated handshake. In order to save more energy, power saving techniques for
the microcontroller (e.g. idle mode) and, especially, for the radio (e.g. sleeping
modes) must be integrated in the future. [121, 81]
In comparison to Table 6.10, the required energy resources for the server site au-
thenticated handshake is shown in Table 6.11. Most of the energy saving is achieved
by drop of TPM Sign and the reduction of the value TPM TWI. In addition to the
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(a) Testbed setup

Measrement Time [s]

E
ne

rg
y 

re
qu

ire
m

en
t [

m
A

]

(b) Energy draw

Figure 6.5: Energy draw for a fully authenticated DTLS handshake on OPAL node

283.86 mJ energy consumed, a total of 103.23 mJ must be added for the microcon-
troller activity and 160.34 mJ for the active radio. Finally, for a server authenticated
handshake 547.43 mJ are required, which is 41.54% less than for a fully authenticated
handshake. [121, 81]
An ordinary OPAL either receives its energy via an USB connection to a PC or
server, which means no energy limitation exists, or via a battery pack with three
AA batteries. This battery pack contains approximately 45,360 J in total. Assuming
the OPAL node performs 20 DTLS re-keying operations per day consuming about
485.19 mJ per cycle based on the aforementioned energy analysis in this section,
lifetime of a node would be 12.8 years. If energy saving techniques are integrated in
the current implementation, lifetime increases. Lifetime of the OPAL is influenced
in a negative way if message aggregation is performed, which requires 0.039 mJ per
message aggregation with DoA = 2. But as an advantage the node can reduce the
number of forwarded messages. [121, 81]

Time [ms] Energy [mJ] I=Current [mA]
Computation 33 1.50 30
Radio TX 70 5.04 18
TPM Start 836 174.47 52.2
TPM TWI 476 82.97 43.6
TPM Verify 56 11.6 51.8
TPM Encrypt 40 8.28 51.8
TPM Sign – – –
Total 1,511 283.86 –

Table 6.11: Energy analysis for TPM chip for server authenticated handshake

6.3.3 Comparison to related Security Mechanisms
As motivated in Section 3.3 wireless sensor networks can be attacked on each layer,
which shows the possible vulnerability. Today’s used security standards in IP net-
works are to bulky for resources of sensor devices. They would exhaust the fol-
lowing resources: memory, computational capacity and power very soon. There-
fore, a long lifetime for a sensor network cannot be supported. Research focuses
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on key management strategies in order to secure communication between di�erent
entities of a wireless sensor network. Depending on supported cryptographic func-
tions many resources are required. Currently, the best and most secure solution
is it to support a combination of software and hardware security as motivated in
Section 3.3.3.
In order to provide security in the system, a third node platform called OPAL was
integrated. As characterized, the OPAL node includes a Trusted Platform Module
chip. This technology is known from today’s notebooks and o�ers the highest se-
curity available at the moment. TPM builds a chain of trust when a system boots
and, based on the hardware/software configuration, a storage root key is derivated
and stored in the secure memory of the TPM. Based on this key all other keys are
derived. Messages secured with this key can only be encrypted if the system itself is
still the same due to the previously mentioned dependency between TPM, hardware,
and software configuration.
The developed TinyDTLS solution is a standard based security architecture with
a two way authentication for wireless sensor networks [121]. Authentication is
performed during a fully authenticated DTLS handshake and based on an ex-
change of X.509 certificates containing RSA keys, which we have implemented. In
Section 3.3 di�erent security requirements were introduced where the TinyDTLS so-
lution provides message integrity, confidentiality, and authenticity. As proven in the
previous section of the TinyDTLS evaluation, the solution copes with the limited
resources of sensor devices and, therefore, is a feasible security solution.

6.4 Evaluation of the Graphical User Interface
As indicated in section 5.4 each existing graphical user interface is pegged to a
special application, such as simulation or visualization tasks. Therefore, the imple-
mented graphical user interface is based on the requirements for the presented home
application, as introduced in Sections 2.5 and 5. In the presented application the
operating system TinyOS 2.1.1 and the transmission protocol TinyIPFIX with its
extensions described in Section 4 are supported. The implementation of the graph-
ical user interface is modular. This fact allows the adaptation to other application
settings with less manual input and also supports the inclusion of extensions, such
as more exporting clients. If hardware of new vendors is included in the wireless sen-
sor network, the XML configuration file must be updated to provide the conversion
procedure to the WSNDriver (cf. Figure 4.11). [133]
The graphical user interface, as described in reference [133], is implemented on the
server, which has unlimited resources, rendering energy consumption and memory
evaluation unnecessary. Therefore, the presented evaluation is a proof of operability
of the implemented graphical user interface.

6.4.1 Configuration of the Network Components

The established interface supports the programming of the required base station as
well as the measurement devices. For the measurement devices the user is able to
choose between di�erent pre-installed setups covering most of the common hard-
ware specifications (cf. Figure D.1). The pre-installed setups include platform type,
sensor board type, TinyOS options, and node functionality. The TinyOS option
BLIP is activated on default. With this degree of configuration, the user is able
to configure each node in the wireless sensor network individually. In order to en-
sure unique identities, the user has to choose an individual ID for each node. The
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programming interface for the base station is similar. The programming interface
also allows new node programming during runtime of the wireless system in par-
allel as long as the new node is not from the same type as the currently attached
base station. This causes a drawback due to the naming by the vendor: when
the node is attached to another USB port, the internal software having the same
vendor name as the base station causes an error. The only possibility to solve
this problem is a request to the vendor to use unique numbers instead of platform
types to recognize the newly attached hardware by the underlying operating system
(e.g. Linux). [133]

6.4.2 Graphical Feedback of Network Status

As described in Section 5.4.2 in detail, the graphical feedback of the activated wire-
less sensor network is based on two functions: First, the routing driver shell sup-
ported by the BLIP implementation allows a screenshot of the current node links
visualized in a tree structure. Second, all information about the individual nodes
itself is extracted from the received data record based on the transmission protocol
TinyIPFIX. Received data is encoded with help of Template Records
(cf. Section 4.1.2) and in the next step abstracted into a virtual representation of
the network. All this work is performed by the module WSNDriver. The node rep-
resentation takes part when the first Data Record was successfully decoded. Then
the virtual representation following the UML draft in Figure D.2 starts and re-
sults in an information visualization in the graphical user interface under menu
WSN Nodes. [133]

Figure D.3 shows an example of the visualization event: the right part is based on the
module WSNDriver and the left part on the TinyOS function BLIP. The individual
node information on the right part is updated periodically when the routing tree
updates itself. The user can initiate this update procedure as well. In this case
the user can either refresh the browser or change to menu Hardware in submenu
TinyOS and click on the button rebuild topology under option Tools. The left
part illustrates the current routing tree behind the network. If sensor nodes are in
range of the gateway, they do not need to route their packets over an intermediate
node. This option is chosen if the distance is invalid or an aggregator is part of the
network (cf. Figure D.3c). In order to find a special node more easily in the complex
routing tree case, the user needs to click on the node in the right hand portion of
the presentation. Next the node with all its incoming and outgoing connections is
highlighted in the routing tree (Figure D.3c). [133]

6.4.3 Data Export/Import Functionality

In order to prove the established data export/import functionality in the graphical
user interface, the following o�ce scenarios were established:

• Experiment 1: Three IRIS nodes and one TelosB recording temperature,
humidity, brightness, acoustic, and voltage consumption.

• Experiment 2: Three IRIS nodes and two TelosB nodes where one TelosB
supports message aggregation functionality.
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6.4.3.1 Experiment 1: Data Collectors of di�erent Vendors

During this dissertation several experiments with slightly di�erent setups and net-
work sizes were performed in order to verify a stable operation of the graphical
user interface. The node deployment shown in Figure D.7a is assumed to verify the
support of di�erent vendors. The first experiment took place during five hours on
a sunny o�ce day on May 8th, 2012. In this experiment the following four sensor
nodes were included:

• IRIS from Crossbow Inc.

– NodeID 1104: Node located next to the window, and activated MTS300.
– NodeID 1101: Node located on the table next to the window, and activated

MTS400.
– NodeID 1106: Node located on the table next to the o�ce door, and

activated MTS300.

• TelosB from Advantic

– NodeID 2250: Node located on the same table as node 1101, performing
only data collection with all onboard sensors activated.

The configuration of the IRIS nodes was the following: IRIS nodes request sensors to
collect environmental data every five seconds. They transmit their Template Record
periodically every 30 seconds in order to ensure decoding of Data Records. For this
test run collected data is uploaded to COSM every 30 seconds. TelosB node has an
altered setup. The data-recording interval was set to 60 seconds and the remaining
conditions were the same as in the first experiment.
The experiment started at 9 a.m. and had a duration of four hours and the sen-
sor nodes were started with random delay. After all sensor nodes had announced
their Templates and the first Data Records were received, the routing tree was es-
tablished. The final routing tree is shown in Figure D.8. The figure shows the
IRIS node with ID 1106 works as an intermediate and forwards packets of nodes
1104 and 2250 towards the base station. Node 1106 also collects data itself and is
displayed in the right-hand portion of the figure in the highlighted box. The link
between node 1106 and 1104 is highlighted, because a packet was transmitted over
this link during the screen shot. The boxes in the right-hand portion of the fig-
ure also present node information extracted from the TinyIPFIX packets received
at the gateway. A capture of the incoming packets is shown in Figure D.7b, as
provided by the Listener tool of TinyOS. This capture displays both - packet type
(e.g. Template or Data) and the COSM upload command.

Figure D.11 illustrates the COSM visualization in the implemented graphical user
interface. It shows that the user has chosen di�erent visualization intervals ranging
from five minutes up to three hours and that all sensor node information was ex-
ported to COSM. Even though not all values are essential, the importing result also
includes all values some (e.g. NodeID and NodeTime). Analysis of the records is
divided into the following parts: humidity analysis, temperature analysis, acoustic
analysis, and voltage analysis.
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6.4.3.2 Experiment 2: Aggregation Performance

The second experiment is similar to the first experiment. An overview is shown in the
implementation chapter of this doctoral thesis in Figure D.4. In this experiment not
all nodes support data collection functionality. Therefore, one TelosB node (ID 2222)
supports message aggregation. As can be seen in the record of the Listener tool, the
node aggregated TinyIPFIX messages from nodes 1101 and 1103 (cf. Figure D.4b).
Incoming packets at the gateway are encrypted and split into their components. In
the case of aggregator node 2222, the received aggregate was split into two parts
corresponding to their sources. From this point on, the virtual presentation of the
network steps in, as describe in Section 4.4.2. Thus, the final representation in
COSM allows the user to visualize each data collector as shown in Figure D.6. In
this COSM virtualization the aggregator 2222 did not occur, because it did not
collect data by itself.
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Figure 6.6: Experiment 2 - Established communication links

Figure 6.6 shows the underlying network topology. Due to a code update all estab-
lished communication links are now visible in the menu Topology. Grey drawn
arrows represent the established communication links by BLIP as described in
Section 5.4.2. Depending on the network status nodes can have a di�erent num-
ber of communication links. In any event, they have a link to the sink, which
performs in this case the program IP Basestation11. Here nodes 1104 and 2213
are data collectors and work as intermediates in the network. They forward incom-
ing packets from node 2222.
When an aggregator (here: node 2222) enters the network, the aggregator performs
the dynamic neighbor discovery strategy as introduced in Section 4.2.2.2. The result
is a binding of nodes corresponding to the predefined degree of aggregation. Here
data collectors 1101 and 1103 are bound to the aggregator. Finally, preferred com-
munication links of the data collectors are updated, which is illustrated with blue
dashed bold arrows. The before established communication links by BLIP still exist,
but are not used anymore as long as the nodes are bound to the aggregator. If the

11‘IPBaseStation is a modification of the generic BaseStation which ships with tinyOS-2.x. It alters the
serial protocol to pass 802.15.4 frames instead of Serial.h packets. It also adds an out-of-band configuration
protocol which allows a driver running over the serial port to reboot the mote, and to set the device address,
channel, and retransmission parameters. These changes are useful when one wishes to use a mote attached
to a computer as an 802.15.4 interface rather then an actual mote. The actual queuing logic for copying
packets is mostly unchanged, and it continues to make use of serial ACKs.’ [25]
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binding is removed (e.g. node deletion, execution of command rebuild by BLIP),
the original communication links may be reactivated again.

6.5 Compliance of a Cyber-Physical System
As mentioned in Section 4.1.2, the design space for an application protocol designed
to achieve tight integration of wireless sensor networks into a cyber-physical system
consists of four areas [12]: (1) standardization, (2) resource e�ciency, (3) flexibility,
and (4) usability. In this section it is proven that the developed application protocol
TinyIPFIX and its extensions fulfill these four criteria.

6.5.1 Standardization

Sensor measurement data is identified by Type ID and the Enterprise Number (EID).
As described in Section 3.2 each measurement of a sensor should be assigned a glob-
ally unique combination of Enterprise and Type ID. For example, the Sensirion
SHT11 Temperature and Humidity sensor would be assigned two di�erent combina-
tions:

1. Temperature channel: EnterpriseID = 3841 and TypeID = 33025

2. Humidity channel: EnterpriseID = 3841 and TypeID = 33026

A public repository would allow an application to receive a template with an
Enterprise and Type ID combination, which has not been seen before, and ob-
tain the semantics of that measurement from the Internet. Semantic information
includes the kind of data (temperature), data type (16-bit integer), how to convert
to a sensor independent format (formula to convert to ¶C), and any other required
information. This allows the flexible deployment of motes with di�erent sensors.
For example, if an existing deployment, which is using Sensirion SHT11 sensors,
was augmented with several new nodes that use a Sensirion SHT15 instead, there is
no need for extensive reconfiguration within the wireless sensor network itself or the
converter application if both use TinyIPFIX to send their measurement data. Nodes
can simply transmit raw measurements without having to convert them into another
format via potentially complex formulas. The receiving application on a gateway can
convert both values to scientific units and combine measurements based on semantic
information obtained from the repository.

6.5.2 Resource E�ciency

Aspects considered by resource e�ciency focus on memory and energy resources. As
assumed in the beginning of Chapter 6 the application protocol TinyIPFIX and its
extensions were implemented on top of the BLIP IPv6 and UDP implementation,
which is part of TinyOS 2.1.1.
As described in Section 6.1.1 each component is built upon the other. Corresponding
memory consumptions are shown in Table 6.2 for TinyIPFIX. The results are shown
in Table 6.7 including the extension TinyIPFIX-Aggregation. For the DTLS client
implementation memory consumption is shown in Table 6.9. Due to constrained
memory resources of the IRIS platform, this node can only perform TinyIPFIX
without any extension. Platforms with more resources such as TelosB or OPAL can
perform the implemented extensions.
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In Section 2.2 the hardware used was characterized as follows: platforms IRIS and
TeloB receive their energy from a battery pack with two AA batteries. In contrast
the OPAL node can be powered either by a battery pack of three AA batteries or
via a micro USB connection. The latter was used in the presented setups, which
results in a non-exhaustible energy resource.
As shown in Table 6.4, the transmission of an average TinyIPFIX Data packet costs
727µJ , as compared to 780µJ required for a TinyIPFIX Template packet. Due
to the construction of the underlying TinyIPFIX protocol, the Template packet is
transmitted only once directly after the sensor node’s booting. Thus, this is a one-
time energy cost. If UDP is used, this packet must be repeated periodically. The
interval depends on the stability of the network infrastructure. This means, if the
network is stable and no route changes are expected, the interval can be extended
resulting in less transmission. It also can be extended if it is assumed that all
intermediate nodes, especially the sink, store all Templates for decoding purposes.
This storage task is also a question of memory resources. Thus, it is not a good idea
solution for constrained platforms like IRIS.
Concerning aggregation support, Section 6.5.1 noted that the IRIS platform is too
constrained to support this feature. Thus, TelosB and OPAL can only support this
extension. As described in Section 6.2.3 the support of aggregation saves 30% on
TelosB compared to common transmission if DoA = 2 is assumed. If the degree of
aggregation is higher, more energy can be saved. The same energy consumption is
gained at the OPAL platform.
Most of the energy is consumed on the OPAL platform if the node’s TPM chip is
activated. This must be done in order to establish a secure connection as depicted
in Sections 6.3.2. The establishment of a connection requires 485.19µJ . With a
battery pack and 20 re-keying operations per day a lifetime of 12.8 years is possible.
As the analysis of the constrained platform IRIS shows, the established protocol
TinyIPFIX can be supported. Further extensions can be used if platforms have
more resources, such as TelosB or OPAL.

6.5.3 Flexibility

The developed TinyIPFIX implementation is based on TinyOS 2.1.1 and has been
tested successfully for TelosB and IRIS motes as described in the previous sections
of Chapter 6. With little modifications the implementation can also support other
hardware platforms featuring IEEE 802.15.4 radios (e.g. IMote).
Due to the intuitive structure of the Data and Template Set, each user can easily
implement their own Set. The programmer can decide what information is to be
transmitted in the packets and, therefore, modify the Set as needed. For example,
in order to add a new temperature sensor to the sensor node’s programming, the
following changes are needed:

1. The IPFIXDataSampler interface must be modified, and instantiated with the
desired Type ID and Enterprise ID.
For example: components new IPFIXDataSampler16C(uint16_t type_id,
uint32_t enterprise_id) as Temp;

2. The fitting sensor must be instantiated, and wired to the sensor interface of
the IPFIXDataSampler.
For example: Temp.Sensor -> Sht11.Temperature;
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3. Finally all IPFIXDataSamplers must be wired to the Sampler interface of the
main application.
For example: App.Sampler -> Temp;

The program can now automatically generate templates for all connected sensors
and obtain their measurement data, which is then automatically encapsulated in
a format that complies to the previously generated template. In order to allow a
more fine-grained control over the creation of a TinyIPFIX packet, the program-
mer can also use methods provided by the TinyIPFIX implementation such as the
following [20]:

• tinyIPFIX.start_template_record(uint8_t buffer_no, uint16_t
template_id) to start handcrafting a Template Record or

• tinyIPFIX.start_data_record(uint8_t buffer_no) for writing multiple
Data Records into a single packet.

The consumed ROM and RAM space of the implementation is shown in Table 6.7.
Reported figures make the protocol viable for use on constrained hardware. Due to
the modular structure of TinyOS, di�erent parts of the implemented protocol can
be excluded for very limited hardware and included on nodes with more resources
in a heterogeneous network as shown in Figure 6.1. This advantage makes the
TinyIPFIX protocol attractive for all common node platforms.

6.5.4 Usability

In order to evaluate the ability of usability, di�erent application scenarios are as-
sumed working with di�erent hardware vendors (cf. Sections 6.4.3.1 to 6.4.3.2). In
Chapter 6 the evaluation is based on an o�ce scenario as illustrated in
Figure 6.1. This scenario was driven by the AutHoNe project developed at the de-
partment ‘Network Architectures and Services’ at the Technische Universität
München [13]. In this project a wireless sensor network was integrated into an
existing smart home infrastructure supporting IPv6. A sample Wireshark record is
shown in Figure 5.9 where some TinyIPFIX packets are transported via a DTLS
secured connection to the gateway and others via an insecure UDP connection.
Figure 5.1 illustrates the message flow within the AutHoNe infrastructure.
For successfully decoding an XML file is used as input at the autonomic home in-
frastructure. If TinyIPFIX data is encoded, it is passed to the AutHoNe application
in concrete to the Knowledge Agent, which makes the data available for other com-
ponents in the AutHoNe infrastructure (e.g. Autonomic Manager). For example,
the Autonomic Manager can access the room temperature value in order to assess
the situation and manage the heating system in the room accordingly.

6.6 Summary and Findings
For evaluation purposes in this chapter, a building scenario and the usage of hard-
ware supporting TinyOS was assumed. The developed protocols and solutions of
this dissertation were analysed concerning memory and energy consumption and
compared to related approaches in wireless sensor networks. It was found out that
due to constrained hardware used in wireless sensor networks not every protocol can
be performed in its default configuration or by every sensor node.
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The developed TinyIPFIX protocol can only be performed on constrained hard-
ware due to the integration of compression functionality for the additional overhead
caused by IP headers. With this compression the overhead could be reduced by
85%, which made a transfer to sensor nodes possible. The implemented solution
requires a minimum of 7 bytes RAM and 30 bytes ROM. This is not a prob-
lem with the used hardware in this dissertation. Concerning energy requests the
performance of TinyIPFIX protocol scales as well as the traditional Type-Length
Value approach whereas data and meta information is transmitted in the same mes-
sages. The TinyIPFIX protocol required 727 µJ for a TinyIPFIX Data packet and
780 µJ for a TinyIPFIX Template packet. Due to the results it was proven that the
TinyIPFIX protocol can be used on all node platforms supporting
TinyOS. [20, 98]
In-network aggregation is important for wireless sensor networks in order to re-
duce tra�c within the network itself and to optimize e�ciency. Therefore, a Tiny-
Aggregation protocol was integrated in this dissertation supporting message and
data aggregation. This functionality required additional 404 bytes of RAM and
36 bytes of ROM. Concerning energy consumption it was shown that performing ag-
gregation saved 0.039 mJ (respectively 30%) compared to transmission of the same
number of packets in individual transmissions over the CC2420 radio used in sensor
nodes. In general, such additional functionality is performed on special locations
within the network and requires more computational capacity. This dissertation
found out that only the TelosB or OPAL platform used had enough resources to
support this functionality. [102]
In order to provide end-to-end security this dissertation faced the challenge to bring
DTLS on constrained hardware. As described in Section 4.3 a strong two-way au-
thentication can be performed by sensor nodes including a TPM chip, such as OPAL,
or a weaker authentication if they do not include the chip. In order to support DTLS,
sensor nodes must o�er 18 bytes of RAM and 62 bytes of ROM and, therefore, not
every hardware can perform this functionality. Concerning energy consumption the
TPM chip consumes most of the energy when performing the authentication. It
required 485.19 µJ in total when performing a 2048-bit RSA fully authenticated
handshake. When assuming a power resource with three AA batteries o�ering ap-
proximately 45,360 J and assuming 20 re-keying operations a day, lifetime of an
OPAL node would be 12.8 years. [81, 121]
In addition, this chapter evaluated the implemented graphical user interface by a
proof of working. It was not analysed concerning memory or energy requirements,
because it is located on a server without such regulations. The previously men-
tioned tests on di�erent settings were directly visualized by the graphical user in-
terface and exported to the online analysis tool COSM in order to give the user
a visual feedback. The graphical user interface worked well even during long term
experiments and displayed live stream of data and network configuration / status
appropriate. [133]
Regarding the mentioned research questions on e�cency the following contribution
has been made in this chapter:
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(E3) Can all sensor platforms perform TinyIPFIX and its extensions (compression,
aggregation), as well as TinyDTLS?

No. Concerning memory consumption it was proven in Section 6.1.1 that
TinyIPFIX performing aggressive header compression requires 4,841-6,889
bytes RAM and 28,810-29,020 bytes ROM depending on TinyIPFIX packet
size. Assuming a packet size of 102 bytes as specified by the RF transceiver
CC2420, the minimum request of memory is 4,784 bytes RAM and 26,008 bytes
ROM. This means, the sensor platforms IRIS, TelosB and OPAL, which are
used in this dissertation, can all perform TinyIPFIX. In the case of TinyIPFIX-
Aggregation additional 1,253 bytes RAM and 10,130 bytes ROM are required,
which means that only TelosB and OPAL have enough resources to perform
aggregation (cf. Section 6.2.1). Concerning energy consumption the used
hardware in this dissertation is well dimensioned in order to perform TinyIP-
FIX and its extensions. The OPAL platform is the best candidate to perform
DTLS, because it o�ers a strong two-way authentication due to the included
TPM chip.
The whole implementation - TinyIPFIX with its extensions and TinyDTLS
support - was tested on di�erent network sizes and with di�erent settings and
experimental durations. It scaled well and proved its flexible adaptation. Due
to its modular structure, implementation can be extended with fewer overheads
and adapted to other sensor platforms using TinyOS.
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7. Conclusion

This dissertation faced the challenge to integrate a secure and e�cient data transmis-
sion solution based on standards used in IP networks into wireless sensor networks,
which are part of cyber-physical systems [12]. As a representative for cyber-physical
systems an intelligent building control system was evaluated, which was deployed
in order to achieve a high level of comfort for residents and a high overall energy
e�ciency of the building. Wireless sensor networks, as part of a smart meter infras-
tructure, provide the required level of data quality with temporally and spatially
fine-grained measurements.
In the solution presented in this doctoral thesis, sensor data (e.g. temperature,
brightness, acoustic, humidity) is sent to a gateway, which o�ers di�erent possibil-
ities for analysis in order to manage the environmental conditions of the building
based on the habitants’ preferences. The analysis’ result can either be directly ap-
plied to di�erent entities controlling automatic systems such as those developed for
the AutHoNe project. Another possibility is the export of the data to analysis tools,
which allow an import of data into a visualization tool in order to display the current
status and to help optimizing the carbon footprint due to real-time feedback for the
habitants influencing their behavior.

In this doctoral thesis it was pointed out throughout Chapters 2 and 3 what chal-
lenges are faced regarding wireless sensor networks and why new protocols are re-
quired. Due to the similarity between wireless sensor networks and IP networks, it
was obvious to use established IP protocols for wireless sensor networks. The chal-
lenge for the protocol transfer was the resource limitation of the sensor hardware
in memory, energy and computational capacity. IP protocols are too bulky for the
sensor resources (e.g. cryptographically operations, message size), so that they must
be modified and (perhaps) customized in their functionalities in order to fulfill the
new requirements.
It was briefly described in Chapter 4 what protocols in the fields of IP communi-
cation, data transmission, and security were interesting for sensor network applica-
tions; followed by performed modifications in order to adapt those standards, such as
IPFIX or DTLS, to the resource constrained environment of sensor networks
(cf. Chapter 5). In order to facilitate the e�cient transfer of sensor data through a
heterogeneous wireless sensor network TinyIPFIX was developed due to it’s min-
imal configuration based on the standard IPFIX. TinyIPFIX is a versatile and
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light-weight application level protocol for data exchange that can be adapted to
di�erent vendors and sensor configurations for heterogeneity support in the system.
The performance of the TinyIPFIX implementation and its extensions (e.g. header
compression techniques, aggregation) was evaluated regarding the transmission e�-
ciency, system level energy consumption, and memory requirements.
The rate of successfully transmitted measurement was similar to conventional ap-
proaches even though the separation of meta data and measurement data into Tem-
plate and Data Records in di�erent packets increases the risk of unreadable data.
The savings in the amount of transmitted data did not translate directly into energy
savings on the system level, although a reduction of about 5% could be achieved.

In addition, energy savings of up to 30% were achieved with the integration of ag-
gregation functionality to the system - called TinyIPFIX-Aggregation framework
(cf. Sections 5.2 and 6.2). If message aggregation is used, 0,039 mJ can be saved per
aggregated transmission. If data aggregation is performed, more energy can be saved
due to reduced message sizes within the network. Aggregation functionality can also
be changed during the system run on the fly. Due to the limitations of resources
and the required memory of the extension - TinyAggregation -, it turned out that
not every hardware could perform TinyIPFIX and TinyAggregation at the same
time. Thus, sensor nodes with more resources had to be integrated into the wire-
less sensor network at exquisite locations in order to perform both functionalities.
This constraint resulted in a functional distinction of the sensor hardware into data
collectors only performing TinyIPFIX and into nodes with additional functionalities
(e.g. aggregation).

Due to the chosen application scenario, collected data can include sensitive data,
which raises security issues. Currently available security protocols supporting en-
cryption call for more resources due to computation and key management requests
which emphasizes dependency between hardware resources and user requests. For
this thesis TinyDTLS was implemented in order to face this challenge. It allows
the establishment of a secure communication channel between di�erent components
(cf. Section 5.3). The implemented TinyDTLS o�ers one of the highest possible
security options, because the hardware uses the functionality of a Trusted Platform
Module to perform the DTLS handshake in order to establish a secure communica-
tion channel.

Another part presented in this dissertation was the description of how a wireless
sensor network must be configured in order to deploy it in a building scenario as a
representative for a cyber-physical system. It was accompanied by a proof of func-
tionality via real-life test runs. TinyIPFIX and its extensions are a suitable choice
for the cyber-physical systems presented, due to the flexibility for di�erent hard-
ware, suitability to constrained resources, extendibility and scalability of di�erent
network sizes (cf. Section 6.5).

In addition, a comfortable graphical user interface was integrated in order to raise
comfort for users to configure such a wireless sensor network, to receive visual
feedback of the network, and to allow data analysis using online and o�ine tools
(cf. Section 5.4). The established graphical user interface is dependent of the appli-
cation. Currently, it supports configuration tasks for sensor platforms IRIS, TelosB,
and OPAL under the operating system TinyOS 2.1.1, graphical visualization and
data analysis following TinyIPFIX requirements. The whole system was imple-
mented in a modular structure, which allows extension integration in order to sup-
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port additional functionalities (e.g. hardware, operating system, visualization tools)
in the future.
During this dissertation di�erent research questions influenced the design of the
presented solution - TinyIPFIX with its extensions. In Section 1.2 a number of
research questions were listed, which were answered during this dissertation and are
now mentioned again in order to summarize the research impact of this dissertation.
Regarding the mentioned research questions on e�ciency the following contributions
have been made:
(E1) Is the IP Flow Information Export (IPFIX) protocol a viable solution for
transmission of sensor data in wireless sensor networks?

Yes. As assumed in Chapter 3 IP communication is supported by constrained
hardware today and it became interesting to transfer standardized protocols to
constrained hardware as used in wireless sensor networks. The IPFIX protocol
was introduced in Section 3.2. The message structure of the IPFIX protocol
is very interesting for wireless sensor networks, because it separates meta in-
formation and data in di�erent messages. It works over UDP, which is the
preferred transport protocol for sensor networks. IPFIX is flexible concern-
ing its message structure and reduces retransmissions of known information
(e.g. meta information).
A drawback is the additional overhead of 20 bytes caused by the IPFIX message
and Set headers that reduces the free space in the payload of each message.
But this drawback was solved as described in Section 4.1.3 by introducing
header compression techniques. Three di�erent compression techniques were
developed that had a pre-header in common: defensive compression, modified
defensive compression, and aggressive compression. This pre-header specifies
the field sizes of IPFIX message and Set header. The pre-header in the aggres-
sive compression techniques has a minimum size of three bytes which means a
compression of 85% (cf. Figure 5.4).

(E2) Is it possible to combine data pre-processing techniques (e.g. aggregation)
with the IPFIX protocol within the network?

Yes. Depending on the chosen application scenario for the deployed wireless
sensor network it might be interesting to pre-process data within the network
itself. This work incorporates the reduction of network tra�c throughout the
whole network. Section 4.2 introduced existing aggregation techniques in wire-
less sensor networks such as TAG, AIDA and SIA. Those protocols are very
specified and were developed for specific applications.
In the case of IPFIX a general pre-processing technique was chosen that only
aggregates data. Therefore, the TinyIPFIX-Aggregation framework was devel-
oped o�ering message and data aggregation. For this extension support new
templates had to be specified for IPFIX and a neighbor discover algorithm
had to be integrated. Additionally, the user can manually log on the aggre-
gator node in order to modify the performed aggregation within the network
(e.g. degree of aggregation, performed aggregation function from AVG to
MAX).
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(E3) Can all sensor platforms perform TinyIPFIX and its extensions (compression,
aggregation), as well as TinyDTLS?

No. Concerning memory consumption it was proven in Section 6.1.1 that
TinyIPFIX performing aggressive header compression requires 4,841-6,889
bytes RAM and 28,810-29,020 bytes ROM depending on TinyIPFIX packet
size. Assuming a packet size of 102 bytes as specified by the RF transceiver
CC2420, the minimum request of memory is 4,784 bytes RAM and 26,008 bytes
ROM. This means, the sensor platforms IRIS, TelosB and OPAL, which are
used in this dissertation, can all perform TinyIPFIX. In the case of TinyIPFIX-
Aggregation additional 1,253 bytes RAM and 10,130 bytes ROM are required,
which means that only TelosB and OPAL have enough resources to perform
aggregation (cf. Section 6.2.1). Concerning energy consumption the used
hardware in this dissertation is well dimensioned in order to perform TinyIP-
FIX and its extensions. The OPAL platform is the best candidate to perform
DTLS, because it o�ers a strong two-way authentication due to the included
TPM chip.
The whole implementation - TinyIPFIX with its extensions and TinyDTLS
support - was tested on di�erent network sizes and with di�erent settings and
experimental durations. It scaled well and proved its flexible adaptation. Due
to its modular structure, implementation can be extended with fewer overheads
and adapted to other sensor platforms using TinyOS.

Regarding the mentioned research questions on security the following contributions
have been made:
(S1) Is it possible to secure data transmission in wireless sensor networks with
known standards from IP networks?

Yes. Concerning security Section 3.3 gave a brief overview of solutions used in
IP networks in order to secure data transmissions within a network. In order
to answer research question S1, selected security solutions focused on secu-
rity protocols (cryptographic functions, public key infrastructures), (D)TLS
protocol, and trusted hardware component using a trusted platform module.
Throughout this section it became obvious that not every solution is interest-
ing and contributing to wireless sensor networks, because of limited resources
especially in memory and computational capacities. But the given overview
influenced the design decision for the realized security solution in this disserta-
tion and was presented in Section 4.3. First, di�erent cryptographic methods
(e.g. RSA, AES, TinyPK, TinySec, Tiny-ECC) were characterized, followed
by symmetric key management solutions (e.g. PIKE, solutions by Echenauer
and Gligor), and end-to-end security solutions (e.g. IPsec, Sizzle, SSNAIL,
Tiny-3-TLS). All introduced protocols request di�erent resources of the sensor
nodes, and, therefore, nodes can be exhausted quickly. Due to the comparison
of the di�erent approaches, it was pointed out that a standard-based approach
across all communication layers scaled best for heterogeneous networks. De-
pending on the technology development of embedded platforms (e.g. OPAL
including TPM chip) more security functions can be supported that allow au-
thentication of the participating parties.
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(S2) Can DTLS be performed on strongly constrained hardware as used in wireless
sensor networks?

Yes. DTLS can be performed on constrained hardware. Section 4.3.2
described the required modifications for a DTLS transfer on wireless sensor
networks. In this dissertation a new platform, called OPAL, was integrated
in the wireless sensor network. This platform includes a Trusted Platform
Module that allowed working with certificates. Therewith, a strong tow-way
authentication handshake can be adapted to the communication participants
in the wireless sensor network. The included TPM chip on the platform al-
lowed to save the RSA private key to be stored in a tamper-proof location
and prohibit to pass it outside. As a consequence all operations using this
RSA key had to be performed in this chip. All these characteristics a�ect the
attacker’s work. The authentication, which uses certificates during the hand-
shake phase in a standard DTLS handshake (cf. Section 3.3.2), o�ers the same
properties as authentication performed via the conventional TLS protocol in
the Internet. In the case of a platform without a TPM chip, it was shown that
a weaker authentication can be supported by using a variation of the TLS pre-
shared key cipher suite. Here the publisher places less trust in the subscriber
and requested an authentication of the subscriber by the access control server
together with the generation of a session key.

In the future the developed TinyIPFIX protocol with all its currently available ex-
tensions could be leveraged in other scenarios and deployments as well. In addition,
the development of extensions, especially security support, will go on after the sub-
mission of this dissertation. A long time goal in the future is to extend the DTLS
solution to more constrained hardware in order to support a high level of security
even on the level of data collectors and not only between cluster heads and gateway.
A high security level should be established whitin the cluster itself. In order to
support access for mobile devices the established security solution will be extended
with the required authentication and validation procedures.
Another field for more research will focus on optimizing the system’s lifetime through
intelligent energy saving methods, because energy resource is limited due to battery
capacity of the nodes (cf. Figure 2.2) Depending on the development of visualization
tools, the graphical user interface will be extended.
Depending on di�erent application scenarios it might be preferable to contact a
data collector directly and to request an immediately measurement. This request
can be realized by expanding the existing push functionality of TinyIPFIX with a
pull functionality. This means, a measurement request is translated to a special
TinyIPFIX Template Record and directly addressed to the measurement point (e.g.
sensor node with ID 1104). If the measurement point receives the Template Record
it immediately measures the requested value (e.g. temperature) and transmits it
back to the sink referring to the received template.
Finally, a transfer of the implementations developed during this dissertation to the
operating system Contiki is planned in order to support more vendors and due to
the industrial requests. Therefore, each part must be converted and adjusted to
Contiki as indicated in Section 2.4.3. Modules supporting the network configuration
by Contiki must extend the developed graphical user interface.



130 7. Conclusion



Appendix





A. TinyIPFIX Template and Data Set
Construction

This appendix compares the underlying code parts of TinyIPFIX, which are per-
formed in order to create the required Template and Data Sets for a specific sensor
node. If a sensor node enters the existing wireless sensor network, it has to prepare
its supported Template Set for TinyIPFIX in order to announce the Template to
the neighbors in the network. Therefore, the sensor network directly performs the
task shown in Figure A.1 in order to build its Template. In comparison Figure A.2
shows the task, which is performed by the sensor node in order to create its Data
Set for upcoming data transmissions of measured data. [98]
Both task blocks are bracketed with signaling calls to indicate either start or end
of the set construction. In this example, the Template ID of 256 is included in the
Data Set calls in order to ensure successful decoding later on in the system. The big
di�erence between both task blocks is in the FOR-Loop. The Field ID, the Field
Length, and the Enterprise ID are specified for Template calls. In comparison, in
Data Set’s FOR-Loop the value and the size of the value are specified. Those two
lines are based on the standardization by the IETF for the IPFIX protocol [19] and
the IANA registration [74].

task void makeTemplate(){
uint16_t i,j = 0;

call tinyIPFIX.net_start_template(0);
call tinyIPFIX.start_template_set(0);
call tinyIPFIX.start_template_record(0, 256);
for( i=0; i<degree_of_aggregation; i++ ) {

for( j=0; j<tinyipfix_set[i].template_set.field_count; j++ ) {
call tinyIPFIX.put_template_field(0, tinyipfix_set[i].template_set.field[j].field_id + agg_id,

     tinyipfix_set[i].template_set.field[j].field_length,
     tinyipfix_set[i].template_set.field[j].e_id );

}
agg_id = agg_id << 1; // makes Template Field IDs unique for one Template Set.

}
call tinyIPFIX.end_template_record(0);
call tinyIPFIX.end_template_set(0);
call tinyIPFIX.net_finish_template(0);
agg_id = 0x0100;

}

Figure A.1: Task structure for new Template Set Construction
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task void makeData() {
uint16_t i,j,k = 0;
nx_uint16_t buff32[2];
buff32[0] = 0x0000;
buff32[1] = 0x0000;

call tinyIPFIX.net_start_data(0);
call tinyIPFIX.start_data_set(0, 256);
call tinyIPFIX.start_data_record(0);
for( i=0; i<degree_of_aggregation; i++ ) {

for( j=0; j<tinyipfix_set[i].template_set.field_count; j++ ) {
if( tinyipfix_set[i].template_set.field[j].field_length == sizeof(uint16_t) )

call tinyIPFIX.put_data_field(0, &(tinyipfix_set[i].data_set.value16[k++]), sizeof(uint16_t));
else if( tinyipfix_set[i].template_set.field[j].field_length == sizeof(uint32_t) ){

buff32[0] = tinyipfix_set[i].data_set.value16[k++];
buff32[1] = tinyipfix_set[i].data_set.value16[k++];
call tinyIPFIX.put_data_field(0, (nx_uint32_t*)buff32, sizeof(uint32_t));

}
}
k = 0;

}
call tinyIPFIX.end_data_record(0);
call tinyIPFIX.end_data_set(0);
call tinyIPFIX.net_finish_data(0);

}

Figure A.2: Task structure for new Data Set Construction



B. Algorithms for
TinyIPFIX-Aggregation

This appendix deals with the packet handling during the aggregation performance
within the wireless sensor network. Aggregation is performed by so called aggregator
nodes, which are sensor nodes located in strategic positions in the deployed wireless
sensor network. As described in Section 4.2.2.1 the developed aggregation framework
for TinyIPFIX supports two aggregation modes:

1. Message Aggregation: Aggregation of several data messages in one packet.

2. Data Aggregation: Data pre-processing within the transmission way to the
gateway using aggregation functions.

On the sensor node itself both algorithms for aggregation are installed per default
in order to allow switching between them. The aggregation functionality was im-
plemented in the aggregation control procedure as part of AggregatorC.nc shown in
Figure B.2. In general, algorithm A, which represents the most interesting aggrega-
tion mode, is performed to reduce the data amount in the network without losing
any information. Due to the implemented UDP-shell, the user is able to switch be-
tween the aggregation modes or directly modify the aggregation (e.g. change degree
of aggregation) as described in Section 5.2.3. If the aggregation mode is changed to
data aggregation (cf. blue dashed box in lower part of Figure B.1), the new required
aggregated Template Set is constructed automatically and announced to the wireless
sensor network.

Figure B.1 illustrates the underlying decision tree and the performed operations
for the implemented TinyIPFIX-Aggregation framework. The upper part shows
the decisions and operations for message aggregation (Algorithm A), and the lower
part those for data aggregation (Algorithm B). The grey filled rectangles indicate
operations where an input from outside is requested. Diamonds indicate questions
(checks), which cause reactions depending on the respective answer to the questions.
White boxes stand for operations performed by the sensor node in order to handle
received data.
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Figure B.1: Decision and operation tree for TinyIPFIX-Aggregation framework

The sensor node (aggregator) receives either a data set or a template set. The
aggregator must decide depending on the incoming packet and the installed aggre-
gation mode if the message or data aggregation must be performed by answering
the question ‘Data preprocessing performing?’. If the answer is ‘NO’, algorithm
A for message aggregation is performed (cf. upper part of Figure B.1), otherwise
algorithm B for data aggregation is performed (cf. upper part of Figure B.1). [102]
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The next steps are the same in both algorithms: First, it must be checked if the
received packet is a Template or a Data Set (check 1). This happens due to the
packet structure of TinyIPFIX (cf. Figure 3.3). If the answer of the first check
is ‘YES’, a Template Record is received and it must be checked if the Template
is already known (check 2). If for the second check the answer is ‘NO’, the new
received Template must be stored and the internal Template counter is increased.
Otherwise nothing happens. If the answer of the first check is ‘NO’, a Data Record
was received. In this case, it must be checked if the Template, which the Data refers
to, is already known (check 3). If the required Template is unknown the decoding of
the received Data would be unsuccessful and, therefore, the Data is dropped. If the
referred Template is known, the new received Data must be stored and the internal
Data counter is increased. [102]
From this point on, algorithms di�er and are described separately until comple-
tion. The upcoming decisions are influenced by predefined information (e.g. DoA,
aggregation function) on the sensor node performing the corresponding algorithms.
Algorithm A dealing with message aggregation now checks if the value of Template
counter is equal to the before specified degree of aggregation (DOA) (check 4). If this
is not the case, the algorithm breaks and waits for more incoming packets and the
whole process begins at the first question ‘Data preprocessing performing?’ again. If
the answer is positive of check 4, the required aggregated Template Set is constructed
(cf. Figure B.3). The aggregated Template Set is announced to the wireless sensor
networks in order to allow decoding by other sensor nodes in the system. Finally, the
Template counter is reset. On the algorithm part handling received data packets
the next check after a positive check 3 deals with the comparison of the internal
Data counter and the predefined degree of aggregation (check 5). If the check is
negative, the algorithm breaks and waits for more incoming packets, starting by
question ‘Data preprocessing performing?’ again when receiving new packets. If
check 5 is positive, the required aggregated Data Set is constructed (cf. Figure B.4)
and transmitted to the next hop in direction of sink. Finally, the Data counter is
reset. [102]
Algorithm B dealing with data aggregation checks next, if Template Counter and
predefined degree of aggregation is equal (check 6). If the result is negative, algo-
rithm breaks and waits until new packets are received in order to start over with
question ‘Data preprocessing performing?’. If check 6 is positive, the data counter
is compared to the predefined degree of aggregation (check 7). If check 7 is positive
the predefined aggregation function (e.g. MAX, MIN, AVG) is performed, the data
set including the result and the reference to the Template is constructed. The sensor
node transmits the aggregates Data Set to the next hop in direction of the sink. An
announcement of the Template is not necessary, because it was already announced
when the user specified the performed data aggregation type. Finally, the Data
counter is reset. [102]
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void aggregation_control(bool template_recv, bool template_update, bool data_recv, bool data_update) {

// Data pre-processing protocol
if(preprocessing){

if(data_recv){
if(data_update){

if(data_update_count == degree_of_aggregation){
data_update_count = 0;
post makeAggregateData();

}
}else{

if(data_count == degree_of_aggregation){
data_count = 0;
post makeAggregateData();

}  }  }

// Message aggregation protocol
}else{

if(template_recv){
// If the newly or updated received Template Set count has archieved the Degree of Aggregation, 
// it generates a new aggregation Template Set

if(template_update){
if(template_update_count == degree_of_aggregation){

template_update_count = 0;
post makeTemplate();

}
}else{

if(template_count == degree_of_aggregation){
// The template_count can not be set to 0, because the amount of  buffered template sets is needed  by other
//  procedures. To prevent buffer overwrites the count is checked in the read_template procedure.

post makeTemplate();
}

}
}else if(data_recv){

// If the newly or updated received Data Set count has archieved the DoA, it generates a new aggregated Data Set
if(data_update){

if(data_update_count == degree_of_aggregation){
data_update_count = 0;
post makeData();

}
}else{

if(data_count == degree_of_aggregation){
data_count = 0;
post makeData();

}
}  }  }  }

Figure B.2: Aggregation control logic for message aggregation

task void makeAggregateTemplate() {
call tinyIPFIX.net_start_template(0);
call tinyIPFIX.start_template_set(0);
call tinyIPFIX.start_template_record(0, 256);
call tinyIPFIX.put_template_field(0, aggregate.template_set.field[0].field_id,

     aggregate.template_set.field[0].field_length,
     aggregate.template_set.field[0].e_id );

call tinyIPFIX.put_template_field(0, aggregate.template_set.field[1].field_id,
     aggregate.template_set.field[1].field_length,
     aggregate.template_set.field[1].e_id );

call tinyIPFIX.end_template_record(0);
call tinyIPFIX.end_template_set(0);
call tinyIPFIX.net_finish_template(0);

}

Figure B.3: Task structure for computation of aggregated Template Sets
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task void makeAggregateData() {
uint16_t nodeID;

call tinyIPFIX.net_start_data(0);
call tinyIPFIX.start_data_set(0, 256);
call tinyIPFIX.start_data_record(0);

// switch on the requested aggregate function.
switch (aggregation_func){

case AGG_MAX:  agg_max();   break;
case AGG_MIN:   agg_min(); break;
case AGG_AVG:  agg_avg();   break;
case AGG_ALL:   agg_all();

}
// Aggregate function has returned with the aggregated value and Node ID, and are put into the data field.

nodeID = (uint16_t)*((nx_uint16_t*)(&(aggregate.data_set.value16[1])));
call tinyIPFIX.put_data_field(0, &(aggregate.data_set.value16[0]), sizeof(uint16_t));
call tinyIPFIX.put_data_field(0, &nodeID, sizeof(uint16_t));
call tinyIPFIX.end_data_record(0);
call tinyIPFIX.end_data_set(0);
call tinyIPFIX.net_finish_data(0);

}

Figure B.4: Task structure for computation of aggregated Data Sets
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C. Component Wiring under TinyOS

This appendix deals with the component wiring of the implemented protocols TinyIP-
FIX and TinyDTLS. The term wiring describes the semantics in which way all
components under TinyOS are linked with each other [25].
Figure C.1 illustrates the simplified application wiring in TinyOS. Red encircled
boxes are main operative components. Boxes represent files. Double rectangles in-
dicate configurations, single rectangles are modules, solid lines stand for singletons,
and dashed lines for generic components. Those generic components
(e.g. IPFIXDataSampler16C representing temperature or light) can exist multiple
times, because only one value can be reported at one time. The grey filled circle
represents an interface, which is, in this case, provided by the file NetworkHandlerC.
The NetworkHandlerC itself provides the NetworkHandlerAppC, which is indicated
by an incoming arrow in NetworkHandlerC. The NetworkHandlerC in turn uses sev-
eral other interfaces that are specified along the arrows (e.g. SplitControl, Send).
Those interfaces are provided by the components, which these arrows point to. [98]

ControllerC
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SplitControl Send Receive

NetworkHandlerC

StdControl
RootControl

Figure C.1: Simplified node wiring of components for TinyIPFIX
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For completeness’ sake, the corresponding component wiring for the DTLS client
implementation on OPAL is shown in Figure C.2. The interpretation of files, cir-
cles, and lines is the same as before. Components supporting DTLS functionality
are indicated by DTLS... and components supporting hash functionality are in-
dicated by HMACM.... The latter components exist several times, because hash
functions over di�erent inputs (e.g. SHA, MD5) are required during the handshake
performance. [81]

AppP

MainC

 Boot DTLSNetworkP

 DTLSNetwork

 Boot

DTLSFragmentationLayerP

 DTLSFragmentationLayer DTLSHandshakeP

 DTLSHandshake

DTLSBlockCipherP

 DTLSBlockCipherCBC

 UDP

 UDP

 IPSendDone

 IPSendDone

DTLSFinishedP

 DTLSFinished

 DTLSFragmentationLayer

 DTLSFinishedDTLSCertificateP

 DTLSCertificate

DTLSClientKeyExchangeP

 DTLSClientKeyExchange

 PRFM

 PRF

AES_CBCM

 AES_CBC

 HMACM

(HmacSHA1)

 HMAC

 PRFM

 PRF

MD5P

 Hashfunction

SHA1M

 Hashfunction

 HMACM

(HmacMD5)

 HMAC

 HMACM

(HmacSHA)

 HMAC

SoftAesC

 Aes

 Hashfunction

 Hashfunction

At97sc3203sSignatureC

 Signa ture

At97sc3203sRsaC

 Rsa

 HMACM

(HmacMD5)

 HMAC

 HMACM

(HmacSHA)

 HMAC

 Hashfunction Hashfunction  Hashfunction Hashfunction

Figure C.2: Simplified wiring of the DTLS client implementation
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This appendix includes di�erent figures, which characterize di�erent functionalities
supported by the developed graphical user interface in this dissertation. Before
deploying a wireless sensor network its components must be configured, which is
exemplarily shown in Section D.1. Section D.2 presents an exemplary virtual rep-
resentation of an established wireless sensor network, which is requested for the
internal processes in the graphical user interface in order to o�er manifold feedback
(e.g. network status, recorded data) to the user (cf. Section D.3).

D.1 Hardware Configuration
As described in detail in Section 5.4.1, the developed graphical user interface of-
fers the user the opportunity to configure network components via clicks instead
of complex command lines. In order to program individual components of the
wireless sensor network, the user must change to the submenu option TinyOS in
menu Hardware in the so called ‘WSN Administration’. The interface gives the
user the information about the supported operating systems, which in this case is
TinyOS 2.1.1 together with the included modules. The modules include an interface
to program the base station, the individual nodes as well as the activation of the IP
tunnel.

An overview is given in Figure D.1 showing exemplary the interface for programming
a sensor node. Here the user is able to configure the sensor node in six steps as
described in detail in Section 5.4.1:

1. Specify target (= hardware platform).

2. Specify attached sensor board.

3. Specify extras, where BLIP support is selected per default.

4. Specify functionality performed by node (e.g. aggregation, collector).

5. Compile program code regarding the above specifications.

6. Specify individual node ID and install program on the hardware.
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During the last two steps the user receives visual feedback about the compiling and
installing process. Additionally, the user receives information about the final ROM
and RAM consumption. [133]

Figure D.1: GUI - Configuration options for sensor nodes

D.2 Virtual Representation of Wireless Sensor Network
As described in Section 4.4.2 the developed graphical user interface virtualizes an
existing wireless sensor network by using the class WSN, as described in detail in
reference [133]. The class WSN includes information about nodes and the topol-
ogy of the wireless sensor network. The class WSN is connected to the two classes
WSNTopology and WSNNodes o�ering information about the links within the net-
work (respectively about the data transmitted by the nodes). Those two classes
are connected to the class WSNNodeTopology::Link, which o�ers information about
source and target. The class WSNNodes has an additional connection to the class
WSNNode::Datum including information about the type, value, and unit represented
by the sensor node. [133]
Figure D.2 shows an exemplary virtual representation of a deployed wireless sensor
network consisting of four sensor nodes (ID 0, 1105, 1104 and 2203) and a server.
The corresponding link topology is shown in the lower right corner of the figure.
The class WSN exists once, including node and topology information. It is linked
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to each class WSNNodes and class WSNTopology. For each sensor node in the wire-
less sensor network a class WSNNodes is established (here: three times). The class
WSNNodes include ID information and data information for each sensor node, where
each class WSNNodes has linked as many entities of class WSNNode::Datum as data
fields are required by the corresponding node. The class WSNNode::Datum includes
information of type, value, and unit of the recorded data. For example, the node
ID 2203 transmits three values (temperature, humidity, voltage), which links three
times the class WSNNode::Datum to the corresponding class WSNNodes. The class
WSNTopology includes information of the established links in the wireless sensor
network, where for each link a class WSNNodeTopology::Link exist including source
and next hop (target) information. [133]
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Figure D.2: Exemplary UML representation

D.3 Feedback of Network Status
As described in Section 5.4.2 the established graphical user interface o�ers the user
live feedback about the status of the deployed wireless sensor network. In addition,
di�erent opportunities are integrated to handle received data.

D.3.1 Feedback about Routing Development
The user can observe the organization and establishment of the communication
links between sensor nodes. Figure D.3 illustrates an example of the visualization
event, where the right part is based on the module WSNDriver and the left part
on the TinyOS function BLIP. The individual node information on the right part
is updated periodically when the routing tree updates itself. In conclusion, Figures
D.3a to D.3c show the establishment of the routing tree of the running wireless
sensor network. The visualization o�ers the opportunity to highlight nodes together
with their incoming and outgoing connection (cf. Figure D.3c). [133]
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(c) Network with nine active nodes.

Figure D.3: GUI - Development of the network structure visualization

D.3.2 Data Handling

The developed graphical user interface allows the user to handle received data in
di�erent ways: (1) Live streaming of data, (2) export data to online visualization
tools (e.g. COSM), and (3) store data in order to import data for o�ine analysis
(e.g. Matlab). [133]
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The user is able to view live recording of received sensor data. Figure D.4b illustrates
the capturing of the Listener provided by TinyOS. The corresponding node deploy-
ment in the o�ce is illustrated in Figure D.4a, where the wireless sensor network
consists of four sensor nodes and one sink (black).

(a) Node location

|+--[2222] Data received Fri May 04 17:03:38 CEST 2012 
|
|----- Temperature[2] (3841 - 33025): 27.33 °C 
|----- Humidity (Sensiron SHT11)[2] (3841 - 33026): 28.87 % 
|----- Light (TAOS TSL2550)[2] (3845 - 33025): 65535  LUX
|----- Voltage MTS400[2] (3846 - 33025): 0.16 V  
|----- NodeTime[4] (1 - 33026): 10874 sec 
|----- NodeID[2] (1 - 33025): 1101  
|----- Sound (MTS300)[2] (3844 - 33281): 469  
|----- Temperature[2] (3843 - 33283): 27.02 °C 
|----- NodeTime[4] (1 - 33282): 10874 sec 
|----- NodeID[2] (1 - 33281): 1103  

.. uploaded to COSM !

|+--[1104] Data received Fri May 04 17:03:41 CEST 2012 
|
|----- Sound (MTS300)[2] (3844 - 32769): 469  
|----- Light (MTS300)[2] (3844 - 32770): 2135.47  
|----- NodeTime[4] (1 - 32770): 10879 sec 
|----- NodeID[2] (1 - 32769): 1104  

|+--[2213] Data received Fri May 04 17:03:42 CEST 2012 
|
|----- Temperature[2] (3841 - 32769): 26.83 °C 
|----- Humidity (Sensiron SHT11)[2] (3841 - 32770): 26.25 % 
|----- Voltage TelosB[2] (3842 - 32769): 2.91 V
|----- NodeTime[4] (1 - 32770): 10874 sec 
|----- NodeID[2] (1 - 32769): 2213  

(b) Recorded data flow in Listener

Figure D.4: Background information to results shown in Figure D.6

Figure D.5 shows an example of processing of the received data. Received data is
directly stored in a big file (see left part). Usually, the user just wants to plot one
subset of data in general measurements of one selected sensor node. The big file,
therefore, must be subdivided into its components, which are stored in small files.
This processing is performed automatically in the background of the graphical user
interface.

1104 - 12:35:30
3844|33281 (Sound (MTS300)): 496  
3844|33282 (Light (MTS300)): 869 LUX
1|33281 (NodeID): 1104  
1|33282 (NodeTime): 337 sec

1101 - 12:35:30
1|33026 (NodeTime): 288 sec
1|33025 (NodeID): 1101  
3846|33025 (Voltage MTS400): 0.16 V
3841|33025 (Temperature): 25.58 °C
3841|33026 (Humidity (Sensiron SHT11)): 45.04 %
3845|33025 (Light (TAOS TSL2550)): 65535 LUX

1103 - 12:35:32
1|32769 (NodeID): 1103  
3844|32769 (Sound (MTS300)): 479 
3843|32771 (Temperature): 25.69 °C
1|32770 (NodeTime): 347 sec

5678 - 12:35:35

1104 - 12:35:35
3844|33281 (Sound (MTS300)): 447 
3844|33282 (Light (MTS300)): 2009.58 LUX
1|33281 (NodeID): 1104 
1|33282 (NodeTime): 342 sec

1101 - 12:35:35
1|33026 (NodeTime): 293 sec
1|33025 (NodeID): 1101 
3846|33025 (Voltage MTS400): 0.16 V
3841|33025 (Temperature): 25.59 °C
3841|33026 (Humidity (Sensiron SHT11)): 45.04 %
3845|33025 (Light (TAOS TSL2550)): 65535 LUX

1103 - 12:35:36
1|32769 (NodeID): 1103  
3844|32769 (Sound (MTS300)): 474  
3843|32771 (Temperature): 25.69 °C
1|32770 (NodeTime): 352 sec

...

Big File: log.2012-05-22.1233

# Node:1101
# Column information: time | NodeTime (sec) | NodeID | 
#                     Voltage MTS400 (V) | Temperature (°C) |
#                     Humidity (Sensiron SHT11) (%) | 
#                     Light (TAOS TSL2550) (LUX)

12:35:30 288 1101 0.16 25.58 45.04 65535
12:35:35 293 1101 0.16 25.59 45.04 65535
12:35:40 298 1101 0.16 25.61 45.08 65535
...

Small File: log.2012-05-22.1233.1101

# Node:1103
# Colum information:  time | NodeID | Sound (MTS300) | 
#                                 Temperature (°C) | NodeTime (sec)

12:34:57 1103 469 25.69 313
12:35:02 1103 466 25.69 317
12:35:07 1103 473 25.69 322
...

Small File: log.2012-05-22.1233.1103

# Node:1104
# Column information:  time | Sound (MTS300) | Light (MTS300) (LUX) |
#                       NodeID | NodeTime (sec)

12:35:30 496     1988.98 1104 337
12:35:35 447     2009.58 1104 342
12:35:40 460     2046.20 1104 347
...

Small File: log.2012-05-22.1233.1104

# Node:5678
# column information: time

12:35:30
...

Small File: log.2012-05-22.1233.5678

Figure D.5: Data preprocessing for analysis via o�ine tools
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Figure D.6 shows a data export and import example. This Figure shows the user’s
ability to remove unnecessary information from the visualization of COSM in the
implemented graphical user interface. The upper part shows a complete visualization
of all exported data to COSM for node 1101. Whereas the lower three nodes show
only selected information by the user in a diagram. On the right side of those nodes
the user has still the whole exported information in a compact version visible. Figure
D.4 shows the node location in the o�ce and a screenshot of the recorded data.
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Figure D.6: Data export/import using COSM

D.4 Experiment 1
In this section an exemplary wireless sensor network is introduced under the name
‘Experiment 1’ assuming an o�ce scenario. Figure D.7.b illustrates the capturing of
the Listener provided by TinyOS. The corresponding node deployment in the o�ce
is illustrated in Figure D.7.a, where the wireless sensor network consists of four
sensor nodes and one sink (black). The visualization of the wireless sensor network
including routing information and all transmitted data of each node is illustrated in
Figure D.8.
Sensor nodes 1102 and 2250 had the sensor for humidity measurements activated.
Recorded data shows that during recording time humidity di�ered (cf. the graph
of node 1102). At the beginning of the experiment, doors and windows were closed
in the o�ce since 9 p.m. the day before. This fact results in a quite low humidity
in the room, recorded by node 1101 with 40.09%. In the morning a summer rain
raised humidity outside. As a consequence of opening windows humidity changed
inside as well. The node recorded a continuous rise up to 42.52% until 10:15 a.m.
For the next 25 minutes the value fluctuated a little bit. Then the summer sun came
out and temperature outside increased, which resulted in a drying of the air. As a



D.4. Experiment 1 149

(a) Node Deployment - Type 2

|+--[1106] Data received Tue May 08 11:14:23 CEST 2012 
|
|----- Sound (MTS300)[2] (3844 - 32769): 468  
|----- Temperature[2] (3843 - 32771): 25.19 C 
|----- NodeTime[4] (1 - 32770): 7676 sec 
|----- NodeID[2] (1 - 32769): 1106  

|+--[1104] Data received Tue May 08 11:14:26 CEST 2012 
|
|----- Sound (MTS300)[2] (3844 - 32769): 467  
|----- Light (MTS300)[2] (3844 - 32770): 2034.79 LUX
|----- NodeTime[4] (1 - 32770): 1060 sec 
|----- NodeID[2] (1 - 32769): 1104  

|+--[1101] Data received Tue May 08 11:14:28 CEST 2012 
|
|----- Temperature[2] (3841 - 32769): 24.14 °C 
|----- Humidity (Sensiron SHT11)[2] (3841 - 32770): 37.51 % 
|----- Light (TAOS TSL2550)[2] (3845 - 32769): 65535  LUX
|----- Voltage MTS400[2] (3846 - 32769): 0.16 V  
|----- NodeTime[4] (1 - 32770): 7900 sec 
|----- NodeID[2] (1 - 32769): 1101  

.. uploaded to COSM !

|+--[1106] Data received Tue May 08 11:14:28 CEST 2012 
|
|----- Sound (MTS300)[2] (3844 - 32769): 476  
|----- Temperature[2] (3843 - 32771): 25.19 °C 
|----- NodeTime[4] (1 - 32770): 7681 sec 
|----- NodeID[2] (1 - 32769): 1106  

|+--[2250] Data received Tue May 08 11:14:29 CEST 2012 
|
|----- Temperature[2] (3841 - 32769): 25.39 °C 
|----- Humidity (Sensiron SHT11)[2] (3841 - 32770): 34.47 % 
|----- Voltage TelosB[2] (3842 - 32769): 2.93 V 
|----- NodeTime[4] (1 - 32770): 7339 sec 
|----- NodeID[2] (1 - 32769): 2250  

(b) Capture of Listener

Figure D.7: Experiment 1: Node placement and capture of Listener
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Figure D.8: Experiment 1: Underlying routing structure

consequence humidity inside the o�ce also fell down to 38.4%. From this point on
node humidity during the experiment fluctuated, but never reached highest value
again. The humidity level was confirmed by node 2250. In the displayed COSM
graph the resolution was set to one hour in order to receive a more detailed humidity
analysis from 12 p.m. to 1 p.m..

Voltage consumption is recorded by the nodes 1101 and 2250. The TelosB node
measures a constant of three Volts while the consumption of the IRIS node fluctuates.
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The fluctuations are caused by activation of LEDs, measurement requests and data
transmissions.

The sensor nodes 1101, 2250, and 1106 recorded room temperature. The recorded
values are nearly the same. Di�erences are based on the location of the nodes in the
o�ce. The node next to the window records lower temperatures if the window is
opened in comparison to nodes on the tables, because they are sheltered. The sensor
nodes 1101 and 1104 recorded the brightness. Sensor node 1101 can be omitted in
the current test run for this value, because the node’s driver for this sensor crashed.

Node 1104 is located next to a big monitor which functions as a sun shield. Thus,
recorded peaks are based on monitoring light and turned on lamps in the o�ce. The
graph shows a suspiciously constant value of 2041.63 LUX for about one hour. This
was the last reported value before the node crashed. After the user made a restart
the recording resumed. COSM allows the user to add a restarted node to an ‘old’
feed again if the values are the same. This was performed in this case. The same
break down and restart is seen in the corresponding sound versus time curve of this
node. In order to confirm the break down even with the restarted internal clock of
the sensor node the user zoomed into the corresponding time curve.

Figure D.9: Experiment 1 - Zoom in node 1104

As mentioned sensor node 1104 measured room brightness as well
(cf. Figure D.9). For calculation of raw data into the LUX value Equations D.1
to D.3 is used based on the vendor information [32]. Whereas the photodiodes
create a current through a 100k� resistor, Vref = 1.5V , and ADCvalue is the mea-
sured raw data (e.g. 899). In the first recorded period the measured value rose
from 899 respectively 2057.65 LUX periodically to 906 respectively 2069.09 LUX,
which is caused by scattered cloud cover outside. As a consequence the automatic
shutter went down. This is corroborated by the measured brightness drop to 888
respectively 2032.47 LUX. During the next 10 minutes the shutter was adjusted,
which is visible in the recorded brightness curve. Suddenly it was complete sunny
outside; therefore the brightness rose up to 900 (respectively 2059.94 LUX) again.
The shutter closed completely, which reduced the recorded brightness in the room to
879 (respectively 2011.87 LUX). After some minutes it became more cloudy outside
again and the shutter opened up again resulting in a brightness of 895 respectively
2048.49 LUX. From then on up to the node crash recorded values are nearly sta-
ble at this value range. Another suspiciously constant region resulted from crashed
hardware as described above. Around 11 a.m. the node was restarted. From this
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time on a fluctuation between 885 and 896 (respectively 2025.61 - 2050.78 LUX) was
recorded due to changing cloud conditions outside. In this duration the automatic
shutter was inactive.

Vsensor = (ADCvalue/4096) ú Vref (D.1)

I = Vsensor/100, 000 (D.2)

SensorLUX = 0.625 ú 106 ú I ú 1000 (D.3)

Nodes 1104 and 1106 had the acoustic sensor activated. The sensor is not designed
to measure frequency versus time, but rather changes in amplitude (e.g. alarms,
phone rings, discussions). Specifically, the recording of node 1106 shows a volume
change in the o�ce. A period of high change results in a range of 439 to 486, which
is caused by a radio at high volume. The recorded values by node 1104 show nearly
the same range.

Figure D.10: Experiment 1 - Zoom in node 1106

Figure D.11 shows the COSM visualization of experiment 1 for nodes 1101 and 2250.
Here the user can specify di�erent visualization intervals for each sensor ranging from
five minutes up to three hours. Additionally, the user can delete visualization of
sensor data by clicking on the ‘X’ button in order to reduce not relevant information
(e.g. NodeID). In the background the storage of the complete data is performed in
order to have all information available for o�ine analysis.
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Figure D.11: Experiment 1 - COSM visualization nodes 1101 and 2250



E. Transmission E�ciency of TinyIPFIX

Figures E.1 to E.3 dealing with the evaluation of the transmission e�ciency of
TinyIPFIX (cf. Section 6.1.2). Those Figures illustrate results where the transmis-
sion e�ciency was plotted against the number of data packets transmitted between
two Template Records and s = 2 bytes was assumed. In order to illustrate di�erent
types of packet configuration, the number of values per packet ranges from one to
125, where one value per packet is the lowest limit, four values per packet are com-
mon for wireless sensor networks, and 125 values per packet is the maximum packet
size for IP communication. [98]
The analysis of TinyIPFIX transmission e�ciency is split into the following cases
[98]. In each plot the x-axis represents the number of transmitted Data packets per
Template retransmission and on the y-axis the corresponding transmission e�ciency
in percentage is plotted. [98]

Case 1 analysis the transmission e�ciency regarding TinyIPFIX packets with de-
fault header of size 20 bytes vs. header supporting defensive approach in best-case
with six bytes size. Figure E.1 shows the received data and displays the concrete
values [98].
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Figure E.1: TinyIPFIX transmission e�ciency - Case 1
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Figure E.2 illustrates results of case 2, where TinyIPFIX packets with default header
of size 20 bytes are compared with packets supporting modified defensive approach
of header compression with three bytes size [98].
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Figure E.2: TinyIPFIX transmission e�ciency - Case 2

Figure E.3 illustrates the results of case 3. Here TinyIPFIX packets with default
header of size 20 bytes are compared to packets with header supporting aggressive
approach with one bytes size [98].
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Figure E.3: TinyIPFIX transmission e�ciency - Case 3

Throughout all three analysis cases it can be observed that the header size has a
big impact on teff≠T inyIP F IX . The impact lowers if the payload becomes larger.
The e�ect of header compression remains important for the performance. Usually in
sensor scenarios, a Data Record consists of four values and 16 transmissions between
two Template Record transmissions. [98]
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6LoWPAN IPv6 over Low power Wireless Personal Area Network
ACS Access Control Server
ACU Aggregation Control Unit
AES Advanced Encryption Standard
AFU Aggregation Function Unit
AIDA Adaptive Application-Independent Data Aggregation
AutHoNe Autonomic Home Networking
AVG Average
BLIP Berkeley Low-Power IP
CA Certificate Authority
CBC Cipher Block Chaining
COAP Constrained Application Protocol
CON Confirmable message
CPS Cyber-Physical System
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSR Certificate Signing Request
DoA Degree of Aggregation
DES Data Encryption Standard
DTLS Datagram Transport Layer Security
DYN Dynamic
EBHTTP Embedded binary HTTP
ECC Elliptic Curve Cryptography
EEPROM Electrically Erasable Programmable ROM
EID Enterprise Number
GPS Global Positioning System
GUI Graphical User Interface
HMAC Hash-based Message Authentication Code
HTTP Hypertext Transfer Protocol Secure
IANA Internet Assigned Number Authority
ICMPv6 Internet Control Message Protocol for the Internet Protocol Version 6
ICT Information and Communication Technologies
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
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IoT Internet of Things
IP Internet Protocol
IPFIX IP Flow Information Export
IPsec Internet Protocol Security
IPv6 Internet Protocol Version 6
ITU International Telecommunication Union
JSON JavaScript Object Notation
LAN Local Area Network
LED Light-Emitting Diode
MAC Media Access Control
MAX Maximum
MIN Minimum
MTU Maximum Transmission Unit
NIST National Institute of Standards and Technology
PAN Personal Area Network
PDA Personal Digital Assistant
PIKE Peer Intermediaries for Key Establishment
PK Public Key
PKI Public Key Infrastructure
QoS Quality of Service
RAM Random-Access Memory
ROM Read-Only-Memory
REST Representational State Transfer
RF Radio Frequency
RFC Request For Comments
RFID Radio Frequency Identification
RSA Rivest, Shamir and Adleman
RST Reset message
SCTP Stream Control Transmission Protocol
SHA Secure Hash Algorithm
SHM Structural Health Monitoring
SIA Secure Information Aggregation
SSL Secure Sockets Layer
sMAP Simple Measurement and Actuation Profile
SOAP Simple Object Access Protocol
SQL Structured Query Language
TAG Tiny AGregation service
TCP Transmission Control Protocol
TLS Transport Layer Security
TPM Trusted Platform Module
UART Universal Asynchronous Receiver Transmitter
UDP User Datagram Protocol
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
WBAN Wireless Body Area Networks
WLAN Wireless Local Area Network
WoT Web of Things
WSN Wireless Sensor Network
XML Extensible Markup Language
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