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Preface

On May 8th, 2006, a group of scientists assembled at the University of Connecticut in Storrs
to honor Lester Lipsky, who, having begun his scientific career as a physicist has become a
world-level authority in computer performance modeling. Twelve of his scholars presented
contributions related to the scientific work of Lester Lipsky; other scientists contributed
results to Lester Lipsky at the occasion on this day which – though not part of the presen-
tations of May 8th, 2006 – were devoted to Lester Lipsky and are included in this volume.
Amir Faghri, Dean of the School of Engineering, delivered the greetings of the University.
Lester Lipsky himself gave a biographical sketch by modeling ’Life as a Markov Chain’.

In addition to the wealth of scientific results provided as contributions to the colloquium,
the event was a manifestation of the large family of friends and adherents of Lester Lipsky.
He has played an exceptional role in attracting personalities into the world of his concepts
and results, and into the warmth and cordiality of himself.

Note: The contributions in these proceedings are arranged in the sequence of the chronolog-
ical order of the talks at the colloquium (marked as ”Slides”). The layout of the slides may
have been slightly changed by the editors in order to harmonize the layout of the proceedings.

Eike Jessen and Manfred Jobmann
Munich, August 2011
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Welcome from the Dean

Welcome to the University of Connecticut and the School of Engineering. I am pleased
that you have joined us here from all over the world to honor Professor Lipsky. Professor
Lipsky is indeed an internationally distinguished scholar which is why we are gathered here
to recognize him.

However, I should also note that he is a good mentor and teacher. We in the School of
Engineering are very fortunate to have him as a mentor and colleague. He has significantly
contributed to the mission of teaching, research and outreach of the Computer Science De-
partment at the University of Connecticut. The quality of his archival publications and books
are a testament to his outstanding contributions in the field.

I hope that you also have enough time to enjoy our beautiful campus. Best wishes for an
enjoyable seminar to honor Professor Lipsky.

Regards,

Amir

Amir Faghri
United Technologies Endowed Chair Professor in Thermal-Fluids Engineering
Department of Mechanical Engineering
University of Connecticut
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QoS REVISITED: A PRACTIONER’S VIEW (AND THE POWER OF THEORY) 

 

Marco Hoffmann, Siemens AG 

Eike Jessen, Technische Universität München 

Manfred Jobmann, Technische Universität München 

 

 

Quality of Service (QoS) has been a concern in communication technology from the 

beginning. It became a challenge, when the internet with its statistical packet multiplexing had 

to serve also for real time media and data transport, as e.g. video transmission and 

conferencing, telephone and other interactive collaboration techniques, and real time control. 

Whereas in classical communication technology availability of the channel and absence of 

noise and distortion were the main criteria for quality, in IP-networks low and constant delay 

with few packet losses are the targets, which widely can be realized by adequate bandwidth 

and buffer capacity.   

 

Given the inherent characteristics of the IP transport mechanism, there are dynamic and static 

solutions to the problem of Quality of Service. During the nineties, two basic techniques have 

been developed, discussed, and analyzed widely, without a breakthrough in actual 

applications. First was the principle of bandwidth reservation, substantiated in Integrated 

Services (1990). For the particularly important scenario of media multicast, the resource 

reservation protocol RSVP was developed. These techniques rely on admission control, traffic 

shaping, and policing. They turned out, however, not to be feasible in large or heterogeneous 

networks. A simpler technique, more scalable to large and heterogeneous networks, mainly 

relied on prioritisation: Differentiated Services (1996). It mixes the priority scheme with some 

reservation mechanisms, not for single flows, but for classes of aggregated traffic. A 

particular choice of this technology has been implemented in some networks under the name 

“Premium Service”.  

 

Besides, there are some more or less static solutions for the QoS-problem. Simplest is 

overprovisioning: The network has to provide enough bandwidth to keep the utilisation low in 

any expectable condition of operation, at less than 20%, for instance. This is widely used in 

core networks where the bandwidth is cheap; it is hardly a solution for radio networks. For 

some important applications, and a classical technology, one implements equal size channels 

and assigns them on demand: This is the solution in the case of conventional telephone, and it 

has been transferred to GSM and UMTS. Finally, there is a growing form of network use for 

restricted communities, as e.g. in grid computing. Often, the load situation is foreseeable. 

Then building an exclusive network (maybe virtual) with guaranteed capacities for this 

restricted connectivity can be an economical solution. Such a particular form of a virtual 

private network may be based on devoted optical channels (Dense Wave Length Division 

Multiplexing, DWDM) or on layer two/layer three label switching.  

 

It is worthwhile to look at the situation of the scientific networks, where our examples are 

taken from Europe, but the situation in USA is mainly the same. On the European level, there 

is the GEANT-2 network, with 10 Gbps trunks. The network is overprovisionned, but also 
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offers a premium service. Intra- and extra European end-to-end premium service is in 

experimental operation. On the national level, there are core networks with trunks between 1 

and 10 Gbps, and regional structures for the last 0..30 miles. Few of them offer premium 

services. It is in access nets and the interconnections between core and access, that overload is 

frequent and QoS becomes an issue. Finally, within the scientific institutions there are campus 

or institute networks, with capacities of 0.1..10 Gbps; very few of them offer premium 

services. 

 

The general situation may roughly be characterized by saying that the abundancy and low 

price for bandwidth undermines motivation for the advanced quality assuring mechanisms. 

Nevertheless, DFN (Deutsches Forschungsnetz) wanted to study the feasibility of QoS in 

large networks; it gave a project to Technische Universität Darmstadt (Ralf Steinmetz) and to 

Technische Universität München in 2002, to build a small level-3 testbed, implement and 

study IP QoS-technologies there, and to design a methodology for the extrapolation of testbed 

results to larger networks, which was the work of Marco Hoffmann in Munich; primarily the 

larger network would be G-WiN, the Gigabit-Wissenschaftsnetz of DFN. To generalize the 

problem, we follow a technique frequently used in engineering. To get insight into a large and 

complex system, which is not yet real, we build a model, the testbed. It is small but may be 

configured and operated at our choice. We study the effect of QoS there under a load which is 

equivalent to the load foreseen in the G-WiN. Then we have to extrapolate our observations to 

the G-WiN. For this, we need a meta-level model, which is usable in the testbed and the G-

WiN, a bridge between both. Adequate methods for this extrapolation are simulation fed by 

observations in the testbed, and in principle also analytic methods. In some scenarios, the 

model simply is the existing system, in which some changes may be made, the results of 

which are to be extrapolated to the system as a whole. These extrapolation problems are more 

frequent than the design of a system from the base.  

 

In our particular project, simulation as an extrapolation instrument was roughly validated 

within the testbed. We used a simulator which, by construction, exactly realized the 

configuration and load in the testbed. Then we modified the testbed and checked that the 

simulator would deliver a traffic equal to our measurements in the modified testbed. 

 

As it is hardly possible to simulate more than a part of a high-speed wide-area network, we 

also studied analytical methods for extrapolation and validated these by comparison to 

different simulators, with the following results: We found them applicable where the system 

behaviour is dominated by a small substructure, so in the case of a severe network bottleneck. 

In the simplest cases, G/GI/1-models were found to be useful. We evaluated their feasibility 

over a wide range of utilization and coefficient of variation. The applicability of these 

approximations is sharply reduced by lack of independence of the random variables and by 

long-term-dependencies. As to the parameter distributions, we found out that the power-tail 

distributions studied so intensely by Lester Lipsky were to hard for approximations; it is a 

merit of Lipsky’s matrix-exponential methods that these cases can be calculated exactly. 

 

Lester Lipsky made his first visit to our small group at Technische Universität München in 

1994 and made us familiar with Power Tail Distributions, long-term dependencies, and 
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matrix-exponential modelling and evaluation technology. I think it is easy to see, how this 

world of innovative statistical concepts began to influence our more established methodology, 

in particular the naive belief that low utilization would cure all evils. 

 

Far more important was the spirit of devotion to science that he brought to us, his contagious 

pleasure to approach hard problems, his persistency in work and his pride to present 

surprising results; he really could transform people into researchers. And all without even 

mentioning his deep concern for human, social, and political responsibility of all of us! 

 

 

Reference: 

 

Hoffmann, M.: Verfahren zur Übertragung von Dienstgüteaussagen, Doctoral Thesis, 

Technische Universität München, Fakultät für Informatik, 2005 
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Quality of Service Revisited: A 

Practitioner's View (and the Power 

of Theory)

Marco Hoffmann, Siemens AG

Eike Jessen, Technische Universität München

Manfred Jobmann, Technische Universität München

QoS in Communication

Classical: Availability, absence of noise and 

distortion and delay. Accentuated with

IP packet multiplexing: quasi random delay and 

loss, due to inadequate bandwidth and buffer 

capacity, and retransmission.
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Basic dynamic solutions for the IP QoS 

problem:

• Bandwidth reservation: Integrated Services (IS, 

1990), Resource Reservation Protocol RSVP. 

Admission Control, Traffic Shaping, Policing: not 

feasible in large or heterogeneous networks

• Prioritization: Differentiated Services (DS, 1996). 

Priority with some reservation for classes of 

aggregated traffic. „Premium Service“.

Basic static solutions for the (IP) QoS 

problem:

• Overprovisioning: Provide enough bandwidth to keep the 
utilization under e.g. 20%.

• Implement equal channels and assign one on demand: 
Conventional telephone, GSM, UMTS.

• Establish an exclusive network with guaranteed capacities: for 
a restricted connectivity. Can be economical solution for a 
grid, e.g. „VPN“, based on optical channels (DWDM) or layer 
2/ layer 3 label switching.
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Scientific Networks (in Europe)

European Level: GEANT-2 Network, 10 Gbps, 
overprovisioned, but Premium Service offered. Intra- and 
extra-European end-to-end experimental operation.

National Level: Core Networks 1..10 Gbps with last 0 .. 30 
miles regional structures; few offer Premium Services.

Institutional Level: Campus Networks, 0,1 .. 10 Gbps; few 
offer Premium Services.

The Extrapolation Issue

To study the feasibility of QoS in a large network, 
DFN (Deutsches Forschungsnetz) gave a project to 
Technische Universität Darmstadt (Ralf Steinmetz) 
and to Technische Universität München in 2002, to 
build a small level 1..3 testbed, implement and study 
IP QoS there, and (Marco Hoffmann in Munich) 
design a methodology to extrapolate testbed results to 
larger networks (G-WiN Gigabit-Wissenschaftsnetz
of DFN, e.g.)
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Generalization:

Primary System: Model

- well known

- affinity to the secondary system

- may be modified (or not)

- behaviour is measurable

Secondary System: Object of Interest

- partially known

- may not be modified for analysis   

(operational or non-existent)

- current behaviour is measurable (if existent), 

not future

for us: testbed for us: (part of) G-WiN

Extrapolation by Meta-Model

-simulation or

-analytic methods

Often the primary system simply is to be transformed into the secondary: Frequent and 

important engineering task.

Extrapolation:

Simulation as an extrapolation instrument was validated within the testbed, 
realizing two different models on the basis of the testbed.

Approximate analytical methods for extrapolation were validated by 
comparison to simulation, with the result:

- applicable where the system behaviour is dominated by

a small substructure (severe network bottleneck e.g.)

- in a wide range, good G/GI/1, approximations are

available

- applicability of these approximations may be reduced

sharply by excessive variance or by lack of independency of random

variables and by long-term-dependencies.  
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Quantitative analysis of access strategies to remote
information in network services

Rasmus L. Olsen1, Hans-Peter Schwefel1, Martin B. Hansen2

1Center for TeleInFrastruktur, Aalborg University, Niels Jernes Vej 12, 9220 Aalborg, Denmark
2 Dept. of Mathematical Sciences

Email:1{hps|rlo}@kom.aau.dk, 2mbh@math.aau.dk

Abstract— Remote access to dynamically changing informa-
tion elements is a required functionality for various network
services, including routing and instances of context-sensitive
networking. Three fundamentally different strategies for such
access are investigated in this paper: (1) a reactive approach
initiated by the requesting entity, and two versions of proactive
approaches in which the entity that contains the information
element actively propagates its changes to potential requesters,
either (2) periodically or triggered by changes of the information
element (3). This paper first develops a set of analytic models
to compute different performance metrics for these approaches,
with special focus on the so-called mismatch probability. The
results of the analytic models allow for design decisions on which
strategy to implement for specific input parameters (change rate
of the information element, network delay characterization) and
specific requirements on mismatch probability, traffic overhead,
and access delay. Finally, the analysis is applied to the use-case
of context-sensitive service discovery.

Keywords: Distributed systems, remote access, perfor-
mance modelling, context-sensitive networking

I. INTRODUCTION

Timely, remote access to dynamically changing information
elements is a common problem for a large range of functionali-
ties in different layers of modern telecommunication networks:

• On the link-layer, efficient radio-resource management at
base-stations requires information about channel state and
buffer filling as measured in mobile devices.

• On the network layer, routing decisions require the
knowledge about the existence and the characteristics
of links between remote intermediate nodes. This is
particularly relevant when topology changes are rather
frequent such as in wireless multi-hop networks[1].

• Network Services, such as dynamic distributed data-bases
as used in certain name-services in mobile networks,
require knowledge about (remotely performed) updates
of the name to address mapping [2].

• Context-sensitive services require access to typically re-
motely obtained context information. Context information
may thereby be used both during service execution [3] as
well as for the service discovery process [4].

• For highly dependable networks and services, resilience is
obtained by replication of services, which requires state-
updates at remote replicants in order to avoid inconsis-
tency [5], [6], [7] .

Common to all these use-cases of access to remote information
is that basic design decisions on how to efficiently implement
such access need to be taken. Efficiency is thereby typically
measured by access delay, probability of using ’correct’ in-
formation, and network traffic overhead created by the remote
access strategy. Two basic types of solutions exist:

1) Reactive, ’on-demand’ access: Whenever a certain piece
of remote information is needed at the processing entity,
it is actively obtained (request) from the remote entity
that has access to this information. This in principle
implements a client-server architecture.

2) Proactive distribution of information: The entity that
has control of the information element will pro-actively
distribute updates of its value to potential ’requesters’.
Thereby, two underlying sub-strategies can be distin-
guished

a) Event-Driven proactive updates: Whenever the
information element changes value, an update is
triggered. For a further differentiation with respect
to the semantics of these updates, see Sect. III-C.

b) Periodic proactive updates: After certain time-
intervals, the current value of the information ele-
ment is distributed to potential request processes.

In this paper, we provide the methodology and the results
of the quantitative analysis of different performance metrics,
including in particular the so-called mismatch probability for
the different remote access strategies. Section III introduces
the different analytic models, while the quantitative results of
these analytic models and their validation via simulations are
discussed in Sect. IV. Finally, the analysis is applied to a use-
case scenario of context-sensitive service discovery in Personal
Networks in Sect. V.

II. PROBLEM FORMALIZATION AND PERFORMANCE

METRICS

This section provides an abstracted description of the access
procedures to remote information using stochastic processes.
This description allows to analytically obtain different perfor-
mance metrics, in particular including the so-called mismatch
probability.

The simplified model contains three parts:
• The information element is maintained by a remote

node (information provider) and it dynamically changes

©1-4244-0357-X/06/$20.00     2006 IEEE
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its value at certain points in (continuous) time. It is
assumed here that these changes will always result in
a value previously not observed, e.g. as it is the case
for monotonic changes. Since the actual value of the
information element is not relevant in this paper (only the
fact whether it has changed), we will use a point process
E = {Ei, i ∈ Z}, where Ei is an increasing sequence of
event times numbered such that E0 is the event just before
0. The process E is called the event process. E(t) denotes
the value of the (monotonically increasing) information
element at time t, see the Appendix.

• The remote information element is required by a certain
entity (the requester/client) at certain moments in time,
identified by the request process, R = {Rk, k ∈ Z},
which in turn is a point process denoted in the same way
as the Ek’s. Depending on the selected update strategy, an
event of the request process may trigger an actual request
to the remote server (reactive approach), or it may lead
to an instantaneous access to the local replication of the
information element in the pro-active approaches.

• Communication between requesting entity and server is
described by stochastically varying delays, the upstream
delays, {Uk, k ∈ Z} between requester and server (only
in case of pro-active approaches), and the downstream
delays, {Dk, k ∈ Z}. Messages are never lost, however,
these delays are potentially unbounded. Messages are
identified by sequence numbers, so that out-dated updates
can be detected and discarded.
In this paper, we will limit our discussion to independent,
identically distributed (iid) delay processes, correspond-
ing in practice to cases in which the inter-message times
are larger than the time-scales at which queues build
up and drain in the network due to congestion. For fast
core-networks, such an iid delay assumption is realistic.
Furthermore, some of the performance metrics below,
in particular the stationary mismatch probability in the
reactive case, are insensitive to correlation properties of
the delay processes.
Random variables with the upstream and downstream
delay distributions are denoted generically as U and
D, respectively. These delay distributions correspond to
the end-to-end delays between information provider and
requester, hence e.g. cases of wireless multi-hop commu-
nication can be included via appropriate choice of U and
D. Also, message drops can be included via degenerated
distributions (with probability mass at infinity).

In this paper, we consider the following three performance
metrics, where focus is put on the mismatch probability:

1) Network overhead: The amount of data transmitted on
the network in the remote access strategy.

2) Access delay: The time interval from the moment when
a certain piece of information is needed at the requester
until it is finally available for use. For the pro-active
access strategies, this delay is zero. Processing times
are neglected in this paper.

3) Mismatch probability: The probability that the value of
the information element that is used at the requester does
not match the current true value at the remote location.
The consequence of such a mismatch depends on the
specific application, see e.g. Sect. V.

III. ANALYTIC MODELS

A. Reactive, on-demand access

Figure 1 illustrates the message flows in the reactive ap-
proach. In this scheme a request is initiated by the client at

Request process

Event process

R
k

R
k+1

E
l

E
l+1

E
l+2

Time

Time

x x x

x x

Fig. 1. Reactive access: In the example, the k-th access, Rk , leads to a
’correct’ value, while the k + 1th access causes a mismatching value.

time Rk, which is received by the provider at time Rk + Uk.
The provider creates a response message containing the value
of the requested information element which is received at the
requester at time Rk + Uk + Dk. In the shown example, the
k-th request leads to a correct value, since no changes of
the information element occurred, while the response is being
transmitted. The (k + 1)-th request on the other hand leads
to a mismatching value. For the assumption that the event
process, E , is a Poisson process with rate λ, the mismatch
probability can be calculated as follows, see the appendix for
the derivation:

mmPrreact(λ,D) = 1− L{fD}(λ),

where the last term is the Laplace transform of the density
of the down-stream delay, D, evaluated at value λ. Note that
the mmPr is independent of the request process, R. However,
R will influence statistical properties of corresponding esti-
mators of mmPR. Note also, that the mmPr is not depending
on the upstream delay process. Two different cases for the
downstream delay are interesting and considered later in this
paper:

• Constant (deterministic) delay: D ≡ c

mmPr(det)
react(λ, c) = 1− exp(−λ c). (1)

• iid exponentially distributed delay with rate ν:

mmPr(exp)
react(λ, ν) = 1− ν

λ + ν
=

λ

λ + ν
· (2)

Note that the mmPr assuming an exponential delay is in fact
smaller than in the deterministic setting with c = 1/ν for all
values of λ, and ν (since e−x ≥ (1 + x)−1 for all values of
x). The network overhead, Vreact(T, s, µ), in a time interval
of duration T is depending on the message sizes s ∈ {su, sd}
(upstream and downstream, respectively), and the rate µ of the
(not necessarily Poisson) request process: Vreact(T, s, µ) =
µT (su + sd). The average access delay is E{U}+ E{D}.

©1-4244-0357-X/06/$20.00     2006 IEEE
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B. Proactive - Periodic update

For the proactive case, no request messages are needed,
but the remote note sends updates to the requester. First we
discuss the ’periodic’ version, i.e. the update is sent after some
(potentially stochastically varying) time interval independent
of event and request processes. See Figure 2 for an illustration.
Assuming a Poisson process for the event process (with rate

Request process

Event process

R
k

R
k+1

E
l

E
l+1

Time

Time

x x

x x

Fig. 2. Proactive periodic update using a deterministic period: Rk results in
mismatching value, while Rk+1 leads to a correct value.

λ), iid exponentially distributed downstream delays with rate
ν, and that the ’periodic’ updates are determined by a third
independent Poisson process with rate τ , the mismatch prob-
ability can be computed through the steady-state probabilities
of the following 3-state continuous time Markov chain:

State 1: Correct value at requester
transitions: event→S2, Update generated→S1, Update arriving→S1

State 2: mismatch at requester, no correcting update in transit
transitions: event → S2, Update generated → S3

State 3: mismatch, correcting update in transit
transitions: event→S2, Update generated→∗S3, Update arriving→S1

Note that ’outdated’ updates (which were sent out before the
last event occurred) are irrelevant. If the delay-distribution
is probabilistic, multiple updates in transit can occur, which
would need to be counted in the state-space (transition marked
with ∗ above in the table). For simplicity, the table above and
the generator matrix below do not implement this counting
of updates in transit, although the numerical results in the
subsequent sections include them. Under the Poisson assump-
tions on Event process, downstream delay, and update sending
period, the state transitions can be described by the following
generator matrix:

Q =

 −λ λ 0
0 −τ τ
ν λ −ν − λ

 ·
The mismatch probability is then the steady-state probability

that the Markov process is in States S2 or S3, which has the
following closed-form solution:

mmPr(exp)
proact,perodic(λ, ν, τ) =

λ
[
(ν + λ)(2τ + ν + λ) + τ2

]
(τ + λ) (ν + τ + λ) (ν + λ)

(3)
See [8] for the detailed analysis of the case with multiple
updates in transit. The overhead can be computed as follows:

Vproact,periodic(T, s, τ) = τTsd.

The (average) access delay is 0.

C. Proactive - Event based update

In the proactive event driven update scheme, the provider
sends an update to the client node, whenever an event has

happened, i.e. when the information element has changed
value, see Figure 3. In order to investigate the mismatch

Rk
Rk+1

E
l

Request process

Event process
Time

Time

x
E

l+1

Rk+2

x

x x x

x
E

l+2

Fig. 3. Proactive event driven update: the request at time Rk results in a
correct value, while Rk+1 leads to a mismatch, since the updated value is in
transfer when the user accesses the current value.

probability, two different cases with respect to the semantics
of the update messages have to be distinguished:

Case I: Incremental Updates: In this scenario, the re-
quester only accesses the correct information, if all update
messages from previous events have been successfully re-
ceived. These messages can be re-ordered by the network, but
through the use of sequence numbers, the requester is able to
put them back in the correct sequence. In this case, a mismatch
would occur, if any of the update messages is still in transit.
This is equivalent to the probability that an E/D/∞ queue
is in a busy period (a customer being served in the queue
is equivalent to an update in transit). Hence, the mismatch
probabilities can be computed as

mmPr(GI)
proact,incr(E ,D) = Pr(E/D/∞ queue is busy),

which reduces under Poisson assumptions for E (with rate λ)
and General Independent (GI) assumptions for the downstream
delay D (with mean D̄) to

mmPr(λ, D̄) = 1− exp(−λD̄).

The downstream delay D can be GI, since the steady-state
queue-length probabilities for the M/GI/∞ queue are iden-
tical to the M/M/∞ queue, see [9]. In case of constant
(deterministic delay), the above mmPr is equivalent to the
reactive case. Hence, for constant delay, re-active and pro-
active, incremental, event driven access strategies lead to the
same mmPr.

Case II: Full updates: If a single update message con-
tains all information so that previous updates are not needed at
the requester, it is only important that the update message of
the last event has reached the requester. Hence, the mmPr can
be derived from a similar mapping to a queueing model, but
here, only the last customer (event) is relevant. Hence, instead
of an E/D/∞ queue as in Case I, we are now in the setting of
a finite E/D/1/1 queue with pre-emptive service and only a
single customer in the system (a customer in service is pushed
out and discarded by a newly arriving customer). Appendix B
derives a general formula for the mmPr in that case, with the
following two special cases:
• Constant (deterministic) delay: D ≡ c

mmPr(det)
proact,full(λ, c) = 1− exp(−λ c). (4)

• iid exponentially distributed delay with rate ν:

mmPr(exp)
proact,full(λ, ν) = 1− ν

λ + ν
=

λ

λ + ν
· (5)
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In both cases, the mmPr is identical to the corresponding
reactive setting. In both cases, the overhead follows as:

Vproact,event(T, s, λ) = λTsd.

However, note that typically the message size for the incre-
mental updates is (much) smaller than for the full updates. This
difference depends on the complexity of the data structure of
this information element, which is outside the scope of this
paper. The (average) access delay is 0.

IV. ANALYTIC RESULTS AND VALIDATION VIA

SIMULATION

A summary of selected analytic result is given in the
following table: Figure 4 shows the results for the mmPr

reactive proact. event proact. event proact.
full update incremental periodic

mmPr
Exp. λ

λ+ν
λ

λ+ν
1− e−λ/ν ≈ Eq. (3)

Delay
Det. 1− e−λc 1− e−λc 1− e−λc see[8]

Delay

overhead µ(su + sd) λs
(a)
d

λs
(i)
d

τs
(a)
d

access
delay E(U) + E(D) > 0 0 0 0
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Reactive(det. delay) = proact.event(exp delay)
Reactive(exp.delay)
Proact.periodic(exp, exp per τ=1e−2,1e−1,1,10)

Fig. 4. Comparison of mismatch probabilities in the different remote access
strategies:

as computed by the analytic models for the different remote
access strategies, for the assumption of a Poisson event pro-
cess with rate λ = 1 and an iid exponentially distributed
downstream delay with rate ν. In the proactive periodic case,
the period is iid exponentially distributed with varying rate
τ = 10−2, ..., 10. The table and the figure allow to draw the
following conclusions:
• For each of the cases, exponential delay and deterministic

delay, the reactive approach leads to the same mmPr as
the corresponding pro-active event driven approach with
full updates. Hence, the latter is not shown in the figure.

• The reactive strategy in the case of deterministic down-
stream delays, D ≡ 1/ν, (solid line) leads to a higher
mmPr than in the case of an exponentially distributed

delay with same mean (dashed line). In contrast to
intuition from other analytic models, e.g. in queueing
models in which deterministic delays typically lead to
shorter waiting times, here the deterministic case is not
the best case scenario!

• For scenarios of long exponentially distributed delays,
ν → 0, the derivative d/dν of mmPr at the value ν = 0
is −1/λ for the reactive approach, while the derivative is
zero for the pro-active event-driven incremental approach.
Hence, for small values of ν (corresponding to long
delays), the reactive approach is always creating a smaller
mmPr.

• For very short downstream delays (large ν) both the
reactive and the pro-active event-driven strategies decay
asymptotically as mmPr λ/ν for both deterministic and
exponential delays, and also independently of incremental
or full updates. Hence, asymptotically for ν → ∞,
all proactive event-driven and reactive strategies behave
equally.

• for large ν →∞, the pro-active periodic approach shows
a limit of limν→∞ mmPr(λ, ν, τ) = λ/(λ+τ) > 0. Con-
sequently, for large τ eventually, the periodic approach
will at some point always perform worse than the event-
driven and reactive approaches.

Validation by simulation
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Reactive (det. del.) = proact.event (exp del., case I)
Reactive (exp. del.)
Proact.per (exp. del., exp. per.)
Reactive, (sim. det. del.)
Proact.event, (sim. exp. del., case II)
Proact.per, (sim. exp. del, exp. updt. per.)
Proact.Per. (sim. det. del., det. updt. per.)
React (sim. exp. del. n

ip
=5)

Fig. 5. Theoretical results vs. simulated results varying the down link rate.
95% confidence intervals are provided for most of the simulation estimates,
however, those are obtained without consideration of correlation properties.

Figure 5 shows a comparison of the mismatch probability as
estimated from simulation experiments for the various strate-
gies for varying downstream delay rates, ν. The results are
obtained from simulating 1000 requests and the comparison of
simulation and analytic results validates the analytic formulas
and provides a visual illustration of variance properties of
the corresponding simulation estimator. In addition to the
validation of the analytic results, the simulations in Figure
5 show also two cases that have not been treated analytically:

• The case of periodic updates with deterministic down-
stream delay and update time interval (τ = 1 sec.)
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(triangle): In contrast to the periodic update strategy
with an exponential delay and update time interval, the
deterministic delay and update time interval leads to a
reduced mmPr.

• The case of multiple information providers: In this sce-
nario, the information element is a tuple of which the
different elements are provided at different entities. This
setting will also be considered in the next section. If
the different elements change according to independent
Poisson processes, the tuple changes also according to
a Poisson process with the sum of the individual rates.
Detailed analytic modelling of this scenario is outside
the scope of this paper, but the black star curve in Fig. 5
shows the simulation result for a 5-tuple with distributed
providing entities and exponential downstream delays.
See the next section for more discussion on this scenario.

V. APPLICATION TO CONTEXT-SENSITIVE SERVICE

DISCOVERY/ROUTING

In this section, we discuss the impact of mismatching re-
mote information for the example of context-sensitive service
discovery in Personal Networks. Thereby, we also extend the
performance metric from the pure mismatch probability to
expected values of observed information deviation. The latter
requires a semantic description of the information element,
which here will be done based on a simplified setting for
illustration purposes.

A. Context sensitive service discovery

A Personal Network (PN) [10] is a logical private network
that interconnects the user’s Personal Area Network (PAN)
with remote nodes; the latter are typically grouped in so-called
clusters. Figure 6 shows an example of a PN which consists
of two interconnected clusters (one of which is the user’s
PAN). Since PNs may be large and geographically distributed,

Fig. 6. Context aware service discovery in Personal Network

and furthermore they could contain many devices and hence
potentially many services, context-dependent service ranking
may strongly increase the user-friendliness of the service-
discovery process. An example of a hierarchical service dis-
covery architecture is illustrated, [4], in in Figure 6. The user
submits a service discovery request which is sent to the Service
Management Node (SMN) in the PAN. The SMN obtains then
the context information from information providers in the PAN
or in other clusters using one of the three strategies discussed
in earlier parts of this paper. After the collection of context
information, the SMN can rank and filter the service(s), e.g.
based on a calculated score. If the calculated score is below a

certain threshold, the service is considered not relevant and is
not shown to the user. An example for such a score-function
is

score(t) =

∑N
n=1 w(n)f (n)(E(n)(t), E(n)

ref )∑N
n=1 w(n)

, (6)

where f (n) is an a pre-defined function, which determines
a score for the matching of the n-th context field, E(n)(t),
in comparison to a reference value, E

(n)
ref . Here w(n) denotes

a weighting factor for the different context elements. As
Equation (6) shows, the score is based on up to n context
values, which are processed at the SMN. There can be a
mismatch between the context value used at the SMN for
service ranking and the true value at the remote node, which
in turn will lead to a wrongly calculated score value, leading
to a possible wrong service (de)selection.

B. Impact of mismatch probability on score function

We use a simulation model that simulates up to n context
providing nodes, in which the context information is assumed
to be monotonically increasing. The same simple, linear
scoring function f (n)(t) = 4E(n)(t) is used for all context
values with same weights w(n) = 1. For each context access
strategy and each parameter setting, 100.000 service discovery
requests are simulated, and the average of the absolute error
in score value, is calculated. All results are obtained using
an exponentially distributed link delay. The proactive, event-
driven scheme is based on full updates (Case II). The simulated
results for the average error for different link delay rates
are shown in Figure 7: Although the proactive event-driven
strategy with full updates and the reactive strategy show the
same mismatch probability, the average error for the reactive
strategy is higher. This can be explained by the histograms of
the error distribution in Fig. 8; the mismatch probability only
indicates whether there is a deviation (height of bar at left
hand). As for the mismatch probability, the periodic strategy
leads to a higher average score error for small delays at the
right end of Fig. 7, but it actually outperforms the reactive
strategy for long delays.
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Fig. 7. Average score error using the three update mechanisms.

Furthermore, the case of multiple (five) information
providers increases the average score error for the reactive
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strategy, while the impact on the other strategies seems less
pronounced (not shown here). More detailed analysis of such
scenarios with multiple information providers will be done in
the future.

Fig. 8. Histogram of the absolute errors of the three updating strategies.

VI. SUMMARY AND OUTLOOK

This paper presents analytic models for the mismatch
probability of the following different access strategies to
dynamically changing, remote information elements: (1) Re-
active access; (2) proactive, periodic access; (3) proactive
event-driven access with the two sub-cases incremental and
full update messages. The discussion of the analytic results
focuses on information elements that never change back to a
previous value, the change events form a Poisson process, and
network delays are described by an exponentially distributed
or constant random variables. The actual request process
is irrelevant for the value of the mismatch probability but
instead it has an impact on statistical estimation properties
and on other performance metrics, such as generated network
traffic. Simulation results are subsequently used to validate
the analytic results and to provide quantitative results for the
scenarios outside the scope of the analytic models treated
in this paper. This includes multiple information elements
provided by different entities in the network. Finally, the
mismatch probability and its impact is discussed in a use-case
of context sensitive service discovery in Personal Networks.
The analytic models will be extended in future papers to
include more general settings and in order to cover the scenario
of multiple information sources. Furthermore, additional use-
case scenarios such as link-state information in ad-hoc routing,
binding tables in dynamic name services, and replication for
resilience purposes will be investigated.
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APPENDIX

A. Derivation of the mmPr for the reactive case
Assume E is a stationary point process, then define the excess

Y = R1 and the age U = −R0 and their distribution functions
by B(t) = P (R1 ≤ t) and A(t) = P (−R0 ≤ t), [9]. The
density functions are denoted by a and b. Furthermore, construct
the stochastic process E(t) = k, t ∈ [Ek, Ek+1). Assume that event
process E is a Poisson process with intensity λ, then by stationarity
we have the following probability of mismatch upon reception of the
message for any request at time Rk

P (E(Rk + Uk + Dk) �= E(Rk + Dk))

= P (E(Dk) �= E(0))

= 1−
∫

P (E(Dk) = E(0)|Dk = t)fD(t)dt

= 1−
∫

e−λtfD(t)dt = 1− L{fD}(λ).

As the mismatch probability does not depend on Rk we can define
the mismatch probability in the reactive case to be

mmPrreact = 1− L{fD}(λ).

B. Derivation of the mmPr for the pro-active, event-driven
strategy with full updates

The probability of mismatch for the requesting time Rk is derived
by conditioning on the situation that no event has happened in the
interval [t, Rk] and that the message is not delayed more than Rk− t
time units, consequently by stationarity

mmPrproact,full = 1−
∫ ∞

0

P (D ≤ t|U = t)a(t)dt

= 1−
∫ ∞

0

P (D ≤ t)a(t)dt.
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Motivation: Context-sensitive Personal Networks

• Extension of PAN concept to Personal Networks

– Logical networks, defined by appropriate security associations

– Potential huge geographical/topological span

– Consisting of ad-hoc and infrastructure networks

– User centric definition

 

Core PAN 

Home network 

Corporate 
network 

Interconnecting structure 

(Internet, UMTS, WLAN, Ad Hoc, etc.) 

Vehicular area 
 network 

PAN 

Smart building 

Personal Network 

Remote personal devices 

Local foreign devices 

Remote foreign devices 
• Challenges

– Network aspects: architecture, service discovery, naming, connectivity

• User friendliness and efficiency via context-sensitive networking

– Air interface/MAC: cross-layer optimization

– Security: PAN/PN level authentication & authorization

– Platforms: PAN devices, gateways, edge functionality, etc.
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Context sensitive Service Discovery in MAGNET

• Context information (User context, 

network context, environment context)

• potentially dynamically changing

• obtained from remote entities, 

e.g. sensors for environment context

• Service Management Nodes (SMNs) 

need to evaluate the context information as

• either reactively (on-demand) obtained

• or pro-actively distributed by information provider

• Quality metrics that guide selection of access strategy

• Network overhead (created data volume)

• access delay

• timeliness/correctness of information: mismatch probability

Other important examples of remote access
• Routing in (ad-hoc) networks

– Example: source routing

– Source needs to know links 

(or link-states) of remote nodes

– Dynamically changing topologies

– Pro-active (OLSR) vs reactive (AODV)

as well as hybrid strategies (ZRP)

• Link-adaptation in cellular networks 

– Wireless link properties change over time
(shadowing, multi-path propagation, interference)

– Common Strategy: Base station adjusts

downlink transmission parameters dynamically,
e.g. coding scheme, transmission power, etc.

– Based on current channel conditions

– Which need to be measured in mobile station (in particular for FDD systems)

+ More examples: dynamic name services, data replication in fault-tolerant distributed systems, etc. 

Downlink Data Transm.

Channel Quality 

Measurements
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Different Access strategies
1. Reactive/on-demand

2. Pro-active (two cases: incremental vs. full updates)

2.1 Pro-active event-driven

2.2 Pro-active ‘periodic’

Processes and Assumptions
Participating Processes

1. Event Process E (when Poisson, with rate )

2. Request process R (with rate )

3. Downstream Delay D (when Poisson, with rate )

4. Upstream Delay U (only in case of reactive approach)

5. Period of pro-active periodic approach P (when Poisson, with rate )

Assumptions

• All processes are mutually independent
 request process irrelevant for stationary mmPr

• D,U,P are independent, identically distributed (iid)

• Message re-ordering can occur in network, but requestor can put messages back in order (e.g. 
using sequence numbers)

• The information element never changes back to an earlier value, e.g. as for monotonous 
behavior
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Analysis: Reactive Case

Assuming Poisson distributed Event process ( M|.|GI|. case)

Analysis: Proactive Event-Driven Case

Pro-active event-driven: Two cases

a) Incremental updates: 
1-mmPr = Pr(no message in transit at Rk) = Pr(E/D/ Queue is idle)

Assuming Poisson Event process: mmPr= Pr(M/GI/ queue is busy) = 1-exp(-/)

b) Full updates

mmPr = Pr(last message still in transit) = Pr(E/D/1/1 Queue is busy)

equivalently:

Backwards recurrence 

time U with density a(t)

4 Schwefel H.-P.: Quantitative Analysis of Access Strategies... (Slides) 22



Analysis: Proactive periodic case

Pro-active periodic:

• Assuming all processes are Poisson (M|.|M|M case)

• Representation as continuous–time Markov chain model

• Counting #msgs in transit

• Explicit solution:

• If #msgs in transit limited to max 1

Quantitative results: Poisson Event Process
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Markov Event processes (in progress)

Scenario: information element may change back to a previous value later

• Modeling of event process as Markov model with generator Q

• Monotonous case is upper bound for mmPr

1. Reactive case

• Conditioning on downstream delay

• Instead of exp(-t) use probability that 
Event Markov process is in same state i 
at time 0 and t:  [exp(-Qt)]ii

2.1 Pro-active event-driven case (full updates)

• Conditioning on downstream delay convoluted with backwards recurrence time of E+D

• Partial results based on using MAP/GI/ departure processes

2.2 Pro-active periodic case (exponential P,D)

• Large Markov model (when multiple messages in progress are allowed)

• Numerical results hopefully soon…

Multiple Information Providers

Information Element may be vector (E1,E2,…,EN)

• Each element provided by a different node

• Mismatch if ANY of the Ei are different then its true value at the provider at time of use

‘Re-active case: 

• When U=const.  mismatch if any Ei changes in interval max(D1,…,DN)

• Potential interesting approximations for large N (e.g. using Gumbel distribution)

Pro-active cases:

• Product solution due to independence assumptions

2nd  Event process
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Summary and Outlook

• Scenario: Remote access to context (routing/channel state) information

• Quantitative Analysis of different strategies

– Re-active

– Pro-active event-drive (incremental/full) and periodic

• Set of results for rather general assumptions on E,D,P

Long to-do list

• Markov Event Processes, multiple information providers (as explained)

• Estimation properties of mmPr

• More general cases: correlated delays, phase-type distributions

• Application to use-cases: service discovery, naming, routing, replication,…

• Analysis of hybrid strategies

… and much more…
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Summary. Formal kinetic methods to analyze biocatalytic systems are tradition-
ally based on the law of mass action. This law involves the assumption that each
molecular state has an exponentially distributed lifetime. We regard this assumption
as unduly restrictive and advocate a more general, service theory based approach
(termed mass service kinetics or briefly service kinetics). In service-theoretic terms
biocatalysts are servers and their ligands are customers. The time intervals be-
tween arrivals of ligand molecules at special service loci (active or binding sites)
as well as the service periods at these loci need not be exponentially distributed;
rather, they may adopt any distribution (e.g., Erlangian, hyperexponential, var-
iomorphic). We exemplify the impact of nonexponential time distributions on a
performance measure of wide interest: the steady-state throughput. For its compu-
tation we use matrix-analytic methods. Specifically, we show that nonexponential
interarrival times convert hyperbolic mass action systems (whose characteristic is a
hyperbolic velocity–concentration or dose–response curve) into nonhyperbolic mass
service systems and that type and extent of their nonhyperbolicity are determined
by type and parameters of the interarrival time distribution. Furthermore, we ana-
lyze the combined effect of a non-Poissonian arrival process and a waiting site near
the catalyst’s active site on the throughput of the system. A major conclusion of
our and other studies is that it is a questionable practice to use routinely and ex-
clusively mass action kinetics for the interpretation and performance evaluation of
biocatalytic systems.

Key words: Nonhyperbolic velocity–concentration curves, queueing theory, inter-
arrival time, waiting space, steady-state throughput

1.1 Introduction

The kinetic behaviour of biocatalytic systems (i.e., systems containing biolog-
ical macromolecules that catalyze chemical transformations or nutrient and
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metabolite transport or signal transduction) is traditionally described by mass
action kinetics. The latter presupposes the validity of the law of mass action.
Though usually formulated nonstochastically (by ordinary differential equa-
tions or algebraic expressions), the law of mass action clearly has stochastic
roots and must be interpretable as the result of probabilistic phenomena at
the molecular level by virtue of the fact that matter is not a continuum but
consists of discrete units (atoms, molecules) with an intrinsically random be-
haviour. Already C. M. Goldberg (1836–1902) and P. Waage (1833–1900), the
originators of the law of mass action, were aware of this and since then numer-
ous authors, e.g., Rényi [1], have investigated both the kinetic and equilibrium
versions of the law of mass action in terms of probability and stochastic pro-
cesses. It is beyond the scope of this article to compile and review the pertinent
literature. We rather confine ourselves to mention two fundamental stochastic
properties of the law of mass action: (i) ergodicity (= equality of time and
ensemble averages) and (ii) Markovity (= lack of memory, complete forget-
fulness). If a system is nonergodic and/or non-Markovian, it is by definition
not a mass action system. Deviations from ergodicity, reported in experimen-
tal studies on conformational transitions in biological macromolecules (e.g.,
[2, 3]), are not a topic of the present paper. We rather focus on violation
of the second above-mentioned property, the Markov property, by allowing
for nonexponential interevent times at the molecular level. How to cope with
biocatalytic systems containing non-Markovian elements and to what extent
does the performance of such systems differ from that of conventional mass
action systems? These are the main issues we address in the following.

1.2 The Service-Theoretic Approach

We propose to apply – instead of the traditional theory of mass action –
the “theory of mass service” (also known under the names queueing theory
and service theory) to biochemical kinetics for a number of conceptual and
methodological reasons: (i) Biocatalysts are stochastic “servers” and their
ligands are “customers” which are served at special “service loci” (active or
binding sites). Various modes of operation (waiting or rejection, first come–
first served, service interruptions, priority rules, etc.), being well known in
man-made service systems, may also be encountered in biocatalytic systems.
Furthermore, biocatalysts can build up chains and networks endowed with
structural, dynamic and regulatory properties that are largely analogous to
those of production lines or queueing networks of anthropic origin. (ii) For
the quantitative analysis and performance evaluation of service systems and
queueing networks, probability theorists have developed a rich repertoire of
mathematical tools and methods. At least some of these are expected to be
applicable and useful also in the nanoworld of enzymes, transporters and signal
transducers. (iii) Nonexponential time distributions, being foreign to mass
action systems, are quite common in mass service systems. It is primarily for
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this reason why we advocate the application of the service-theoretic approach
to biocatalytic systems and the build-up of a more general type of kinetics,
termed – in contradistinction to mass action kinetics – mass service kinetics
or briefly service kinetics. Biokinetics is thus put on a broader fundament,
gains in flexibility and versatility and may lead to new interpretations of
old phenomena. In the next section we use a very simple enzymic model in
order to give an idea of the potentialities of the service-kinetic approach in a
biochemical setting.

1.3 The Van Slyke–Cullen Scheme Modelled as a
Service-Kinetic System

The simplest possible scheme of an enzymic reaction is

E + S→ ES→ E + P

where E, S, ES and P stand for enzyme, substrate, enzyme-substrate complex
and product, respectively. This scheme has been named after Van Slyke and
Cullen [4] (VC) since these authors ignored in their mathematical analysis
the (commonly included) reverse reaction ES → E + S. We, too, ignore this
reaction since its inclusion usually affects only the scale but not the shape of
the v(S) curve (v = reaction velocity; S = substrate concentration). We use
the VC scheme as basic paradigm of a biocatalytic system.

The mass-action kinetic analysis of the VC scheme leads to only one type
of v(S) curves: the rectangular hyperbola. An entirely different situation is
encountered when one subjects the VC scheme to a (mass-) service kinetic
analysis: besides the familiar hyperbolic v(S) curve a great variety of non-
hyperbolic v(S) curves can be obtained. This diversity is achieved by allowance
for (i) nonexponential time distributions and/or (ii) a waiting room for sub-
strate molecules which sit and wait there till clearance of the active site. In
Figs. 1.1–1.3 some illustrative examples of nonhyperbolic v(S) curves as con-
sequences of (i) and/or (ii) are shown.

Let us have a closer look at the various situations giving rise to the v(S)
curves of Figs. 1.1–1.3.

Figure 1.1. When the interarrival times of the substrate molecules at the
enzyme’s active centre are nonexponential, the resulting nonhyperbolic v(S)
curves are – compared with the classical hyperbola – either “lifted” or “de-
pressed”, depending on whether the coefficient of variation of the interarrival
time distribution is smaller or larger than 1 (see curves (a), (b) and (e), re-
spectively). A special situation is represented by curve (d): here the stochastic
arrival pattern varies with the arrival intensity (i.e., with the substrate con-
centration); specifically, its coefficient of variation gradually decreases with
increasing substrate concentration in such a way that a sigmoidal v(S) curve
is generated. We regard arrival patterns with an intensity-dependent coeffi-
cient of variation (called by us “variomorphic” [5]) not as an exotic rarity but
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Fig. 1.1. The effect of nonexponential interarrival time distributions on the through-
put in a VC system without waiting facilities. [S] and v stand for substrate concentra-
tion and reaction velocity, respectively. [S] is given in units of the Michaelis constant
Km and v as fraction of the maximal throughput. The lower-case letters attached
to the curves indicate various interarrival time distributions: (a) = deterministic,
(b) = Erlangian of order 10, (c) = exponential, (d) = variomorphic with a coeffi-
cient of variation decreasing nonlinearly from 14.1 at [S] = 0 to about 0.7 at [S] =
2.2, and (e) = hyperexponential of order 2 with a coefficient of variation of 4. The
computational techniques (based on matrix-analytic methods) used here as well as
in Figs. 1.2 and 1.3 for generating the v(S) curves are described in [5]. For readers
familiar with the symbolic representation of service systems (explained in [5]) we
add that curves (a), (b), (c), (d), and (e) represent the throughputs in the service

systems G/M/1/0 and Gvario/M/1/0 with (a) G = D, (b) G = E10, (c) G = M,

(d) Gvario = PHvario
4 , and (e) G = H2, respectively

as the rule in biocatalytic systems whose ligand arrival process is nonexponen-
tial. A more detailed description of nonexponential and variomorphic arrival
processes and the resulting v(S) or dose–response curves can be found in [5].

Figure 1.2. When near the enzyme’s active centre exist waiting spaces from
which substrate molecules move to the active centre as soon as the latter is
cleared, one usually obtains lifted nonhyperbolic v(S) curves. Extent of lift-
ing and nonhyperbolic “deformation” depends on (i) the number of available
waiting spaces, (ii) the time needed for the substrate’s transit from the waiting
space to the active centre, and – except the limiting case of an infinite number
of waiting spaces – (iii) the probability distributions of interarrival and service

5 Jobmann M.: Nonexponential Time Distributions in Biocatalytic Systems 30



1 Nonexponential Time Distributions 5

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[S]

v

0

12
3

10
100

Fig. 1.2. The effect of waiting spaces on the throughput in a purely exponential
VC system. The numbers attached to the curves indicate the number K of waiting
spaces near the enzyme’s active centre. [S] and v are normalized as in Fig. 1.1. For
further details see the text. For readers familiar with the symbolic representation of
service systems (explained in [5]) we add that the curves labelled 0 to 100 represent
the throughputs in the service system M/M/1/K with K = 0, 1, 2, 3, 10, and 100,
respectively. Note that K = 100 already approximates very well the case of K = ∞

times. In Fig. 1.2 we assumed that the mentioned transit time is negligibly
small and both interarrival and service times are exponentially distributed.
Under these conditions allowance for 1, 2, 3, 10, 100 or infinitely many waiting
spaces yields the v(S) curves shown. The larger the number of waiting spaces,
the more approach the v(S) curves the form of a ramp with a sharp transition
at [S] = Km, the Michaelis constant. The latter type of kinetics is phenomeno-
logically equivalent to the so-called Blackman kinetics [6, 7] in biochemistry
and physiology and the Holling type 1 “functional response” [8, 9] in ecology.
The waiting room effect on the throughput in a purely exponential enzyme
system was reported earlier by Trenkenshu [10, 11].

Figure 1.3. Here we illustrate the combined effect of two service-kinetic
possibilities: a nonexponential arrival process and a waiting room with space
for just one substrate molecule. Analogously to the purely exponential system
of Fig. 1.2, also in this system allowance for one waiting space suffices to
considerably increase the system’s throughput (see the v(S) curves in pairs
(b), (d) and (e) of Fig. 1.3). However this increase is not equal for systems
with exponential and nonexponential interarrival time distributions – neither
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Fig. 1.3. The effect of nonexponential interarrival time distributions and one waiting
space on the throughput in the VC system. [S] and v are normalized as in Fig. 1.1.
In pairs (b), (d), and (e) the interarrival time distributions are identical with those
used in Fig. 1.1 for generating the curves (b), (d), and (e), respectively. The upper
(lower) curve in each pair of curves represents the throughput in a VC system with
one (no) waiting space. When expressed symbolically [5], the upper and lower curves
represent the throughputs in the service systems (b) E10/M/1/1 and E10/M/1/0,

(d) PHvario
4 /M/1/1 and PHvario

4 /M/1/0, and (e) H2/M/1/1 and H2/M/1/0

absolutely nor as percentage value, regardless of being measured at selected
substrate concentrations, e.g., at [S] = Km, or when summed up over the
whole substrate concentration range (0,∞).

The v(S) curves shown in Figs. 1.1–1.3 all originate from a VC scheme
with an exponential service time distribution. What do v(S) curves look like
when (case 1) solely the service time or (case 2) both the service and inter-
arrival times are nonexponentially distributed? In answering this question we
have to differentiate between VC systems with waiting facilities and those
without them. Answer in case 1. In a VC system possessing no waiting room
one always obtains one and the same curve shape: the classical hyperbola.
In other words, this system is entirely insensitive to the stochastic character
of the service process (provided the system is at steady state as we tacitly
assume throughout this paper). However, this insensitivity is abolished when
the enzyme molecule can offer a finite number of waiting spaces to substrate
molecules arriving at an occupied active centre. In this case the VC system’s
throughput is the better (i.e., the v(S) curves are the more lifted), the smaller
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the coefficient of variation of the service time (data not shown). Answer in
case 2. In a VC system devoid of waiting facilities the v(S) curves often do
not differ much when besides the interarrival time also the service time is
nonexponential. However, special conditions – e.g., arrival and service pro-
cesses being both Erlangian of high order – can give rise to quite unusual
(undulatory or sawtooth-like) v(S) curves which markedly differ from those in
systems with an identical nonexponential arrival process but an exponential
server; for illustrative examples see [5]. Finally, when comparing position and
shape of v(S) curves obtainable in VC systems equipped with a finite number
of waiting spaces, one again finds differences between doubly (arrival and ser-
vice) and singly (arrival or service) nonexponential systems. These differences
become smaller with an increasing number of waiting spaces and totally van-
ish when this number goes to infinity. In the latter case the v(S) curve adopts
the ramp shape shown in Fig. 1.2 and it is irrelevant whether the interarrival
and/or service time distributions are exponential or nonexponential (case of
total insensitivity).

1.4 General Conclusions and Open Questions

Using the VC scheme as the basic paradigm of a biocatalytic system, we
showed in the preceding section that a mass-service-theory inspired approach
opens up prospects and possibilities that are closed to the traditional mass
action approach. In particular we demonstrated that allowance for nonex-
ponential time distributions and incorporation of waiting facilities for arriv-
ing substrate molecules yields a wide spectrum of v(S) curves of which the
classical hyperbola is merely a special case occurring under special, quite re-
strictive conditions. The mass service approach is of course also applicable
to reaction schemes more complex than the VC scheme treated above. If in
such schemes already conventional mass action kinetics leads to nonhyperbolic
v(S) or dose–response curves, the inclusion of mass-service specific elements
may either reinforce or attenuate the system’s deviations from the hyper-
bolic response. However complicated a reaction scheme may be, it is clear
that service-theoretic concepts and methods are apt to augment our under-
standing of biocatalytic systems. Time-honoured mass action kinetics should
therefore be supplemented (if not replaced) by mass service kinetics. Other
authors [12, 13, 14], using concepts and methodological approaches different
from ours (e.g., a deterministic fractal approach [12] or Monte Carlo sim-
ulation algorithms [13, 14]), also emphasized that conventional mass action
kinetics is often inadequate to describe biocatalytic systems, especially under
in vivo conditions.

Finally, we would like to touch upon the question: What physical mecha-
nisms can be envisaged to give rise to nonexponential time distributions at the
molecular level? As far as the interarrival time distribution is concerned, we
consider the following possibilities: (i) Substrate molecules are often products
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of a neighbouring enzyme in a metabolic chain. If these product molecules are
released in a nonexponential manner and are – due to channelling – not (or
not fully) thermally randomized, their arrival pattern at the next enzyme is
also nonexponential. (ii) Coherent spiking of enzymic reactions in small vol-
umes, as described by Mikhailov and Hess [15], may more or less derandomize
the stream of arriving ligand molecules. (iii) The intracellular milieu which
is characterized by extensive compartmentalization, macromolecular crowd-
edness, lacunarity and a non-Euclidian geometry may generate unusual, e.g.
power-tailed, arrival patterns. (iv) The matrix process [16], i.e., the intrama-
trix migration of ligand molecules between the first (or last) contact point on
the biocatalyst’s surface and the active centre, may not only change the inten-
sity with which ligand streams arrive at the active centre but may also modify
their stochastic pattern by various derandomizing mechanisms (e.g., overflow,
regularizing filtering, alternative gated pathways). Direction and degree of
nonexponentialization may often be dependent on the ligand concentration
(e.g., exponential at low [S] and increasingly hypo- or hyperexponential at
rising [S]) and thus give rise to so-called variomorphic arrival patterns (see [5]
and Sect. 1.3 above). Concerning the service time distribution, we mention
two further feasible mechanisms of nonexponentialization: (v) The biocat-
alyst has to undergo a number of sequential conformational transitions or
has to perform a number of sequential chemical or physical operations be-
fore the catalytic act (formation or fission of a covalent bond, emission of
a signal, transportation of a nutrient across a membrane, etc.) can occur.
Sequential multistage processes of this kind make the service time hypoexpo-
nential (Erlangian) though each individual stage is exponentially distributed.
(vi) The biocatalyst’s conformational state required for the catalytic act may
be reached by two or more parallel single- or multiple-step pathways which
leads to a service time with hyperexponential or hyper-Erlang distribution.

The above-listed mechanisms of nonexponentialization in biocatalytic sys-
tems are largely hypothetical and direct experimental evidence supporting or
invalidating them is scarce so far. However, it is expected that the rapidly
advancing experimental techniques in single-molecule biochemistry (e.g., so-
phisticated optical techniques [17, 18] with high time resolution) will provide
unambiguous data concerning nonexponential time distributions and enable
open questions to be answered or reformulated.
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Chemical Processes in Biologial Systems
Mass-kinetic Models

I Chemical description: X1 + X2 → X3 + . . .

I Mass-kinetic Model: Coupled System of differential
equations:

d
dt

[X1] = f1([X1], [X2], . . .)

d
dt

[X2] = f2([X1], [X2], . . .)

In equilibrium
0 = f1([X1], [X2], . . .)

I Enzyme-Substrate and Receptor-Agonist reactions:

E + S −→ E • S, E • S −→ E + P
R + A −→ R • A, R • A −→ R + A + emitted signal
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Solution of Mass-kinetic Models
Michaelis-Menten Equations

I Equilibrium ”velocity”, v , (better named) reaction rate, r :

v =
vmax · [S]

Km + [S]
=

vmax · σ
1 + σ

, σ =
[S]

Km

r =
rmax · [A]

A50 + [A]
=

rmax · α
1 + α

, α =
[A]

A50

Service-theoretic Models
Motivation:

I New view: Protein production in short bursts at random
time intervals

I Mesoscopic view allows to keep track of few/every
molecule.

I Then:
√

n law of statistical physics applies.

I Stochastic models instead of mass-kinetic models:

A k−→ B is modeled as

(#A,#B)
#A · k · dt−−−−−−→ (#A− 1,#B + 1)
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Service-theorethic Model
Total Loss-System

I E + S k1−→ E • S, E • S k2−→ E + P

S#E, #S, #E S

P

k2

#E, #S, #E

k1
k1

Modeled: 1 binding site =⇒ Total Loss-System:
PHk /M/1/0:

Q =

(
B1 B0
A2 A′1

)

Total Loss-System
Special case: M/M/1/0

I Q =

(−λ λ
µ −µ

)
I π0 = µ

λ+µ , π1 = λ
λ+µ

I Thruput: π1 · µ = µ·ρ
1+ρ =


0, ρ = 0
µ
2 , ρ = 1
µ, ρ→∞

Now associate ρ −→ σ, α and µ −→ vmax, rmax

=⇒ Michaelis-Menten solution
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Total Loss-System
Special cases: D/M/1/0, Ek /M/1/0:

D/M/1/0: Beněs [Beneš, 1959]
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Total Loss-System
Special cases: H2/M/1/0

Models effects of partial agonists or competitive inhibition:
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Total Loss-System
Case: PH4/M/1/0

λ λ

λλ

11 12

2221

p

q1

q 2

1−q1

1−p
1−q2

p = 0.99, q1 = 1.00, q2 = 1.00

λ11 = 109,106,103,125.2,37.34,16.025, . . .

λ12 = 101.3

λ21 = 10−5,10−4,10−3,0.002,0.00302,0.0041, . . .

λ22 = 101.3

Total Loss-System
Case: PH4/M/1/0
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Total Loss-System
Special case: D/D/1/0
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Total Loss-System
Case: D/E100/1/0
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Total Loss-System
Case: E100/D/1/0
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Total Loss-System
Case: E50/E50/1/0
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Conclusions

I Classical mass-kinetic model =⇒ Michaelis-Menten
equations

I Proposed here: service-theretic models
I which include Michaelis-Menten’s results but
I allow for modeling additional phenomena of biocatalyst

processes, e.g. effects of partial agonists and competitive
inhibition.

I Further work:
I multiple binding sites
I temporary refractory states (by server with vacations?)
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Doubly and Triply Excited States of Atomic Systems
The study of the spectra of multiply excited atoms and ions has been a very active

area of research during the past decades. Most of these highly excited states are
auto-ionizing states. Auto-ionization falls within the general class of phenomena called
the Auger effect. In the Auger effect the system decays into a partition of its
constituent parts. If the initial composite system is neutral, or positively charged, and
its constituent decay particles are an electron and the residual ion, then the process is
called auto-ionization. Auto-ionizing states are formed by scattering processes and by
photoabsorption. For example we might have

h  He1s2  He∗∗  e−  He

e−  He  He∗∗  e−  He

where the auto-ionizing state He∗∗ corresponds to a temporarily bound or resonant
state of the compound system (e−  He). Auto-ionizing states in atomic physics have
been extensively studied both experimentally and theoretically from the early sixties.
These states are conveniently described by using the projection operator formalism
introduced by Feshbach1. One of the first papers to use projection operators was by
Lipsky and Russek2 on the auto-ionizing states of Helium.

The Feshbach Formalism for two electron systems
Given a hydrogen like target and a second electron, the Schrodinger Equation is
written in the usual way

H − E r1,r2  0

where

H  − 
2

2m ∇1
2 − 2

2m ∇2
2 − Ze2

r1
− Ze2

r2
 e2

r12

and  is an eigenfunction of definite angular momentum, spin and parity.
The basic idea of the projection operator formalism is to introduce two operators P and
Q which separate  into scattering-like P and quadratically integrable Q parts:

  P  Q
and where

P  Q  1, completeness P2  P, Q2  Q, idempotency PQ  0orthogonality
The following eigenvalue problem constitutes the heart of the projection operator
formalism:

QHQn ∈n n

Lipsky and Russek2 showed that an upper bound to these eigenvalues ∈n could be
obtained by calculating the matrix Hnm  〈un|H|um  where

un  1
2
Rn1ℓ11Rn2ℓ22Lℓ1ℓ2

M 

1,

2  Rn1ℓ12Rn2ℓ21Lℓ1ℓ2

M 

2,

1

and

1
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Lℓ1ℓ2
M ∑

m

ℓ1ℓ2L|mM − mYℓ1
m 

1Yℓ2

M−m

2

and where the Rnℓ are the hydrogenic radial functions and where no 1snℓ configuration
is included. Of course only a finite number of basis functions un could be included -
hence the name truncated diagonalization method or TDM.

In the early seventies3 we redid these calculations again using a much larger basis
set. We also computed the widths of these resonances from

Γn  2 ∈n  1
r12

n
2

where
∈  C R1s1Fℓ2Yℓ

m

2  R1s2Fℓ1Yℓ

m

1

and where the Fℓr is the radial function of the autoionizing electron. This radial
function was obtained from the well known static exchange approximation and
involved the numerical solution of two coupled differential equations. From analyzing
the wavefunctions n,energy levels ∈n , and the widths Γn we were able to arrange
the levels into series converging on the N2 threshold of the residual ion. We
introduced our own notation for these series which is sometimes still used today
although it is now superseded by a more sophisticated notation partially based on
group theory. Our results4,5,6 on two electron systems H−,He, Li,Be2 and B3

became a standard reference for workers in this area. In actual fact, the energies
∈n which we calculated are not the ones that are actually observed. What is actually
measured are

En  ∈n  n

where n is the shift in energy due to the coupling to the continuum and is given by
n  〈n|QHPGPHQ|n 

where G is the Green’s function 1/H − E. This contribution to the energy is usually
very small.

Three Electron Systems
The excited states of Lithium and Lithium-like ions are of fundamental interest

because Lithium is the first element in the Periodic Table which has both an inner and
an outer shell. The energy spectrum of lithium-like ions can be divided into three
groups of levels. The first group, converging on the 1s2 1Se ground state of the
corresponding two-electron residual ion consists of levels with a filled 1s shell together
with one excited electron. They are the ground state and the singly excited states
1s2nl 2l. These states are well studied both experimentally and theoretically. The
second group is composed of levels for which the is only one 1s electron. They are
called the doubly excited states. The third spectral group, consists of states with
configuration n1ℓ1n2ℓ2n3ℓ3 where n1,n2,n3 are greater than, or equal to 2. These are
described as the triply excited states.

Lester and Mohammed Ahmed7 in 1975 extended the TDM method to the
3-electron system and used the method to calculate the energies of some triply
excited states of the Lithium isoelectronic sequence. The dimension of the matrices in

2
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this case were large and computing power was limited at that time. In 1981, Lester
and I tried again to do more extensive calculations, but due to computer limitations did
not succeed. In 1991 much larger computers became available to us and it was
possible for us to do a limited calculation of some doubly excited states8,9 of C3 and
also, together with Arnold Russek , we put the TDM method for 3-elecron systems on
a more secure mathematical foundation.

We have recently completed a comprehensive set of calculations10,11,12 on the
triply excited 2ℓ′2ℓ′′nℓ′′′ states of 3-electron systems using hydrogenic basis functions.
This involved the diagonalization of 2000 dimensional matrices. We have reported and
tabulated the energies, classification, effective quantum numbers, and configuration
mixings of the triply excited 2,4Se,o, 2,4Pe,o , 2,4De,o , 2,4Fe,o states of lithium-like
ionsZ  3,10.For each Z, there are a total of 72 Rydberg series converging on the
doubly excited states of the residual 2-electron ion and we were able to find the lowest
10 to 12 levels for each series, giving a total of well over 5000 levels. The perturbation
of a Rydberg series by an isolated state or by another Rydberg series was examined
and discussed and our results compared with recent theoretical and experimental
data.

Work in Progress
In all our calculation we have used hydrogenic basis functions. These functions do

not form a complete set on the interval 0,. However, the associated Laguerre
functions

Rnℓr  2
ℓ  1

3/2 n − ℓ − 1!
n  ℓ  1!

2r
ℓ  1

ℓ
exp r

ℓ  1 Ln−ℓ−1
2ℓ2 2r

ℓ  1

where L
 is the associated Laguerre polynomial, constitute a complete set of discreet

orthonormal functions. Functions of this type are well known to give better results
than hydrogenic functions for the lowest one or two levels of any symmetry, since they
include (in a random way) pieces of the hydrogenic continuum functions. We have
used these functions and the complex rotation method to calculate the energies and
widths of the doubly excited states of 2-electron systems. Briefly, if T and V are the
(real valued) matrices of the kinetic and potential energies, then the (complex
symmetric) matrix of the rotated Hamiltonian H is given by

H  e−2iT  e−iV
The eigenvalues of H then include the complex resonance eigenvalues that are
independent of the parameter  in the limit that the basis is complete and we have for
these eigenvalues

E  En − i Γn
2

This method is very attractive since it automatically gives us the width Γ and the shift
due to the coupling to the continuum. We have found excellent agreement with Ho for
the lowest 1Se doubly excited states of the Helium isoelectronic sequence using 980
basis functions.
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Monte Carlo simulations are widely used in the analysis of stochastic models 

and their associated steady state distributions. This paper introduces a new 

procedure for improving the accuracy of such simulations. The approach is 

based on constructing synthetic alignment intervals that are appended to the 

output of the original simulations, creating extended simulations whose output 

conforms to certain mathematical relationships. Satisfying these relationships is 

shown to be sufficient to guarantee that the underlying steady state distributions 

have been computed accurately. 

 

1. Introduction 

 

Variability is present in the behavior of many real world systems. It is often convenient to regard this 

variability as the physical manifestation of some underlying stochastic process. This assumption leads 

to the creation of stochastic models of system behavior. These models can then be evaluated through 

analytic techniques, numerical methods, or Monte Carlo simulation. 

 

In many cases, analysts are interested in determining the steady state distribution of the underlying 

stochastic process. When Monte Carlo simulation is being used for this purpose, the Ergodic Theorem 

ensures - with probability one - that the output of the simulation will provide an accurate 

characterization of the underlying steady state distribution if the simulation runs “long enough”, and if 

the random number generator is “good enough”. The first few sections of this paper present a new 

procedure for testing the output of a simulation to determine if an accurate characterization of the 

underlying steady state distribution has been obtained. 

 

The tests are based on the equivalence of two different methods for deriving the equations that 

characterize the steady state distribution. The first employs the classical approach of setting the time 

derivative of the transient distribution equal to zero. The second method, which relies solely upon 

testable assumptions, is based on a direct analysis of the observable quantities that simulation programs 

actually generate. Both methods are shown to produce identical results. This equivalence provides the 

rationale for the new testing procedure. A simple example is presented to illustrate the issues involved. 

 

The discussion then turns to cases where the output of the simulation does not satisfy the conditions 

sufficient to guarantee accuracy. It is shown that accuracy can be improved in such cases by appending 

specially constructed “alignment intervals” to the end of the original output trajectories. 

 

                                                
1
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Since system behavior during these synthetic alignment intervals is driven by external calculations 

rather than calls on a random number generator, the essential stochastic nature of the simulation is 

clearly compromised. Nevertheless, the accuracy of the simulation can actually be improved. This 

apparent paradox is explained by introducing the distinction between distributional and trans-

distributional properties. Synthetic alignment intervals are shown to preserve distributional properties 

(dependent solely upon steady state distributions) while at the same time altering other properties (such 

as busy period distributions) that are trans-distributional in nature. 

 

2. Example – Simple Queuing Network 

 

Begin by considering the simple queuing network shown in Figure 1. There are two queues, each 

served by a single server. A total of three customers circulate around the network, cycling between one 

server and the other. 

 

QUEUE

QUEUE

SERVER 1

SERVER 2

THREE CIRCULATING CUSTOMERS

 
  

Figure 1: Simple Queuing Network 

 

Assume that the service times at servers 1 and 2 are determined by sampling from exponentially 

distributed random variables with means of 2 seconds and 4 seconds respectively. The queuing 

network in Figure 1 can thus be regarded as the realization of a stochastic process. The structure of this 

process is identical to that of an M/M/1/3 queue. 

 

Let p(n) be the steady state probability that the number of customers at server 1 is equal to n (where n 

= 0, 1, 2, 3). Analytic expressions for p(n) are well known to queuing theorists. However, suppose for 

purposes of this example that p(n) is not known but is instead being evaluated through a Monte Carlo 

simulation. 

 

Figure 2 depicts one possible trajectory that such a simulation might generate. The trajectory is exactly 

30 seconds in duration. This is, of course, too short an interval to obtain reliable estimates of the 

underlying steady state distribution; however, it is entirely sufficient for purposes of this discussion. 
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Figure 2: Possible Simulation Output 

 

For any simulation interval, the steady state probability p(n) is estimated by P(n), the fraction of the 

interval for which the number of customers at server 1 is equal to n. In the case of Figure 2, the values 

of P(n) are computed as follows. 

 

To compute P(0), note that there are zero customers at server 1 for a total of 2 + 4 + 6 + 4 = 16 

seconds. Thus P(0) = 
16

/30 . 

 

Similarly, there is exactly one customer at server 1 for a total of 1 + 1 + 2 + 1 + 1 + 2 = 8 seconds. 

Thus P(1) = 
8
/30 . 

 

Likewise, there are two customers at server 1 for a total of 2 + 1 + 1 = 4 seconds, implying P(2) = 
4
/30 . 

 

Finally, there are three customers at server 1 for a total of 2 seconds, which implies P(3) = 
2
/30 . 

 

As already noted, expressions for p(n), the steady state distribution of the underlying stochastic 

process, can also be derived analytically in this simple case. Using the standard notational conventions 

of queuing theory, assume that service times at server 1 are exponentially distributed with mean 1/μ 

and that service times at server 2 are exponentially distributed with mean 1/λ. Then the values of p(n) 

can be expressed as well known functions of the ratio λ/μ. 

 

p(0)  = 1/[1 + λ/μ + (λ/μ)
2
 + (λ/μ)

3
]     (1) 

p(1)  = (λ/μ) p(0)        (2) 

p(2)  = (λ/μ)
2 
p(0)        (3) 

p(3) = (λ/μ)
3 
p(0)        (4) 

 

Note that equations (1) – (4) characterize the steady state distribution of the stochastic process 

associated with Figure 1. There is no guarantee that these equations will apply to the output of a Monte 

Carlo simulation, especially when the duration of the simulation interval is very short. 

 

In this example, the mean service time at server 1 is 2 seconds, so 1/μ = 2. Also, the mean service time 

at server 2 is 4 seconds, so 1/λ = 4. The ratio λ/μ is thus equal to ½. Replacing λ/μ by ½ in equations 

(1) – (4) yields the following steady state distribution: 

 

p(0)  = 1/[1 + (½) + (½)
2
 + (½)

3
] 

= 
8
/15 
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= 
16

/30 

p(1)  = (
1
/2 ) x 

8
/15 

= 
4
/15 

= 
8
/30 

p(2)  = (½)
2
 x 

8
/15 

= 
2
/15 

= 
4
/30 

p(3)  = (½)
3
 x 

8
/15 

= 
1
/15 

= 
2
/30 

 

As this computation demonstrates, the values of P(n) that were generated by the Monte Carlo 

simulation (Figure 2) are identical to the values of p(n) that were obtained from equations (1) – (4). 

This perfect alignment between observed and theoretical results is, of course, the goal of Monte Carlo 

simulation. However, in this case the 30 second simulation interval seems much too short to expect this 

goal to be satisfied. 

 

Is the observed alignment between the simulator’s output and the analytic solution merely the 

consequence of a highly specialized and artfully constructed trajectory, or is it the result of 

fundamental principles that can be generalized to a broad class of possible trajectories? As this paper 

will demonstrate, fundamental principles are indeed involved, and these principles extend well beyond 

the simple example presented above. 

 

3. Classical Analysis Approach 

 

To proceed with the analysis, it is helpful to return to first principles and review the classical approach 

for deriving the steady state distribution of any continuous time Markov process. 

 

The first step is to identify the states of the Markov process and the “permissible” transitions between 

these states. Essentially, a transition is “permissible” if the specification of the Markov process allows 

it to occur with a probability that is greater than zero. 

 

In the example illustrated in Figure 1, the state of the process will simply be defined as an integer that 

represents the number of customers at server 1. Thus, state can be equal to 0, 1, 2 or 3. 

 

Permissible transitions occur when a single customer completes service at one of the servers and 

proceeds to the queue at the other server. This results in a state change of plus or minus one. The four 

possible states and the six permissible transitions are illustrated in Figure 3. 
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Figure 3: State Transition Diagram for Figure 1 

 

The state of this Markov process at any time t can be represented by a random variable with 

distribution p(n,t). In other words, p(n,t) is the probability that the Markov process is in state n at time 

t. In addition to depending on t, p(n,t) also depends on the initial state of the process at time t = 0. 

 

Intuitively, it is reasonable to believe that the dependence of p(n,t) on the initial state will become 

negligible as more and more time passes. In the limit as t approaches infinity, p(n,t) will then become 

completely independent of t. Stochastic processes that conform to this intuitive notion are said to 

become stationary or reach steady state. 

 

From a mathematical perspective, when p(n,t) becomes independent of t, the derivative of p(n,t) with 

respect to t becomes equal to zero. As shown in standard texts on queuing theory, setting these 

derivatives equal to zero (for n = 0, 1, 2 and 3) yields the following equations: 

 

      λ p(0) = μ p(1)        (5) 

   [μ + λ ]p(1) = λ p(0) + μ p(2)       (6) 

   [μ + λ ]p(2) = λ p(1) + μ p(3)       (7) 

μ p(3) = λ p(2)        (8) 

 

Equations (5) – (8) are special cases of the classical Chapman-Kolmogorov equations and are 

commonly referred to as global balance equations. 

 

To obtain a unique solution to these equations, it is necessary to account for one additional constraint: 

the sum of all possible state probabilities must be equal to one. Since there are only four possible states 

(0, 1, 2 and 3), this constraint implies 

 

p(0) + p(1) + p(2) + p(3) = 1       (9) 

 

Solving equations (5) – (9) for p(n) yields the well known queuing formulae in equations (1) – (4). 

 

4. Alternative Analysis Approach 

 

The analysis outlined in the preceding section is concerned with the mathematical properties of the 

stochastic process that provided the basis for the Monte Carlo simulation. The alternative approach 

presented here deals directly with observable properties of the state space trajectory that is actually 

generated by the simulation. The goal is to derive an expression for P(n) without appealing to the 

notion of an underlying steady state stochastic process. 

0 1 2 3 
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To begin, note that the state transition diagram shown in Figure 3 can be adapted to track the status of 

the associated simulation over time. Simply add a token to the diagram and assume that the token 

moves from circle to circle via one of the arrows whenever the number of customers at server 1 

changes. The position of the token at any instant represents the current state of the system. 

 

It should be immediately apparent that, during the course of any finite simulation interval, the number 

of transitions that the token makes out of a given state will be equal to the number of transit ions it 

makes into that state. The only exceptions are the initial state, which has one extra transition out (just 

after the start of the simulation) and the final state, which has one extra transition in (just before the 

end of the simulation). If the initial and final states are identical, these two extra transitions will 

balance one another, implying that the number of transitions out is equal to the number of transitions in 

for all possible states. This condition is referred to as “flow balance”. 

 

5. Implications of Flow Balance 

 

To analyze the mathematical consequences of the flow balance assumption, let C(n) denote the number 

of times during the execution of a simulation that a customer completes service at server 1 while the 

system is in state n. Similarly, let A(n) denote the number of times that a customer completes service at 

server 2 while the system is in state n. 

 

For state 0, transitions out occur only as a result of service completions at server 2 (causing a transit ion 

from state 0 to state 1). The number of times these transitions occur is equal to A(0). Similarly, the 

only transitions into state 0 occur while the system is in state 1 and the customer being processed at 

server 1 completes its service. The number of times these transitions occur is equal to C(1). The flow 

balance condition thus implies: 

 

A(0) = C(1)       (10) 

 

For state 1, there are two possible transitions in (a completion at server 2 while in state 0 or a 

completion at server 1 while in state 2). Similarly, there are two possible transitions out (a completion 

at server 1 while in state 1 or a completion at server 2 while in state 1). For state 1, flow balance 

implies: 

 

A(1) + C(1) = A(0) + C(2)      (11) 

 

Similar considerations regarding state 2 imply: 

 

A(2) + C(2) = A(1) + C(3)      (12) 

 

State 3 is similar to state 0: 

 

C(3) = A(2)       (13) 
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The next step is to transform these four flow balance equations so they are expressed in terms of 

transition rates rather than raw counts. Suppose that T(n) is the amount of time the system spends in 

state n during the simulation interval. Then T = T(0) + T(1) + T(2) + T(3) must be equal to the total 

length of the simulation interval. Also, T(n)/T must be equal to the proportion of time (during the 

simulation interval) that the system spends in state n. As already noted, his quantity is denoted by P(n): 

 

T(n)
P(n)

T
  for n=0,1,2,3      (14) 

 

where T = T(0) + T(1) + T(2) + T(3)      (15) 

 

Equation (14) can now be combined with equations (10) – (13) to show: 

 

  A(0) C(1)
P(0) P(1)

T(0) T(1)
         (16) 

 

 
A(1) C(1) A(0) C(2)

P(1) P(0) P(2)
T(1) T(1) T(0) T(2)

 
      

 
     (17) 

 

 
A(2) C(2) A(1) C(3)

P(2) P(1) P(3)
T(2) T(2) T(1) T(3)

 
      

 
      (18) 

C(3) A(2)
P(3) P(2)

T(3) T(2)
         (19) 

Note that the constraints on P(0), P(1), P(2) and P(3) that are expressed by equations (16) – (19) are 

valid for any trajectory generated by any simulation that conforms to the state transition diagram 

illustrated in Figure 3. The only requirement is that the trajectory must satisfy flow balance: that is, the 

initial and final states must be the same. No distributional assumptions of any type are required, and 

the concept of steady state (in the stochastic sense) does not arise. 

 

6. Homogeneity Assumptions 

 

The next step is to simplify equations (16) – (19) by introducing additional assumptions regarding the 

values of A(n)/T(n) and C(n)/T(n). Note that C(n) is equal to the number of requests completed by 

server 1 while the system is in state n. In addition, T(n) is the amount of time the system spends in 

state n. Thus, C(n)/T(n) is the rate at which requests are completed by server 1 while the system is in 

state n. 

 

Since no requests can be completed by server 1 while the system is in state 0, C(0) must equal zero. 

Assuming T(0)  0, this implies that C(0)/T(0) = 0. 
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Now consider C(n)/T(n) for n=1,2,3. If the rate at which server 1 completes requests is independent of 

the number of customers at that server, it would seem reasonable to assume that all three values of 

C(n)/T(n) are equal to each other: 

C(1) C(2) C(3)

T(1) T(2) T(3)
        (20) 

 

Equation (20) is referred to as the assumption of homogeneous service rates at server 1. Note that this 

assumption concerns only the observable properties of the trajectory in Figure 2. It can be verified 

directly without assuming that the trajectory has been generated by a Monte Carlo simulation. 

However, as discussed in the Appendix, homogeneity is a reasonable assumption to make when 

analyzing the output of a Monte Carlo simulation of an M/M/1/3 queue. 

 

Equation (20) can be rearranged to show: 

 

C(n) C(1)+ C(2)+ C(3)
=

T(n) T(1)+ T(2)+ T(3)
 for n=1,2,3     (21) 

 

Note that C(1)+C(2)+C(3) is equal to the total number of requests completed by server 1. Also, 

T(1)+T(2)+T(3) is the total amount of time that server 1 is actively processing requests. Thus, the 

expression on the right side of equation (21) is simply the request completion rate calculated over all 

time for which server 1 is active. Homogeneity is thus equivalent to assuming that the conditional 

completion rates on the left side of equation (21) are all equal to the unconditional completion rate on 

the right. 

 

In the underlying M/M/1/3 stochastic process, the parameter  represents the unconditional completion 

rate at server 1. Note that  cannot be observed directly, but its estimate   can be obtained by running 

a Monte Carlo simulation and computing the expression on the right side of equation (21). In other 

words, 

 

C(1)+ C(2)+ C(3)
=

T(1)+ T(2)+ T(3)
        (22) 

 

Equations (21) and (22) then imply that the assumption of homogeneous service rates at server 1 is 

equivalent to assuming: 

 

C(n)
=

T(n)
  for n=1,2,3       (23) 

 

Similar assumptions will now be introduced regarding the values of A(n)/T(n) associated with server 2. 

Since n is the number of customers at server 1, and since there are a total of 3 customers in the network 

in Figure 1, there are 3-n customers at server 2 when the system is state n. Thus, A(3)/T(3)=0. 
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In this case, the assumption of homogeneous service rates at server 2 implies: 

 

A(0) A(1) A(2)

T(0) T(1) T(2)
         (24) 

 

 

Equation (24) implies: 

 

A(n) A(0) + A(1)+ A(2)
=

T(n) T(0)+ T(1)+ T(2)
 for n=0,1,2      (25) 

The right side of equation (25) is the unconditional completion rate at server 2, computed over all time 

for which server 2 is active. In terms of the underlying stochastic process, this measurable quantity is 

an estimate of the parameter  in the underlying stochastic process. The symbol   will be used to 

represent this estimate: 

 

A(0) + A(1)+ A(2)
=

T(0)+ T(1)+ T(2)
        (26) 

 

Equations (25) and (26) then imply that the assumption of homogeneous service rates at server 2 is 

equivalent to assuming: 

 

A(n)
=

T(n)
  for n=0,1,2        (27) 

 

 

Equations (16) - (19) can now be simplified by combining them with the homogeneity assumptions in 

equations (23) and (27). Simple substitution yields equations (28) – (31) below: 

 

  P(0) =   P(1)        (28) 

    [+  ]P(1) =  P(0)+  P(2)       (29) 

           [+ ]P(2) = P(3) +  P(3)       (30) 

  P(3) =   P(2)        (31) 

 

 

Note also that equations (14) and (15) imply that 

 

    P(0) + P(1) + P(2) + P(3) = 1      (32) 

 

which is the analog of equation (9). 

 

Solving equations (5) – (9) for p(n) will always yield equations (1) – (4). Similarly, it follows 

immediately that solving equations (28) – (32) for P(n) will always yield equations (33) – (36). 
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P(0)  =1/[1+ /+( / )
2
+( / )

3
]      (33) 

P(1)  =( / )P(0)        (34) 

P(2)  =( / )
2
P(0)        (35) 

P(3) =( / )
3
P(0)        (36) 

Clearly, equations (33) – (36) have exactly the same form as equations (1) – (4) except that the abstract 

stochastic quantities p(n),  and  have all been replaced by their observable counterparts P(n),   and 

  respectively. 

 

To summarize the main point, equations (1) – (4) and (33) – (36) have just been derived under two 

very different sets of assumptions. First, it was shown that equations (1) – (4) are satisfied by the 

steady state distribution of the Markov process associated with Figure 1. Then, it was shown that 

equations (33) – (36) are satisfied by the output of any Monte Carlo simulation that is based on Figure 

1, provided the output satisfies the directly observable conditions of flow balance and homogeneous 

completion rates at servers 1 and 2. 

 

7. Application to Simulation Output 

 

This conclusion leads to a simple test for simulation accuracy: if the output trajectory generated by a 

simulation of the system shown in Figure 1 satisfies the assumptions of flow balance and 

homogeneous service rates at servers 1 and 2, the values of P(n) generated by the simulation are 

guaranteed to be accurate. In other words, the values of P(n) generated by the simulation are 

guaranteed to equal the corresponding values of p(n) obtained by evaluating equations (1) – (4) with  

set equal to  and  set equal to  . 

 

The flow balance assumption is clearly satisfied by the trajectory shown in Figure 2 (and replicated at 

the top of Figure 4) since the initial and final states are both equal to zero. 

 

Next consider the homogeneity assumption for server 1. Note that the values of T(0), T(1), T(2) and 

T(3) are 16, 8, 4 and 2 respectively. Also, the values of C(1), C(2), and C(3) are 4, 2 and 1 

respectively. 

 

Thus, the service completion rates for server 1 are: 

 

C(1)/T(1) = 4/8 = 0.5 

C(2)/T(2) = 2/4 = 0.5 

C(3)/T(3) = 1/2 = 0.5 

 

Since C(n)/T(n) has the same value for n=1, 2 and 3, homogeneity is satisfied at server 1. 

 

To analyze server 2, note that the values of A(0), A(1) and A(2) are equal to 4, 2 and 1 respectively. 

Thus, the service completion rates for server 2 are: 
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A(0)/T(0) = 4/16 = 0.25 

A(1)/T(1) = 2/8 = 0.25 

A(2)/T(2) = 1/4 = 0.25 

 

Since A(n)/T(n) has the same value for n=0, 1 and 2, homogeneity is also satisfied at server 2. 

Since the trajectory shown in Figure 2 (and the top of Figure 4) satisfies the required tests, the 

associated values of P(n) are guaranteed to be accurate. This explains the surprising result discovered 

in Section 2. 
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Figure 4: Two Possible Trajectories 

 

Of course, it is entirely possible for a Monte Carlo simulation to generate a trajectory that does not 

satisfy all the required tests. The lower trajectory in Figure 4 provides such an example. The two points 

of difference between the upper and lower trajectories are marked with vertical arrows 

 

The lower trajectory clearly satisfies the assumption of flow balance; however, servers 1 and 2 fail to 

satisfy homogeneity as the following calculations show: 

 

For server 1:      C(1)/T(1) = 4/7 

C(2)/T(2) = 2/5 

C(3)/T(3) = 1/2 

 

For server 2:      A(0)/T(0) = 4/16 

A(1)/T(1) = 2/7 

A(2)/T(2) = 1/5 

 

This failure to satisfy homogeneity should have an adverse impact on the accuracy of the simulation. 

To verify this, note that the values of P(n) generated by the simulation are: 

 

P(0) = 16/30 

P(1) = 7/30 
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P(2) = 5/30 

P(3) = 2/30 

 

The “correct” values of P(n) are obtained by determining the values of   and   from the output 

trajectory and then applying equations (33) – (36). 

 

  = (4+2+1)/(7+5+2) = 0.5 

 

  = (4+2+1)/(16+7+5) = 0.25 

For the lower trajectory,  / is again equal to ½. Substituting this value into equations (33) – (36) 

yields the same “analytically correct” distribution seen earlier. 

 

P(0) = 16/30 

P(1) = 8/30 

P(2) = 4/30 

P(3) = 2/30 

 

Note that the simulation has correctly determined the values of P(0) and P(3), but has generated 

incorrect values for P(1) and P(2). 

 

8. Generalizations and Extensions 

 

The discussion has concentrated thus far on the simple model shown in Figure 1 and its associated 

M/M/1/3 Markov process in Figure 3. It is a routine matter to apply exactly the same reasoning to any 

system being modeled by a continuous time Markov process. Simply draw the state transition diagram 

and identify the sets of conditional service rates that have to satisfy homogeneity conditions. 

 

Once the homogeneity conditions are identified, simply run a simulation and examine the generated 

trajectory. If all homogeneity conditions are satisfied (which implicitly requires every state in the state 

transition diagram to be visited at least once), and if flow balance is also satisfied, it can be concluded 

with absolute certainty that the simulation has generated an accurate characterization of the steady state 

distribution of the underlying stochastic process. 

 

Of course, the parameters of the underlying stochastic process must be set equal to values actually 

observed in the output trajectory generated by the simulation (rather than using the parameter values 

specified as input to the simulation program). Assuming that the simulation has run for a reasonably 

long interval of time, these two sets of values should be nearly identical. 

 

Note that this entire process can be carried out in cases where the closed form analytic expression for 

the steady state distribution is unknown. 
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9. Synthetic Alignment Intervals 

 

As this discussion has illustrated, analysts who use Monte Carlo simulations to evaluate steady state 

distributions should, under ideal circumstances, expect these simulations to generate trajectories that 

satisfy flow balance and various forms of homogeneity. In cases where these conditions are not 

satisfied, the accuracy of the simulation can generally be improved by extending the trajectory so that 

the conditions can be met. 

There are two ways to extend the trajectory. The first is to allow the simulation program to run for an 

additional interval of time. As discussed in the Appendix, the required homogeneity assumptions will 

almost always be satisfied in the limit. Also, flow balance can be satisfied in principle by continuing to 

run the simulation until the initial state reappears once again. However, the time required to achieve 

these conditions may be unacceptably long. 

 

As an alternative, consider the possibility of appending specially constructed “alignment intervals” to 

the end of the original simulations. The objective of these alignment intervals is to bring the extended 

trajectory into compliance with the required assumptions. Since synthetic alignment intervals are not 

generated by calling upon the random number generator that drives the simulation program, they 

constitute artificially tailored appendages to the original simulation. This implies that the extended 

trajectories are no longer “purely stochastic”, which raises legitimate concerns regarding the validity of 

this entire approach 

 

To address these concerns, note first that the information represented within a steady state distribution 

is only a subset of the totality of information that can be obtained by analyzing the associated 

stationary stochastic process. For example, in the case of a single server queue, the steady state 

distribution contains detailed information about queue length, but contains no information at all about 

the lengths of busy periods. In fact, two stationary stochastic processes with different internal 

structures (and different busy period distributions) can have exactly the same steady state distribution 

[BUZE2006a]. 

 

For purposes of this discussion, properties of a stochastic process that depend only on its steady state 

distribution will be referred to as distributional properties. Conversely, properties of a stochastic 

process that are not uniquely determined by the steady state distribution will be referred to as trans-

distributional properties. 

 

This distinction is critically important because appending a non-random alignment interval to the 

output of a Monte Carlo simulation is almost certain to alter certain trans-distributional properties of 

the extended trajectory. Homogeneity and flow balance are not sufficient to ensure that all trans-

distributional properties of the underlying stochastic process are preserved. Even though the extended 

trajectory is no longer “random”, and even though it no longer exhibits the totality of trans-

distributional properties associated with the underlying stochastic process, the arguments presented in 

Sections 3 – 6 are still valid: they are sufficient to demonstrate that the extended trajectory provides an 

entirely accurate characterization of the underlying steady state distribution. This conclusion provides 

8 Buzen J.: Improving Simulation Accuracy through the Use of Synthetic Alignment Intervals 63



 

the philosophical justification for appending a non-random alignment interval to the output of a Monte 

Carlo simulation. 

 

In many cases, it is reasonable to assume that the original Monte Carlo simulation has generated a 

steady state distribution that is quite close to the exact solution. The approach outlined here can be 

used to inspect the output of the simulation and identify the most serious violations of homogeneity. 

Synthetic alignment intervals that correct only these most serious violations can then be appended to 

the original trajectory, resulting in an incremental improvement in accuracy. 

 

Such a step-wise approach to improving simulation accuracy may ultimately prove to be the most 

effective procedure for applying these results in practice. It is important to note in this regard that 

simulation results can be surprisingly accurate even though the required homogeneity assumptions are 

not satisfied exactly [SURI1983]. 

 

A specific example of an alignment interval that correctly adjusts the lower trajectory in Figure 4 is 

presented in the next section. General algorithms for the construction of synthetic alignment intervals 

are currently under development. 

 

10. Example – Alignment Interval 

 

Figure 5 displays two trajectories, both having durations of 30 seconds. The upper trajectory in Figure 

5 is identical to the lower trajectory in Figure 4. 

 

Assume that the upper trajectory in Figure 5 has been generated by a Monte Carlo simulation of the 

stochastic process illustrated in Figure 1. As previously discussed, the service rates at servers 1 and 2 

are not homogeneous for this trajectory. In particular, 

 

For server 1:      C(1)/T(1) = 4/7 

C(2)/T(2) = 2/5 

C(3)/T(3) = 1/2 

 

 

For server 2:      A(0)/T(0) = 4/16 

A(1)/T(1) = 2/7 

A(2)/T(2) = 1/5 

 

As already noted, the values of P(n) for this trajectory differ from the correct values obtained by setting 

 / = ½. in equations (33) – (36). In other words, the simulation results shown in the upper trajectory 

in Figure 5 do not accurately characterize the steady state distribution of the underlying stochastic 

process. 
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The lower trajectory in Figure 5 displays an alignment interval that can be used to correct this problem. 

If the lower trajectory is appended to the upper trajectory, the resulting 60 second trajectory will 

exhibit homogeneous completion rates for server 1 and server 2. 
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Figure 5: Simulated Trajectory & Alignment Interval 

 

 

The following calculations, which are based on the complete 60 second trajectory, verify that 

completion rates for servers 1 and 2 are now homogeneous. 

 

T(0) = 2 + 4 + 7 + 3 + 2 + 5 + 5 + 4 

 

        = 32 

 

T(1) = 1 + 1 + 1 + 1 + 1 + 2 + 1 + 1 + 3 + 1 + 1 + 2 

 

        = 16 

 

T(2) = 2 + 1 + 2 + 1 + 1 + 1 

 

        = 8 

 

   T(3) = 2 + 2 

 

          = 4 

 

C(1) = 8 

 

C(2) = 4 

 

C(3) = 2 
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A(0) = 8 

 

A(1) = 4 

 

A(2) = 2 

 

As shown below, server 1 satisfies homogeneity: 

 

C(1)/T(1) = 8/16 = 0.5 

 

C(2)/T(2) = 4/8 = 0.5 

 

C(3)/T(3) = 2/4 = 0.5 

 

As shown below, server 2 also satisfies homogeneity: 

 

A(0)/T(0) = 8/32 = 0.25 

 

A(1)/T(1) = 4/16 = 0.25 

 

A(2)/T(2) = 2/8 = 0.25 

 

Since flow balance is satisfied and completion rates at both server 1 and server 2 are homogeneous, the 

values of P(n) must accurately characterize the steady state distribution of the underlying stochastic 

process. 

 

To verify this claim, note that the parameters of the underlying stochastic process are estimated as 

follows for the 60 second trajectory: 

 

  = (8 + 4 + 2)/(16 + 8 + 4) = 0.5 

 

  = (8 + 4 + 2)/(32 + 16 + 8) = 0.25 

 

Once again,  / = ½. Substituting this value into equations (33) – (36) yields the same distribution 

seen earlier. 

 

P(0) = 8/15 

 

P(1) = 4/15 

 

P(2) = 2/15 

 

P(3) = 1/15 
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As shown below, the values of P(n) obtained from the 60 second trajectory are identical to the 

“analytically correct” distribution that appears above. 

 

P(0) = T(0)/T = 32/60 = 8/15 

 

P(1) = T(1)/T = 16/60 = 4/15 

 

P(2) = T(2)/T = 8/60 = 2/15 

 

P(3) = T(3)/T = 4/60 = 1/15 

 

 

In this example, the alignment interval and the original trajectory have exactly the same length. This is 

not a general requirement: shorter alignment intervals can in fact be constructed. 

 

11. Conclusions 

 

By testing the output of a Monte Carlo simulation to see if certain mathematical relationships are 

satisfied, it is possible to determine if the simulation has generated an accurate result (i.e., if the 

simulation has provided an accurate characterization of the steady state distribution of the underlying 

stochastic process). 

 

If the output fails to pass the appropriate tests, the accuracy of the simulation can be improved by 

appending a synthetic (non-random) alignment interval to create an extended simulation interval that 

does in fact possess the desired characteristics. An example illustrating this procedure has been 

provided. 

 

The development of algorithms for the construction of synthetic alignment intervals is – at present – an 

open research problem. If general algorithms can be developed, simulation times can be shortened and 

confidence in the accuracy of simulation results can be enhanced. 

 

The approach presented here can be extended directly to any Monte Carlo simulation of a continuous 

time Markov process. 

 

12. Bibliographic Notes 

 

The material presented in this paper represents a new application of Operational Analysis. Introduced 

thirty years ago [BUZE1976a], operational analysis is concerned with the development of equations 

that characterize the observable behavior of systems as they operate over time. No assumptions are 

made regarding the existence of an underlying stochastic process. Instead, all assumptions are 

formulated in terms of relationships among quantities that can be observed and measured under normal 

operating conditions. 
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The concept of homogeneity as used in this paper – along with the derivations of P(n) that are based on 

homogeneity and flow balance – closely parallel material that was originally presented in 

[BUZE1976b]. These derivations were subsequently extended to a broad class of queuing network 

models [DENN1978]. Suri’s analysis of the robustness of queuing network formulae was based upon 

operational analysis and the concept of homogeneity, but his work did not consider implications for 

Monte Carlo simulation [SURI1983]. 

 

The application of operational analysis to the output of Monte Carlo simulations is a recent 

development that has been characterized as Operational Analysis 2.0 [BUZE2006b]. Since Monte 

Carlo simulations can be regarded as explicit realizations of underlying stochastic processes, new 

issues that were not considered in the original formulation of operational analysis become relevant. 

These include the rationale for utilizing synthetic alignment intervals and the relationship between 

stochastic and operational assumptions (see Appendix). 

 

A preliminary version of this paper was presented in June 2007 at the 21
st
 European Conference on 

Modeling and Simulation (ECMS) held in Prague, CZ. 
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Appendix 

 

The assumptions of flow balance and homogeneous service times may seem somewhat arbitrary, but 

they are actually quite reasonable when dealing with the output of a Monte Carlo simulation that is 

based on an M/M/1/3 stochastic process. This Appendix outlines the basic arguments that support this 

claim. 

 

In the case of the flow balance, the sole reason for assuming that the initial and final states of the 

trajectory are identical is justify the claim that the number of transitions into each state must be equal 

to the number of transitions out. 

 

As previously noted in Section 4, failure to satisfy flow balance implies that there will be one extra 

transition out of the initial state and one extra transition into the final state. For example, suppose that 

state 1 is the initial state, and state 3 is the final state. As a result of this failure to satisfy flow balance, 

equations (10) – (13) become: 

 

A(0) = C(1) 

 

A(1) + C(1) = A(0) + C(2) + 1 

 

A(2) + C(2) = A(1) + C(3) 

 

C(3) = A(2) - 1 

 

Equations (16) - (19) then become 

 

 
A(0) C(1)

P(0) P(1)
T(0) T(1)

    

 

 
A(1) C(1) A(0) C(2) 1

P(1) P(0) P(2)
T(1) T(1) T(0) T(2) T

 
       

 
 

 
A(2) C(2) A(1) C(3)

P(2) P(1) P(3)
T(2) T(2) T(1) T(3)

 
      

 
 

 
C(3) A(2) 1

P(3) P(2)
T(3) T(2) T

     

 

As T increases, the value of 1/T clearly decreases. In the limit as the length of the simulation interval 

approaches infinity, the term 1/T becomes negligible and can be ignored. [Note that certain values of 

A(n)/T(n) in the global balance equations must remain strictly greater than zero as T approaches 

infinity for this conclusion to be valid.] 
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Thus, the assumption of flow balance produces a solution for P(n) that – except under special 

circumstances – is exactly correct in the limit as T approaches infinity and approximately correct in 

most cases where T is large. 

 

Now consider the homogeneity assumptions for servers 1 and 2. These assumptions regarding the 

output of the simulation are a direct consequence of the assumption that service times are exponentially 

distributed in the underlying stochastic process. 

 

To demonstrate the connection, assume that the underlying M/M/1/3 stochastic process is in steady 

state and consider its behavior during a sample path of length T. [A sample path is simply an idealized 

mathematical counterpart of the output of a perfect Monte Carlo simulation.] 

 

As usual, let p(0) be the steady state probability that there are no customers at server 1. Then 

 

p(0)  T = the expected amount of time that server 1 is idle. 

 

     [1-p(0)]  T = the expected amount of time that server 1 is busy. 

 

Since 1/is the mean service time at server 1, the expected number of requests completed during the 

time server 1 is busy is 

 

 
 

1 p(0) T
1 p(0) T

1/

 
    


 

 

To compute the expected rate at which requests are completed by server 1, this number must be 

divided by [1-p(0)]  T , which is the expected amount of time that server 1 is busy. Thus the expected 

service rate is simply equal to 

 

This analysis is entirely straightforward and does not require service times at server 1 to be 

exponentially distributed. However, this analysis does depend upon one highly significant implicit 

assumption that needs to be examined before proceeding further. 

 

As already noted, [1-p(0)]  T is the expected amount of time server 1 is busy during the sample path of 

length T. Note that this total busy time is divided into a number of distinct busy periods, each 

beginning when the server is idle and a new customer arrives (a transition from state 0 to state 1), and 

each concluding when a customer completes service and leaves no one behind (a transition from state 1 

to state 0). Each customer served during a busy period contributes exactly one full service time to the 

total duration of the busy period. Thus the total duration of the busy period can be regarded as the sum 

of an integral number of samples from the probability distribution that characterizes the service time. 

 

To determine if homogeneity is satisfied at server 1, it is necessary to evaluate the conditional service 

rates at server 1, computed over those times when the stochastic process is in state n (for n=1,2,3). This 

analysis is similar to the unconditional case that has just been presented: first determine the expected 

8 Buzen J.: Improving Simulation Accuracy through the Use of Synthetic Alignment Intervals 70



 

time spent in state n; then divide this time into the expected number of completions that occur while in 

state n. 

 

It should be immediately apparent that the expected time spent in state n is equal to p(n)  T. However, 

computing the expected number of completions while in state n requires a more subtle analysis. Unlike 

the previous case, the total time in state n cannot be regarded simply as the sum of a number of busy 

periods, where each busy period’s length is the sum of an integral number of complete service 

requests. Instead, customers can be interrupted by new arrivals midway through their service, causing a 

change of state. Thus, the total service time for a single request can be split among two or more states. 

As a result, the expected number of requests completed while in state n cannot always be written as: 

 

p(n) T
p(n) T

1/


   


 

 

However, if service times are exponentially distributed at server 1, the memoryless property of the 

exponential distribution implies that service completions while in state n can be characterized as a 

Poisson process with rate . This process operates whenever the system is in state n, even if this time is 

partitioned into sub-intervals with beginning and end points that may not correspond to the actual 

beginnings and ends of individual service requests. 

 

As a result of these considerations, the assumption of exponential service times at server 1 implies that 

the expected number of completions while in state n is in fact equal to  p(n)  T. The conditional 

completion rate at server 1 while the underlying stochastic process is in state n is therefore equal to: 

 

p(n) T

p(n) T

  
 


 

 

Since this expression is independent of n, the expected conditional completion rates at server 1 are 

independent of n for n=1, 2 and 3. This is, of course, the stochastic counterpart of the assumption of 

homogeneous service rates. 

 

A similar argument shows that the conditional completion rates at server 2 are independent of n for 

n=0, 1 and 2 if service times at server 2 are exponentially distributed. 

 

These arguments demonstrate that homogeneity is not an arbitrary algebraic convenience, created 

merely to simplify the analysis. On the contrary, homogeneity assumptions can be expected to hold in 

any Monte Carlo simulation of a continuous time Markov process where service times are 

exponentially distributed and where the simulation is allowed to run for a sufficiently long period of 

time. In the limit as T approaches infinity, homogeneity assumptions can be expected to hold with 

probability one. 
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T execution time of job ∼ F
U failure time ∼ G
D task duration∼ H

RESUME checkpoints
REPLACE start new job at failure
REPLACE start same job

UN

U3

U2

U1

T

D = T + U1 + · · · + UN−1

Target: tail H(x) = P (D > x) of D

Theorem 1 T bounded ⇒ H(x) ≈ e−γx

Theorem 2 T unbd ⇒ H heavy-tailed
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LIGHT TAILS

1) exponential F (x) = e−βt

2) Gamma-like F (x) ≈ ctα−1e−βt

3) Rayleigh F (x) = e−βt2

4) LT Weibull F (x) = e−βtγ ,
γ ≥ 1

General:
∫ ∞
0 eǫtf(t)dt < ∞,

some ǫ > 0

Failure rate
f(t)

F (t)
→ ∞ or c > 0
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HEAVY TAILS

General:
∫ ∞
0 eǫtf(t)dt = ∞,

all ǫ > 0

Failure rate
f(t)

F (t)
→ 0

1) power tails F (x) =
c

tα

2) lognormal F (x) ≈ ce−α log2 t

3) HT Weibull F (x) = e−βtγ ,
γ < 1

0) F (x) ≈ c

logα t

2δ) F (x) ≈ e−α logδ t

δ = 1: power tails
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COMPARISON RESULTS

F = G ⇒ H(x) ≈ 1
x

F = G ⇒ ED = ∞
F << G ⇒ ED < ∞
F >> G ⇒ ED = ∞
F << G2 ⇒ Var D < ∞
F >> G2 ⇒ Var D = ∞
F 1 << F 2 ⇒ HF1,G << HF2,G

G1 << G2 ⇒ HF,G1
>> HF,G2
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TAIL OF H

4 examples of each of F, G:
LT Weibull
exponential
HT Weibull
power

.

. F (t) e−t2 e−t e−t1/2 1
tα

G(u)

e−u2 1
x

e− log1/2 x e− log1/4 x 1

logα/2 x

e−u e− log2 x 1
x

e− log1/2 x 1
logα x

e−u1/2
e− log4 x e− log2 x 1

x
1

log2α x

1
tα

e−x
2

2+α
e−x

1
1+α

e−x
1/2

1/2+α 1
x

Precise meaning: logarithmic asymptotics

Constants omitted e−c log1/2 x
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EXACT ASYMPTOTICS

γ(t) solution of 1 =
∫ t
0 eγ(t)ug(u)du

(geometric sums, renewal equation)

T ≡ t0 ⇒ H(x) ≈ C(t0)e
−γ(t0)x

Bounded support:
f(t) ∼ A(t0 − t)α, t ↑ t0

H(x) ∼ C1(t0)
e−γ(t0)x

xα

C1(t0) involves
γ(t0), C(t0), Γ(α + 1), g(t0)

α+1
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F Gamma-like: F (x) ∼ Atηe−δt

g(t) = βe−βt

H(x) ∼ AΓ(δ/β)

βδ/β−1−η

logη x

xδ/β
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Ambiguities in clustering 
Subsequence Time Series

To  Emeritus  Professor  Lester  Lipsky,
our  teacher,  mentor,  and  friend

George Nagy

The problem

t

t


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Conclusion

• Although many publications purport to show 

the contrary,

we cannot expect the location of the 

K-means centroids of shifted & overlapped 

subsequence vectors to discriminate such 

sequences.

K-means Clustering Algorithm
(a.k.a. McQueens Algorithm (1967) or

Vector Quantization),

Feature x

Feature y
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Initial seeds selected randomly from vectors

Legend

Vectors

Initial seeds

Initial Voronoi partition

of space into proximity regions of seeds
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Partition based on initial cluster centers

(Step 1)

New centroids based on current partition

(Step 2)
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Next partition based on current centroids

(Step 1)

Legend

vector

cluster center

old Voronoi

new Voronoi

New centroids based on current partition

(Step 2)
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Convergence!

• Further iterations will result in no change. 

• A local minimum of the distances of the vectors to their cluster 

centers has  been reached.

NB The K-means optimization criterion is often called 

mean-squared error (MSE).

Properties of K-means

• K-means eventually reaches a local minimum, 
because both steps decrease the MSE.

• Clusters may be dropped (“falling between two stools”).

• New clusters are never generated.

• The number of clusters is set by the number of initial seeds. 
If a cluster is dropped, new seeds may be chosen.

• More runs with fresh random seeds may decrease the MSE.

• Many variations of the algorithm proposed in the last 30 years.

• MATLAB has an efficient implementation, with options for choice of initial 
seeds, distance measures, max iterations, max replication.

• Equivalent cluster configuration with different cluster numbering 
can be remapped into one another.

• There may be multiple cluster configurations 
with the same global minimum that cannot be remapped
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Example: A set of points in 2-D.

How would we group them into 3 clusters?

x x

x x x      x

x x

x x

x   x x x

x x

An optimal cluster configuration with K=3.

The cluster centroids form a triangle.

x x

x x x      x

x x

x x

x   x x x

x x
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An equivalent cluster configuration with K=3. The centroids cannot be 

remapped by renumbering  them, but the triangles are similar.

x x

x x x      x

x x

x x

x   x x x

x x

• The K-means optimization criterion MSE, 

minimizing the intra-cluster radii, is equivalent to 

maximizing the average intra-cluster distances or 

similarities (dot products):

Pairwise distances

1 ( ) ( )

1 '
( )

K
KSE

i j
k i I k j I kn k



  
   x x

(Cosine and Euclidian distance are equivalent for same-length vectors)

10 Nagy G.: Ambiguities in clustering Subsequence Time Series (Slides) 88



Equivalent cluster configurations

• In the 2-D, K=3 examples, we saw an instance of a 

set of vectors that produce two equivalent, non-

remappable cluster configurations.

• We will now show that this phenomenon inevitably 

occurs in clustering periodic time sequences.  

STS Clustering

S = 2, 3, 8, 4, 7, 4, 3, 9, 4, 7, 7, 3, 8, 5, 7 

Pattern vectors with w=5:

2, 3, 8, 4, 7
3, 8, 4, 7, 4
8, 4, 7, 4, 3 
4, 7, 4, 3, 9
7, 4, 3, 9, 4 
4, 3, 9, 4, 7
3, 9, 4, 7, 7
9, 4, 7, 7, 3
4, 7, 7, 3, 8
7, 7, 3, 8, 5 
7, 3, 8, 5, 7
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Repetitive subsequences

• s={2, 3, 8, 4, 7} 

• S={2, 3, 8, 4, 7, 2, 3, 8, 4, 7, 2, 3, 8, 4, 7, …}
__________________________________________

____________________________________________

__________________________________________
__________________________________________

• Circulant matrix:

2 3 8 4 7
3 8 4 7 2
8 4 7 2 3
4 7 2 3 8
7 2 3 8 4

M

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



All  5 vectors have the same length.

Maximum number of distinct distance values

• S={2, 3, 8, 4, 7, 2, 3, 8, 4, 7, 2, 3, 8, 4, 7, …}

•  w     →

• Max number of different distances between subsequences

= w/2 for w even,

= (w-1)/2 for w odd.

( This is much less than the expected w(w-1)/2=10 )

• Here (w=5) we have only dot product values of 104 and 113

between the 10 pairs of vectors.

• In feature space, the vectors form isosceles simplexes! These give 

rise to equivalent cluster configurations.
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Aperiodic sequences (w=8)

• #    1 2 3 4 5 6 7 8 9 10 11 12 13 …

• S: {2  3  8  4  7  1  6  5  9  4  1  3  8 …}

• (1) 2 3 8 4 7 1 6  5

• (3) 8  4  7  1  6  5  9  4

• (2) 3  8  4  7  1  6  5 9

• (4) 4  7  1  6  5  9  4 1

• many almost identical pairwise distance values, giving rise to cluster 
configurations with almost the same MSE 

Conclusion

• The K-means MSE criterion can be expressed 
in terms of pairwise distances.

• Multiple occurrences of the same distance value give rise 
to equivalent configurations of cluster centroids. 

• Such equivalent cluster configurations have different memberships and different 
centroids, hence they are not mappable by renumbering.

• Therefore different random initializations are likely to result in different cluster 
configurations with the same MSE.

• Pairs of shifted subsequences of a periodic sequence 
share the same component values.

• The distance between such subsequences
is restricted to only a few (~w/2) distinct values.

• So STS cluster centroids cannot be mapped 1:1 to periodic sequences.

• An approximate version of this phenomenon occurs in  
subsequence clustering of all “smooth” sequences. 
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A very simple example of equivalent cluster configurations

10 Nagy G.: Ambiguities in clustering Subsequence Time Series (Slides) 92



PERFORMANCE-RELEVANT NETWORK TRAFFIC CORRELATION

Hans-Peter Schwefel
Center for Teleinfrastruktur

Aalborg University
email: hps@kom.aau.dk

Imad Antonios
Dept. of Computer Science

Southern Connecticut State Univ.
email: antoniosi1@southernct.edu

Lester Lipsky
Dept. of Comp. Sci. & Eng.
University of Connecticut

email: lester@engr.uconn.edu

ABSTRACT

Correlation structure is an important metric to con-
sider when modeling the performance of network
traffic. Particularly, the presence of long-range de-
pendence (LRD) in the input process may, under
some circumstances, lead to poor queueing perfor-
mance. In this paper, we first aim to characterize
the conditions under which the presence of LRD
is performance relevant. We define variations of
an ON/OFF-type process that employ a truncated
power-tail (TPT) distribution, and analyze their
correlation structure in relation to queueing perfor-
mance. Our analytic results show that the corre-
lation structure in some cases is very sensitive to
the presence of a background Poisson process, and
that while other model variations exhibit LRD, it
is only those with TPT-distributed ON times that
queueing performance is poor. These results lead us
to propose a procedure for extracting performance-
relevant correlation properties, whose effectiveness
we demonstrate via simulation experiments using
synthetic and measured traffic.

Keywords: ON/OFF models, long-range depen-
dence, queueing models, autocorrelation.

INTRODUCTION AND MOTIVATION

Innumerable studies of Internet traffic have shown
that it exhibits self-similarity and long-range de-
pendent (LRD) properties (see [Leland et al. 1994]),
meaning that it is highly varying, and bursty over
a wide range of time scales. This poses challenges
in understanding the factors underlying it, and thus
makes it difficult to develop models to predict net-
work performance. Within the large body of re-
search on the subject, a bulk of the work has con-
centrated on constructing statistical models that re-
produce the correlation structure of the measured
traffic [Melamed 1991, Norros 1995], and studying
the effects of generated traffic on queueing perfor-

mance behavior via simulation. The main conclu-
sion was that the presence of LRD in traffic carries
important implications for network performance.
Another body of research was concerned with un-
covering the physical factors that underlie self-
similarity and LRD [Crovella and Bestavros 1996,
Veres and Boda 2001]. The factors identified in-
clude file-size distribution, file transmission time
distribution, user think times, and TCP conges-
tion control mechanism, which were used to con-
struct analytic performance models with matching
statistical properties of measured traffic. One of
the important long-range dependent traffic models
is the aggregation of ON/OFF sources with heavy-
tailed ON periods [Crovella and Bestavros 1996,
Willinger et al. 1995].

Since LRD properties have been recognized not
to be sufficient predictors of queueing performance,
it is important to characterize the conditions under
which their presence has a significant bearing on net-
work performance, which is the goal of this paper.
The starting point of our inquiry is the definition of a
rich analytic traffic model of ON/OFF-type sources
with four variations whose correlation structure we
examine. In particular, we consider the autocorre-
lation structure of packet inter-arrival times as well
as the counting process associated with the model
variations. To account for settings where non-LRD
traffic is aggregated with LRD traffic, the model
variations allow for a background Poisson process.

Summary of results: Our results of the coeffi-
cient of autocorrelation for the inter-packet times
show that not all models exhibit LRD properties,
whereas for the counting process LRD properties
are present in all model variations with TPTs. Our
calculations also indicate that the correlation struc-
ture is highly sensitive to the superposition of a
background Poisson process only for inter-packet
times, but not for the counting process. Our an-
alytic results for the queueing behavior reveal that
some models with LRD in their inter-packet times
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or counting process do not show significant delays –
it is only the models in which TPTs are used for the
ON periods that poor queueing behavior, as mea-
sured by average queue lengths, can be observed for
utilizations well below 1. Power tails in the OFF
periods only become performance relevant when the
utilization is close to saturation. The mere existence
of LRD is hence not a performance-relevant aspect.
This conclusion motivated the investigation of an
alternative correlation metric that is based on a fil-
tered counting process. An exploration of the pro-
posed measure using both synthetically generated
and measured traffic reveals its effectiveness in de-
stroying the correlation structure for traces whose
associated queueing performance is not poor, thus
making it a more reliable predictor of performance
than the presence of LRD properties.

A SIMPLE ANALYTIC ON/OFF MODEL

ON/OFF models have been widely used for
modeling of bursty traffic for the last 20
years [Heffes 1980]. After the identification
of long-range dependent phenomena in network
traffic [Leland et al. 1994], such models have
been extended to include heavy-tail distribu-
tions [Dumas and Simonian 2000] or their truncated
counterparts [Schwefel and Lipsky 1999]. The latter
reference introduces an aggregated ON/OFF model
with general Matrix-Exponential (ME) ON peri-
ods (see Appendix or [Lipsky 1992] for a detailed
treatment of ME distributions), represented by a
complex, but structured Markov Modulated Pois-
son Process (MMPP). For the purpose of this paper,
we will only present the structure of single-source
ON/OFF models. These, however, can be gener-
alized to describe the aggregation of traffic from
multiple sources by expressing their structure as the
product of the state spaces of single-source models
as shown in [Schwefel 2000].

The model variations considered make use of
truncated power-tail distributions introduced in
[Greiner et al. 2000] (see Appendix for brief descrip-
tion); when these describe the ON periods only, the
model is referred to as TPT-ON. If it is for the
OFF periods only the model is TPT-OFF, and when
both the ON and OFF periods are TPT distributed
the model is TPT-ALL. As a case for comparison,
a fully exponential ON/OFF model (EXP) is also
used. It is important to note that for the range of
TPT distributions considered, the results would be
indistinguishable from using a full power-tail for fi-
nite sample experiments, whether these are based
on measurement or simulation.

All model variations are special cases of the ME-
ALL model as presented in the following. The ME-
ALL model is an MMPP model which generates
inter-packet times from a single ON/OFF source,

with peak-rate λp and long-term average rate λ =
λp∗E{ON}/(E{ON+OFF}) aggregated with some
background Poisson process with rate λbg. The ME-
ALL model uses Matrix-Exponential OFF periods,
< poff ,Boff >, and Matrix-Exponential ON peri-
ods with representation < pon,Bon >. The modu-
lating Markov process then has the following genera-
tor matrix Q, and the corresponding Poisson packet
rates on the diagonal of L:

Q =


−Boff Boffε′off pon

Bonε′onpoff −Bon

 ,

L =



0
. . .

0

λpI


+ λbgI ·

Note that the individual blocks may have different
dimensions. ε′ is a column vector with all elements
equal to 1 of the corresponding dimension, and I is
the unit matrix of dimension dim(Bon)+dim(Boff ).
The ME-ALL process has a mean inter-packet time
of E{X} = 1/(λ + λbg).

An ME-ALL/M/1 queue is a special case
of an MMPP/M/1 queue and can be rep-
resented as a Quasi-Birth-Death Process
with the standard matrix-geometric solution
[Latouche and Ramaswami 1993]. LRD properties
manifest themselves in the correlation structure of
a stochastic process, which can be computed for the
inter-packet times from an MMPP using standard
methods, see [Meier-Hellstern and Fischer 1992].

In addition to the inter-packet time process (Xi),
the counting process can also be used to describe
traffic. In this paper, we use the interval-based ver-
sion of the counting process, where Ni(∆) is the
random variable representing the number of packet
arrivals in interval [i∆, (i + 1)∆]. The covariance
of the counting process Ni(∆) of an MMPP for an
interval size ∆ > 0 is obtained in [Neuts 1989].

The TPT-ALL model uses truncated power-tail
distributions for both the ON period and the OFF
period. The use of an exponential distribution
< pOFF = 1, Boff = 1/Z > for the OFF periods
results in the TPT-ON model, and the use of an
equivalent exponential distribution in the ON peri-
ods instead causes the model to reduce to the TPT-
OFF model. When both ON and OFF periods are
exponential, the model reduces to the classical 2-
state ON/OFF model [Heffes 1980].
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CORRELATION AND QUEUEING PER-
FORMANCE

Common approaches in traffic modeling typically at-
tempt to fit the first two moments of the traffic trace;
capturing the correct mean is essential, since it de-
termines the utilization of any performance model,
which in turn can have a critical impact on station-
arity. Fitting the variance is fully justified for ser-
vice time distributions, since the basic performance
metric of average queue length in a simple queue-
ing model such as M/G/1 is directly related to the
variance of the service time. On the other hand, the
variance of an arrival process is of little impact on
performance behavior in realistic utilization ranges
well below 1. Of primary interest are long-range
dependent properties [Melamed 1991, Norros 1995],
which have more recently been recognized as being
critical in guiding the development of traffic models.

Correlation Structure and Long-Range De-
pendence

We consider the correlation structure of the four
model variations both in terms of their inter-packet
time and counting processes. While studies on traf-
fic LRD have mostly focused on the latter, using the
inter-packet time process is primarily motivated by
its immunity to potential sampling problems caused
by the additional counting process parameter of in-
terval size.

We first examine the case for inter-packet times.
Figure 1 shows the results of analytic computa-
tions of the autocorrelation coefficients when a back-
ground Poisson stream is merged with the output of
each of the model variations. In all models, the ar-
rival rate of the ON/OFF model is λ = 1, and the
contribution of the background process is the addi-
tional rate λbg = 0.1. Except for EXP, in which
short-range dependence (SRD) can be observed, all
models exhibit LRD properties. Looking at the
TPT-OFF model, we find that the magnitude of
the autocorrelation coefficients is greater than that
for TPT-ON. This is surprising since the TPT-OFF
model without the presence of the background Pois-
son traffic is a renewal process: the samples are ei-
ther created by a Poisson process of rate λp (during
the ON period), or by a convolution of an exponen-
tial residual time of the ON period together with
a TPT-distributed ON period and another expo-
nentially distributed time until first packet in the
ON period. The absence of background traffic also
renders EXP a renewal process, while for TPT-
ALL and TPT-ON LRD properties are still present.
These results indicate that only when the ON period
is TPT distributed that LRD properties appear for
inter-packet times.

Additional experiments with very small values for
λbg in the order of 10−5 and smaller show that even
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Figure 1: Correlation structure of the inter-
packet times with 10% background Poisson
traffic: The TPT-OFF model shows positive cor-
relation only in the presence of background Poisson
traffic. The TPT-ALL and TPT-ON models show
LRD in both scenarios. Curves without background
traffic are not shown since two of them, EXP and
TPT-ALL, are renewal.

such small background Poisson rates are sufficient
to keep the LRD properties of the inter-packet times
for the TPT-OFF model. Hence, any small overlay
process will make these models appear to be LRD.

The results of the computation of the autocorre-
lation coefficient for the counting process are shown
in Figure 2. The TPT-ALL, TPT-ON and TPT-
OFF models all exhibit LRD properties, and the
magnitude of the coefficients is in decreasing order
for the respective model. The EXP model only ex-
hibits short-range dependence. As opposed to the
computations for the inter-packet times, the back-
ground Poisson stream has virtually no effect on the
correlation structure.

The behavior of the different processes is sum-
marized in the following table (LRD = long-range
dependence, SR = short-range correlation, 0 = re-
newal process):

model / scenario λbg = 0 λbg → 0 λbg > 0
inter-packet times

EXP 0 0 SR
TPT-OFF 0 LRD LRD
TPT-ON LRD LRD LRD

TPT-ALL LRD LRD LRD
counting process

EXP SR SR SR
TPT-OFF LRD LRD LRD
TPT-ON LRD LRD LRD

TPT-ALL LRD LRD LRD
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Figure 2: Correlation structure of the count-
ing process for ∆ = 1: All three models that use
TPT distributions show LRD properties. The back-
ground Poisson traffic has negligible impact on the
correlation structure: the curves for λbg = 0.1 are
visually indistinguishable and hence not shown here.

Queueing Performance

Since all four models, TPT-ALL, TPT-ON, TPT-
OFF, and EXP have an MMPP representation,
analytic results for the queue length distribution
and the average queue length when using these
processes as arrival to an exponential server can
be obtained via known matrix-algebraic methods
[Latouche and Ramaswami 1993, Neuts 1981]. In
this section, we analyze the different performance
behavior as measured by average queue length for
different server rates ν, corresponding to different
utilizations ρ = (λ + λbg)/ν.

As Figure 3 shows, three different ranges of uti-
lization values need to be distinguished:

1. For low values of ρ < 0.1 (in the given parame-
ter setting), all four models show the same, low
average queue length.

2. At ρ = 0.1 the normalized average queue length
of the TPT-ALL and TPT-ON model increases
rapidly. These so-called blow-up points were
already identified for the TPT-ON model in
[Schwefel and Lipsky 1999]. They occur when
the packet-arrival rate during ON periods is
higher than the service rate, namely when λp +
λbg > ν or equivalently ρ > (λ+λbg)/(λp+λbg).
The TPT-OFF and the EXP model do not show
these blow-up points.

3. For high utilization ρ→ 1, TPT-ON and EXP
show a horizontal asymptote of the normalized
mean queue length, indicating growth accord-
ing to (1−ρ)−1. The TPT-OFF and TPT-ALL
models however show blow-ups in their average
queue lengths that grow faster than the M/M/1
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Figure 3: Queueing behavior of different ON-
OFF/M/1 queues with 10% background traf-
fic: Shown is the average queue length normalized
to the mean queue length ρ/(1 − ρ) of an M/M/1
queue. The TPT-ON and TPT-ALL model show a
blow-up around ρ = 0.1, while the TPT-OFF and
EXP model show rather low queue lengths for typ-
ical network utilization values ρ < 0.8. The TPT
distributions in the OFF periods only becomes rel-
evant for ρ→ 1. The existence of background Pois-
son traffic does not have a relevant influence here,
despite its strong influence on correlation structure
of the inter-packet times.

queue when ρ → 1. This growth can be ex-
plained by the analysis of GI/M/1 queues with
GI=TPT as discussed in [Greiner et al. 2000].

Note that the existence of background Poisson traf-
fic, despite its potentially large influence on corre-
lation structure of the inter-packet times, has only
limited impact on the queueing behavior. In the case
where there is no background Poisson traffic, perfor-
mance is nearly indistinguishable from that shown in
Figure 3. Large amounts of background traffic may
however shift the blow-up points of the TPT-ON
and TPT-ALL model as quantitatively described in
Item (2) above.

In summary, the analytic performance results in
terms of average queue lengths clearly show that al-
though the TPT-OFF model with some background
Poisson traffic exhibits long-range dependence with
a large tail-exponent (large absolute values of the
autocorrelation curve) and extremely high variance,
its queueing performance is rather well behaved.
It is only for high utilization values ρ → 1 that
this model causes high queue lengths. The TPT-
ON and TPT-ALL models on the other hand are
nearly equivalent in terms of queueing behavior in
that power tails in the ON periods are the perfor-
mance dominating element and lead to these blow-
up points when the utilization is well below 1.
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A PERFORMANCE-RELEVANT CORRE-
LATION METRIC

The previous sections show that autocorrelation of
the inter-packet time process is in any case not a
good indicator of potential poor queue performance,
since the presence of LRD in this process is rather
sensitive to the existence of a background Poisson
process or any other overlapping process. Auto-
correlation of the counting process in turn is less
sensitive to such disturbance by a background pro-
cess, but it still does not provide a performance-
relevant metric, since either ON periods or OFF
periods could cause such LRD if heavy-tail distri-
butions are present, while only heavy-tailed ON pe-
riods may cause poor performance behavior for uti-
lizations well below 100%. The reason for the poor
performance, whether it is measured by average
queue length/delay or by buffer overflow probability,
is the existence of heavy-tailed over-saturation pe-
riods. Therefore, it is only the periods of high traf-
fic that are performance critical, even though long-
range dependence can also be created by subsequent
intervals of heavy-tailed length with low traffic.

Measuring the empiric distribution of the dura-
tion of over-saturation periods directly may however
not show heavy-tailed distributions due to poten-
tial sensitivity toward small-scale traffic variations.
The advantage of the correlation properties is the
robustness toward such small scale variations. As a
consequence, this section proposes and evaluates an
approach that is based on the autocorrelation prop-
erties of a filtered counting process, such that the
impact of periods of low traffic is removed.

The Filtering Method

The approach works as follows: Any maximum-
length sequence of subsequent values of the
counting process with low traffic intensity
Ni(∆),...,Ni+k(∆) < N∗ is replaced by a sin-
gle value, for which we use the average of this
sequence. In pseudocode this filtering of the
measured counts Ni(∆) into its counterpart Mj(∆)
can be expressed as:

Algorithm 0.1: Filter(N [],M [], N∗)

j ← 1; i← 1;
while i <= length(N)

do



if N [i] < N∗

then
{

M [j] = N [i]; j ← j + 1;
i← i + 1;

else



k ← 1
while N [i + k] < N∗

do k ← k + 1
M [j] = average(N [i], ...,
N [i + k − 1])
j ← j + 1;
i← i + k

Choice of threshold: An important parameter
in the algorithm above is the threshold N∗, which
determines whether the interval is identified as ’low
traffic’ or ’high traffic’. In the general case, when
only the traffic measurements are available, this
value is suggested to be set to N∗ = λ∆ = E(N),
the expected value of the number of arrivals in an
interval of size ∆. In case that it is known that
the traffic is being fed into a network with bottle-
neck capacity ν, the intuitively obvious choice of the
threshold is N∗

ν = ν∆, which in stable scenarios,
namely when λ < ν, results in a larger threshold.

Instead of investigating LRD properties of the
counts Ni, the LRD properties of the filtered (and
somewhat shorter, except for pathological cases) se-
quence Mj should be investigated, in which LRD
properties as caused by periods of low traffic have
been removed.

The filtering approach above can alternatively be
applied to the inter-arrival time process. In this
case, periods of low traffic correspond to a sequence
of relatively large inter-packet times, those that ex-
ceed 1/λ, or 1/ν if ν is known. When applied to
inter-packet times, the algorithm uses the first value
as the threshold and replaces sequences of inter-
packet times exceeding it with a single value being
the threshold.

Application to Synthetic Traces

Figure 4 demonstrates the effectiveness of this ap-
proach. The figure shows the analytically computed
autocorrelation function of the counting process of
both the TPT-ON and TPT-OFF models (dashed
lines), together with the empiric correlation function
for the original simulated counts (solid line) and the
corresponding filtered counts (dotted). Figure 4 is
plotted on a log-log scale to reveal the LRD prop-
erties, while the linear scale in Figure 5 accentuates
the effect of the filtered count on the correlation
structure. These results show that the correlation
structure of the filtered counts Mj only exhibits
LRD properties for models with TPT-distributed
ON periods, exactly those with poor performance
behavior.

Application to Traffic Measurements

In this section, we aim to further support the ef-
fectiveness of the filtering approach in identify-
ing performance-relevant correlation by considering
traffic traces and associating them to simulated traf-
fic. We first computed the autocorrelation function
for the interarrival process of the Bellcore trace (BC-
pAug89) used in [Leland et al. 1994] and its filtered
version. The correlation structure of the filtered pro-
cess, as shown in Figure 6, strongly exhibits LRD,
denoting its relevance for queueing performance. It
even shows a much clearer straight line behavior in
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Figure 4: Autocorrelation coefficient computations
and simulations for the counting process of a 1-Burst
model and its processed variant (log-log scale): LRD
properties in the TPT-OFF model are destroyed by
the pre-processing, but not in the TPT-ON model.

the log-log plot, indicating the presence of perfor-
mance relevant correlation. This is confirmed by the
results of a trace-driven queueing simulation for this
measurement shown in the curve marked by squares
in Figure 7. The figure shows the mean queueing
delay as a function of utilization assuming exponen-
tial service times. The queueing delay caused by
such a trace is comparable to that of an N -Burst
simulation with 5 sources and TPT-distributed ON
durations (marked by crosses). Note that the queue-
ing delay is substantially larger (by a factor of 100
or more) than in a comparable simulation of Poisson
traffic for utilizations above 50%. The sample size
for the simulated data was chosen to be the same as
the trace, n = 1e6.

Based on these results, it can be stipulated that
the Bellcore data represents an example of a dataset
with LRD caused by ON-OFF like behavior with
power-tailed ON periods, which is consistent with
the poor queueing behavior. In fact, without having
done any detailed parameter fitting, the queueing
behavior closely matched that of a TPT-ON model
with a small number of sources.

A second set of packet data is also shown in Figure
7, namely a DEC trace of UDP packets (dec-pkt-4)
available from [Danzig et al.]. The performance be-
havior of that trace as obtained in the trace-driven
simulation (marked by circles) is very close to an
M/M/1 queue, with some stronger deviations for ρ
above 90%. Since the measurement originates from
backbone traffic, an attempt to model it with a large
number of TPT-ON sources, here N = 500 (marked
by stars in Figure 7), yields remarkably close resem-
blance to the queueing delays of the UDP trace.

Since the method to identify the performance-
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Figure 5: Same as Fig. 4 but on a linear scale to
accentuate the effect of the filtering process on each
of the models.

relevant correlation is designed for traffic generated
from a small number of sources (N in the order of
1, ..., 20), it is well suited for analyzing traffic with
a low degree of multiplexing (e.g. access networks).
As we have shown in Figure 7 and previously in
[Schwefel and Lipsky 1999], it is for such traffic that
the performance impact of LRD is most detrimental.

SUMMARY AND CONCLUSIONS

In this paper, we examined the autocorrelation
structure of a variation of analytical ON/OFF-type
models that employ TPT distributions. Our compu-
tations indicate that the presence of a background
Poisson process has a very strong impact on the
coefficient of correlation of the inter-packet times
for the TPT-OFF model. For the counting process
of these models, the autocorrelation structure was
found to exhibit LRD properties for the TPT-ON,
TPT-ALL, and TPT-OFF models. The autocorre-
lation coefficients here are however rather insensitive
to the background process. A queueing analysis of
the traffic models revealed that only those with an
ON period that is TPT distributed, namely TPT-
ON and TPT-ALL, suffer from poor performance for
a realistic utilization range where ρ < 0.8. We pro-
posed and explored an alternative correlation met-
ric that extracted performance-relevant aspects of
the counting process. Through simulation experi-
ments based on both measured and synthetic traf-
fic traces, we demonstrated the effectiveness of this
approach in destroying the correlation structure of
models whose associated queueing performance are
not poor, making it a more reliable metric than the
mere recognition of LRD.
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APPENDIX

Matrix Exponential (ME) Distributions: Us-
ing the notation of [Lipsky 1992], the vector-matrix
pair < p,B > represents a ME distribution with re-
liability function R(x), and density function f(x) in
the following way:

R(x) = p exp(−xB)ǫ′,

f(x) = −R(x)
dx

= pB exp(−xB)ǫ′

where ǫ′ is a column-vector with all components be-
ing 1.

The moments of the distribution come out by in-
tegration:

IE
{
Xk

}
= k!pB−kǫ′ (1)

Truncated Power-Tail (TPT) Distribu-
tions: The T -phase ME representation of a
TPT distribution with exponent α is given by
[Greiner et al. 2000]: let

0 < θ < 1, and γ :=
(

1
θ

)1/α

> 1 ·

Then, let < pT,BT > be the ME representation of
a T -phase Hyperexponential distribution with

pT =
1− θ

1− θT
[1, θ, θ2, · · · . θT−1], and
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Figure 7: Queueing performance of measured
and synthetic traffic: The queueing performance
of the Bellcore trace (BC-pAug89) is comparable to
that of an N -Burst model with N = 5, while the
queueing behavior corresponding to the UDP pack-
ets from the dec-pkt-4 trace closely matches that of
highly multiplexed synthetic traffic (N = 500) and
the M/M/1 queue.

BT = µ diag
(
1, γ−1, ..., γ−(T−1)

)
·

The parameter, µ, is a positive constant that can be
chosen to set the mean of the distribution according
to Eq. (2).

The expected value follows directly from Eq. (1)

E(XT ) = pT B−1
T ǫ′T =

1
µ

1− θ

1− θT

1− (γθ)T

1− γθ
(2)

The so-called power-tail range of the TPT distri-
bution is given in [Schwefel and Lipsky 1999]:

Rng (BT ) =
γT−1

µ
=: xT . (3)

The following table shows the ratio
Rng (()BT )/E(X) for α = 1.4 and θ = 0.5
and for values of T , as used in the main part of the
paper:

T 1 10 20
Rng (BT )

/E(X) 1 35.9 4.46 · 103

... 30 40 50

... 6.20 · 105 8.74 · 107 1.23 · 1010
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Should Correlation Properties Govern 
Traffic Model Design?

Hans-Peter Schwefel
Imad Antonios
Lester Lipsky

Traffic is self-similar

• General Web traffic is 
Self-Similar [Leland 
’94]

• Symptoms: high 
variability over wide 
range of time scales, 
long-range dependence 
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Why is traffic self-similar?

• User Behavior
– File-size distribution is heavy-tailed [Garg ’92, Crovella 

’96, Cunha ’95, Woodruff ’96]

– Transmission times and user think time distributions 
[Mogul ’95]

• Protocol Behavior
– TCP congestion control mechanisms, irrespective of file-

size distribution, produces self-similarity [Veres ’00]

• Internet Topology
– Router in- and out-degrees are governed by power-laws 

[Pitkow ’98]

Self-similarity and long-range dependence

• Long-range dependence (LRD) refers to the structure 
of the auto-correlation function lag k, r(k)

• LRD processes have slow-decaying r(k) as opposed 
to SRD processes whose r(k) decays exponentially

• New models were needed since the Poisson 
assumption is no longer applicable
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LRD Models 

• Statistical approach
– Based on fractional Gaussian noise (FGN) to generate 

synthetic traffic [Paxson ‘97, Ledesma ’00]

• Fluid queueing model
– Traffic modeled as a continuous flow [Dumas ’00]

• Markovian models
– In [Nain ’01], semi-Markov process as input to queue, but 

results were very limited

– [Schwefel and Lipsky ’99-00] developed a model of N 
independent heavy-tailed sources (N-Burst model)

Is LRD really the culprit?

• “It comes out that LRD is a good parameter for 
quantifying the level of QoS a network can provide in 
the transmission of the considered traffic: the higher 
the LRD, the worse the QoS [13] [15].” - 
Published in ICCCN2005

• Objectives of this work

– Demonstrate that the presence of LRD is not a 
reliable predictor of performance

– Suggest a different property to frame the problem
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An On/Off traffic source: 1-Burst model

• Token moves according to 
modulating process

• While in ON state, packets 
are transmitted as a 
Poisson stream

• Parameter b is the fraction 
of time source is OFF

Packet 
Stream ON-period

Router

µ

1µ
iµ

jµ
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1p
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mq
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jmP

ijP

OFF

Model variations

• Both ON-time and OFF-time distribution exponential, 
or both Power tailed (TPT)

• Truncated power-tailed ON time and exponential 
OFF time, or vice versa

• Background Poisson process

• Models are MMPP’s with their solutions formulated 
using a Linear Algebraic Queueing Theory approach 
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Coefficient of variation of counting process

Coefficient of variation of inter-packet times
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r(k) of inter-arrivals – no background traffic

r(k) of inter-arrivals – with background traffic
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r(k) of counting process – insensitive to background

Queueing delays with or without background traffic
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Simulation results – no background traffic

More simulations
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Summary of autocorrelation structure

Summary and Conclusions

• Investigated the relationship between correlation 
structure of different input processes and router delay

• Presented models that produce LRD in inter-packet 
times and/or counting process that do not exhibit poor 
performance 

 

• Suggested that ON-time distribution is a more 
reliable way to frame router performance
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Simulations With Heavy-Tailed Workloads

MARK E. CROVELLA and LESTER LIPSKY�

Abstract

Recent evidence suggests that some characteristics of computer and telecommu-

nications systems may be well described using heavy tailed distributions | dis-

tributions whose tail declines like a power law, which means that the probability

of extremely large observations is non-negligible. For example, such distribu-

tions have been found to describe the lengths of bursts in network traÆc and

the sizes of �les in some systems. As a result, system designers are increasingly

interested in employing heavy-tailed distributions in simulation workloads. Un-

fortunately, these distributions have properties considerably di�erent from the

kinds of distributions more commonly used in simulations; these properties make

simulation stability hard to achieve. In this paper we explore the diÆculty of

achieving stability in such simulations, using tools from the theory of stable

distributions. We show that such simulations exhibit two characteristics related

to stability: slow convergence to steady state, and high variability at steady

state. As a result, we argue that such simulations must be treated as e�ectively

�Mark Crovella is with the Department of Computer Science, Boston University and Lester

Lipsky is with the Department of Computer Science and Engineering, University of Connecti-

cut. This research was supported in part by NSF grant CCR-9501822 and by a grant from

Hewlett-Packard Company.
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always in a transient condition.

1 Introduction

Recently the phenomenon of network traÆc self-similarity has received signif-

icant attention in the networking community [10]. Asymptotic self-similarity

refers to the condition in which a timeseries's autocorrelation function declines

like a power- law, leading to positive correlations among widely separated ob-

servations. Thus the fact that network traÆc often shows self-similarity means

that it shows noticeable bursts at a wide range of time scales|typically at least

four or �ve orders of magnitude. A related observation is that �le sizes in some

systems have been shown to be well described using distributions that are heavy

tailed|distributions whose tails follow a power-law|meaning that �le sizes also

often span many orders of magnitude [3].

Heavy tailed distributions behave quite differently from the distributions

more commonly used to describe characteristics of computing systems, such as

the Normal distribution and the exponential distribution, which have tails that

decline exponentially (or faster). In contrast, because their tails decline rela-

tively slowly, the probability of very large observations occurring when sampling

random variables that follow heavy tailed distributions is non-negligible. In fact,

the distributions we discuss in this chapter have in�nite variance, re
ecting the

extremely high variability that they capture.

As a result, designers of computing and telecommunication systems are in-

creasingly interested in employing heavy-tailed distributions to generate work-

loads for use in simulation. However, simulations employing such workloads

may show unusual characteristics; in particular, they may be much less stable

than simulations with less variable inputs. In this chapter we discuss the kind

of instability that may be expected in simulations with heavy-tailed inputs and

show that they may exhibit two features: �rst, they will be very slow to con-

2
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Figure 1: Sample Data from Heavy Tailed Distribution with � = 1:2
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verge to steady state; and second, they will show highly variable performance at

steady state. To explain and quantify these observations we rely on the theory

of stable distributions [4, 15].

These problems are not unique to simulation of telecommunications systems,

arising also in risk and insurance modeling [2]. Solutions to certain aspects

of these problems have been proposed drawing on rare event simulation and

variance reduction techiques [8, 14].

In general however many of the problems associated with the simulations

using heavy-tailed workloads seem quite diÆcult to solve. This chapter does

not primarily suggest solutions but rather draws attention to these problems,

both to yield insight for researchers using simulation and to suggest areas in

which more research is needed. As a result we conclude with a summary of

the issues that should be addressed when using simulations with heavy-tailed

workloads.

2 Heavy Tailed Distributions

2.1 Background

Let X be a random variable with cdf F (x) = P [X � x] and complementary cdf

(ccdf) �F (x) = 1 � F (x) = P [X > x]. We say here that a distribution F (x) is

heavy tailed if

�F (x) � cx�� 0 < � < 2 (1)

for some positive constant c, where a(x) � b(x) means limx!1 a(x)=b(x) =

1: (We note that more general de�nitions of heavy tails are common; see for

example [6].) If F (x) is heavy tailed then X shows very high variability. In

particular, X has in�nite variance, and if � � 1, X has in�nite mean. Section 2.2

will explore the implications of in�nite moments in practice; here we note simply

that if fXi; i = 1; 2; :::g is a sequence of observations of X then the sample

4
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variance of fXig as a function of i will tend to grow without limit, as will the

sample mean if � � 1.

The simplest heavy tailed distribution is the Pareto distribution which is

power-law over its entire range. The Pareto distribution has pmf

p(x) = �k�x���1 0 < k � x

and cdf

F (x) = P [X � x] = 1� (k=x)� (2)

in which the positive constant k represents the smallest possible value of the

random variable.

In practice, random variables that follow heavy tailed distributions are char-

acterized as exhibiting many small observations mixed in with a few large ob-

servations. In such datasets, most of the observations are small, but most of

the contribution to the sample mean or variance comes from the few large ob-

servations.

This e�ect can be seen in Figure 1, which shows 10,000 synthetically gen-

erated observations drawn from a Pareto distribution with � = 1:2 and mean

� = 6. In Figure 1(a) the scale allows all observations to be shown; in Fig-

ure 1(b) the y axis is expanded to show the region from 0 to 200. These �gures

show the characteristic, visually striking behavior of heavy tailed random vari-

ables. From the left plot it is clear that a few large observations are present,

some on the order of hundreds to one thousand; while from the right plot it is

clear that most observations are quite small, typically on the order of tens or

less.

An example of the e�ect of this variability on sample statistics is shown in

Figure 2. This �gure shows the running sample mean of the data points from

Figure 1, as well as a level line showing the mean of the underlying distribution

(6). Note that the sample mean starts out well below the distributional mean,

and that even after 10,000 observations it is not close in relative terms to the

5
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Figure 2: Running Mean of Data from Figure 1

distributional mean.

2.2 Heavy Tails in Computing Systems

A number of recent studies have shown evidence indicating that aspects of

computing and telecommunication systems can show heavy tailed distributions.

Measurements of computer network traÆc have shown that autocorrelations

are often related to heavy tails; this is the phenomenon of self similarity [5, 10].

Measurements of �le sizes in the Web [1, 3] and in I/O patterns [13] have shown

evidence that �le sizes can show heavy tailed distributions. And �nally, the

CPU time demands of Unix processes have also been shown to follow heavy

tailed distributions [9, 7].

The presence of heavy tailed distributions in measured data can be assessed

in a number of ways. The simplest is to plot the ccdf on log-log axes, and

visually inspect the resulting curve for linearity over a wide range (several orders

of magnitude). This is based on Equation 1, which can be recast as:

lim
x!1

d log �F (x)

d log x
= ��

6
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Through the Web

so that for large x, the ccdf of a heavy tailed distribution should appear to be

a straight line on log-log axes with slope ��.

An example empirical dataset is shown in Figure 3, which is taken from [3].

This �gure is the ccdf of �le sizes transferred through the network due to the

Web, plotted on log-log axes. The �gure shows that the �le size distribution

appears to show power law behavior over approximately three orders of magni-

tude. The slope of the line �t to the upper tail is approximately �1:2, yielding

�̂ � 1:2.

3 Stability In Systems With Heavy Tailed

Workloads

As heavy tailed distributions are increasingly used to characterize workload

characteristics of computing systems, researchers interested in simulating such

systems are beginning to use heavy tailed inputs to simulations. For example,

7
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[12] describes methods for generating self-similar time series for use in simulating

network traÆc and [11] uses heavy-tailed �le sizes as inputs to a network simu-

lation. However, an important question arises: how stable are such simulations?

This can be broken down into two questions:

1. How long until such simulations reach steady state?, and

2. How variable is system performance at steady state?

In this section we will show that if simulation outputs are dependent on all

the moments of the distribution F then the answers to the above questions can

be surprising. Essentially, we show that such simulations can take a very long

time to reach steady state; and that such simulations can be much more variable

at steady state than is typical for traditional systems.

Note that some simulation statistics may not be directly a�ected by all the

moments of the distribution F , and our conclusions do not necessarily apply to

those cases. For example, the mean number of customers in an M=G=1 queue-

ing system may not show unusual behavior even if the service time distribution

F is heavy tailed because that statistic only depends on the mean of F .

Since not all simulation statistics will be a�ected by heavy tailed workloads,

we choose a simple statistic to show the generality of our observations: the

sample mean of the heavy tailed inputs. Since our results apply to the sample

mean of the input, we expect that any system property that behaves like the

sample mean should show similar behavior. For example, assume we want to

achieve steady state in a particular simulation. This implies that the measured

system utilization ��x (where ��1 is the average interarrival time and �x is the

sample mean of service times over some period) should be close to the desired

system utilization �. For this to be the case, �x must be close to its desired mean

�.

To analyze the behavior of the sample mean, we are concerned with the

convergence properties of sums of random variables. The normal starting point

for such discussions would be the Central Limit Theorem (CLT). Unfortunately,

8
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the CLT applies only to sums of random variables with �nite variance, and so

does not apply in this case. In the place of the CLT we instead have limit

theorems for heavy tailed random variables �rst formulated by L�evy [4, 15].

To introduce these results we need to de�ne the notation A
d
! B which

means that the random variable A converges in distribution to B (roughly, has

distribution B for large n). Then the usual CLT can be stated as: for Xi i.i.d.

and drawn from some distribution F with mean � and variance �2 <1, de�ne

An =
1

n

nX
i=1

Xi

and

Zn = n1=2(An � �); (3)

then

Zn
d
! N (0; �2) (4)

where N (0; �2) is a Normal distribution.

However, when Xi are i.i.d. and drawn from some distribution F that is

heavy tailed with tail index 1 < � < 2; then if we de�ne

Zn = n1�1=�(An � �) (5)

we �nd that

Zn
d
! S� (6)

where S� is an �-Stable distribution. The �-Stable distribution has four pa-

rameters: �, a location parameter (analogous to the mean), a scale parameter

(analogous to the standard deviation), and a skewness parameter. Based on the

value of the last parameter, the distribution can be either skewed or symmetric.

A plot of the symmetric �-Stable distribution with � = 1:2 and location zero

is shown in Figure 4. From the �gure it can be seen that this distribution has

a bell-shaped body much like the Normal distribution but that it has much

heavier tails. In fact the �-Stable distribution has power-law tails that follow

9
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the same � as that of the distribution F from which the original observations

were drawn.

From Equations 5 and 6 we can make two observations about the behavior

of sums of heavy tailed random variables. First, Equation 5 states that such

sums may converge much more slowly than is typical in the �nite variance case.

Second, Equation 6 states that even after convergence, the sample mean will

show high variability|it follows a heavy tailed distribution.

These e�ects can be seen graphically in Figure 5. This �gure shows his-

tograms of An for varying values n. On the left we show the case in which the

Xis were drawn from an Exponential distribution; on the right we show the case

in which the Xis were drawn from a strictly positive heavy tailed distribution

with � = 1:4; in both cases the mean of the underlying distribution was 1. The

plot on the left shows that the most likely value of the sample mean is equal

to the true mean, even when summing only a small number of samples. In ad-

dition, it shows that as one sums larger numbers of samples, the sample mean

converges quickly to the true mean. However, neither of these observations are

10
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true for the case of the heavy tailed distribution on the right. When summing

small numbers of samples, the most likely value of the sample mean is far from

the true mean, and the distribution progresses to its �nal shape rather slowly.

Thus we have seen that the convergence properties of sums of heavy tailed

random variables are quite di�erent from those of �nite variance random vari-

ables. We relate this to steady state in simulation as follows: presumably for

a simulation to reach steady state, it must at a minimum have seen enough

of the input workload to observe its mean. Of course it may be necessary for

much more of the input to be consumed before the simulation reaches steady

state, so this condition is a relatively weak one. Still, we show in the next two

subsections that this condition has surprising implications for simulations.

3.1 Slow Convergence to Steady State

Equation 6 states that for large n, Zn converges in distribution. Thus another

way of formulating Equation 5 is:

jAn � �j � n1=��1:

In this form it is more clear how slowly An converges to �. If � is close to 1,

then the rate of convergence, measured as the di�erence between An and �, is

very slow|until, for � = 1, the average does not converge at all, re
ecting the

fact that the mean is in�nite.

Suppose one would like to use An to form a estimate of the mean � that

is accurate to k digits. Alternatively, one might state that a simulation has

reached steady state when the observed mean of the input An agrees with � to

k digits. Then we would like

jAn � �j=� � 10�k:

Now, as a rough approximation:

jAn � �j = c1n
1=��1

12
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for some positive constant c1. Then we �nd that:

n � c210
k

1�1=� :

We can say that given this many samples, k digit accuracy is \highly likely."

For example, assume we would like 2-digit accuracy in An, and suppose c2 �

1. Then the number of samples n necessary to achieve this accuracy is shown

in Table 1. This table shows that as � ! 1, the number of samples necessary

to obtain convergence in the sample mean explodes. Thus, it is not feasible in

any reasonable amount of time to observe steady state in such a simulation as

we have de�ned it. Over any reasonable time scale, such a simulation is always

in transient state.

Table 1: Number of Samples Necessary to Achieve 2 Digit Accuracy in Mean

as a Function of �

� n

2.0 10,000

1.7 72,000

1.5 1,000,000

1.2 1012

1.1 1022

3.2 High Variability at Steady State

Equation 6 shows that even at steady state, the sample mean will be distributed

according to a heavy tailed distribution, and hence will show high variability.

Thus, the likelihood of an erroneous measurement of � is still non-negligible.

Equivalently, the simulation still behaves erratically.

To see this more clearly, let us de�ne a swamping observation as one whose

presence causes the estimate of � to be at least twice as large as it should be.

13
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That is, if we happen to encounter a swamping observation in our simulation,

the observed mean of the input will have a relative error of at least 100%.

In a simulation consisting of n inputs, a swamping observation must have

value at least n�. Let us assume that the inputs are drawn from a Pareto

distribution. Such a distribution has � = k�=(�� 1). Then the probability pn�

of observing a value of n� or greater is

pn� = P [X > n�] =

�
k

nk�=(�� 1)

��
=

�
�� 1

n�

��

and the probability p of observing such a value at least once in n trials is

p = 1� (1� pn�)
n:

Figure 6 shows a plot of p as a function of � for n = 105. (The �gure is

not signi�cantly di�erent for other values of n, e.g., 106; 107.) It shows that

even in a relatively long simulation, the probability of a swamping observation

is not negligible; when � is below about 1.3, such an observation could occur

more often than once in a hundred simulations. The probability declines very

14
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rapidly for � < 1:1 not because the variability of the simulation is declining,

but because of the way we have de�ned the swamping observation: in terms of

the distributional mean. When � = 1, the mean is in�nite, and so it becomes

impossible to observe a value greater than the mean.

Taken together, Table 1 and Figure 6 also provide some insight into the value

of � above which it may be possible to obtain convergent, consistent simula-

tions. The table shows that simulation convergence becomes impractical when

� is somewhere in the region between 1.7 and 1.5; and the Figure shows that

simulations become erratic at steady state in approximately the same region. As

a result, we can conclude that the diÆculties inherent in simulations with heavy

tailed inputs are likely to be particularly great when � is less than about 1.7;

and that when � is greater than or equal to about 1.7 it may be feasible (given

suÆcient computing e�ort) to obtain consistent steady state in simulation.

4 Conclusions

We have shown that a diÆcult problem arises when simulating systems with

heavy tailed workloads. In such systems, steady-state behavior can be elusive,

because average-case behavior depends on the presence of many small observa-

tions as well as a few large observations.

This problem has two implications. First, since a number of large but rare

observations must occur before average case behavior is evident, convergence of a

simulation to steady state may be slow. It may not be possible in any reasonable

time to achieve steady state. Second, since many small observations must occur

to balance the presence of large observations, large observations can have a

dominating e�ect on performance results even at steady state. Simulations may

still behave erratically even at steady state.
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How does a physicist approach 

queueing theory? 

- A few examples
Yiping Ding
BMC Software

Professor Lester Lipsky is retiring …

• However, he has students and will still be 

active: 

• The server will not be idle if there are jobs in 

the queue.

2
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Queueing Theory and Interdisciplinary 

Perspectives: Physics and Queueing Theory

3

Dr. Lipsky was and still is a physicist

• How does a physicist like Dr. Lipsky get into queueing theory?  

 Waiting is a natural phenomenon

People studying physics often have to carry out resource 

intensive computations 

 For some physicists, the waiting becomes so painful that they 

decide to study why

4
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A Physicist can provide a unique 

interdisciplinary perspective to queueing theory  

 Use the mathematical tools they are familiar with

 Use the thought experiments they are comfortable with

 Use the experiment results to validate the theory

• Let’s see some examples …

5

A Linear Algebraic Approach to 

Queueing Theory

6

“Journal of Physics B: 

Atomic and Molecular Physics,” 
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7

Physicists value 

different ideas, different views, 

and different approaches 

8
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How did a physicist handle a similar 

situation ? 

9

10
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Some fundamental laws are very similar 

- Examples

• The quantized energy of the photons is 

• E = h f,

• where h is the Planck’s constant and f is the radiation frequency 
of the photons.  This is very much like a utilization formula in 
queueing theory, 

• U = s x,

• if we view the Planck’s constant as a “service time,” s, and the 
radiation frequency as the throughput, x:

• How busy you are in a given interval, U, is pretty much the 
same concept as how much energy that you have!

11

Queueing theory puts wormholes in 

perspective !

12

Zero Service Time and Negative Response Time

0 -2
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13

A customer arrives before it departs …

Physical Laws and Queueing Theory

 Will computer performance and capacity still be a challenge 
to us in the future?

• It will be in our lifetime

 What are the performance implications of a quantum 
computer?

• 1kg has E = mc^2 = 8.9874x10^16 joules energy

• A 1kg computer can perform 5.4258x10^50 ops/sec

 Where will bottlenecks reside in future computers?
• The speed of light is limited: 2.9979x10^8 meters / sec.

 Will performance / queueing theory related formulas and 
algorithms hold in the future?

• Some will and some will not

14

14 Ding Y.: How does a physicist approach queueing theory? - A few examples (Slides) 135



Little’s Law and black holes

15

x

x’

N

R

N = R x ?

16

Dr. Lipsky:

We wish you the best!
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Signal Probabilities in 

AND-OR Trees

by

Sharad Seth

In Celebration of 

Lester Lipsky

Great Mentor and Friend

Outline

• Background

• The Problem

• Salient Results

• Conclusion
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2-Level AND-OR Trees

• In general

– ANDs and ORs in alternate levels

– All ANDs have n inputs and ORs have m inputs

• (b) is dual of (a), hence, Enough to focus on just (a)

Multi-Level AND-OR Trees
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Signal Probabilities in a 2-Level Tree

*

+ + + +

One-Prob. = 0.5 (no bias)

One-Prob. = 1-(0.5)3

One-Prob. = [1-(0.5)3]
4

Random-Pattern Testing

Digital Circuit =?

Good

Response

Pass/Fail
Random Patterns

(Applied with a

fixed bias)
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Random-Pattern Detectability

• Given a fault (e.g. a circuit line stuck-at 0) and a 

fixed bias for random pattern tests

• What is the probability that the fault is detected at 

the circuit output (the circuit response is different 

from the good response)?

Detectability vs. Signal Probabilities

Random-Pattern Detectability = 

[1- (0.5)3][1-(0.5)3][1-(0.5)3][(0.5)3]

*

+ + + +

One-Prob. = 0.5 (no bias)

X

Stuck-at-1

FaultOne-Prob. = 1-(0.5)3
0

11

1
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Prior Work

• Considered trees of NAND gates:

– Fixed gate fan-in: n

– Number of levels: l

– Input One-probability: x (aka the bias probability)

• Showed, for large l, the output signal probabilities 

alternated between close to zero and one.

• For trees of 2-input NANDs (n=2), xopt , the bias 

probability at which the detectability of primary input 

faults is maximum, is very sensitive to the value of x, with 

a sharp peak at xopt = 0.617.

Prior Work (Contd.)

• Practical application was shown by doing Monte Carlo 
experiments on several Illiac IV processing boards, with 
logic approximated by NAND trees of fan-in between 2 
and 3.

• Experiments verified:
– random-pattern detectability is very sensitive to the value of x.

– Optimum results occur close to x = 0.617.

The suggestion of using a bias probability derived from the

average fan-in is purely intuitive; could lead to erroneous results

if the signal probabilities (and detectabilities) in a tree were very

sensitive to the changes in gate fan-ins.

Our paper provided a theoretical answer to the question of sensitivity
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Transfer Function of 2-Level AND-OR 

Trees

• S-shaped; exact shape 
depends on the fan-ins m, 
and n.

• Properties:
– g(x) is monotonic

– Three fixed points, where 
g(x) = x:           0, 1, and c.

– First n (m) derivatives 0 at 
x=0 (x=1)

– g(x) > x above c and g(x) 
< x below c

Multilevel Trees

• Asymptotic Behavior: Not 
hard to show that:

A four-level AND-OR tree viewed as a two-layer tree

The transfer function of an l-layer tree

denoted as gl(x)

))x(g(g)x(g ll 1

where, g(x) is the transfer function of a

2-level tree

 1for     1

and    0for      0









xc)x(glim

cx)x(glim

l
l

l
l

Therefore, gl(x) is a unit 
step function in the 
limit, with c as its firing 
point.
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Firing Point vs. Gate Fan-ins

n

m

2 3 4 5 6 7 8

2 0.618 0.848 0.921 0.951 0.967 0.977 0.982

3 0.389 0.682 0.805 0.887 0.902 0.925 0.940

4 0.282 0.580 0.724 0.803 0.850 0.881 0.905

5 0.220 0.511 0.666 0.755 0.810 0.847 0.873

6 0.181 0.461 0.622 0.717 0.778 0.820 0.849

7 0.153 0.423 0.587 0.687 0.752 0.800 0.829

8 0.133 0.392 0.558 0.661 0.730 0.777 0.812

Window of Uncertainty

Window of uncertainty is the 

inverse of the slope at c

Window Width vs. Tree Depth

(Binary Trees, m=n=1)

Window width decreases 
exponentially: wl = (w1)l

No. of       

Layers

Window 

Width x 0 x 1 y 0 y 1

1 0.655 0.214 0.868 0.089 0.939

2 0.428 0.353 0.782 0.107 0.922

3 0.280 0.445 0.725 0.110 0.914

4 0.184 0.505 0.688 0.110 0.910

5 0.120 0.544 0.664 0.108 0.908

6 0.079 0.569 0.648 0.107 0.907

7 0.051 0.586 0.638 0.105 0.906

8 0.034 0.597 0.631 0.105 0.905

9 0.022 0.604 0.626 0.104 0.905

10 0.014 0.609 0.624 0.104 0.905

15 Seth S.: Signal Probabilities in AND-OR Trees (Slides) 143



Conclusion

• AND-OR trees generalize the fixed fan-in NAND trees discussed in 
the literature.

• Input vectors composed of bits independently chosen to be 1 with 
probability x.

• Basis for analysis: The probability transfer function of two-level AND-
OR trees; finds the output probability as a function of the input bias x.

• The transfer function of every iterated tree approaches the step 
function, where the step is at c=g(c).

• Conjecture: Behavior of any large AND-OR tree would resemble a 
step function occurring at a position that is highly dependent on the 
specifics of the structure closer to the leaves.

• A fun project, started by a casual conversation about collaboration.
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