
Dissertation
Network Architectures
and Services
NET 2011-08-1

Methods for Secure Decentralized Routing
in Open Networks

Nathan S. Evans

Network Architectures and Services
Department of Computer Science
Technische Universität München

Technische Universität
München

Lehrstuhl für Netzarchitekturen
und Netzdienste

Methods for Secure Decentralized Routing in
Open Networks

Nathan S. Evans

Vollständiger Abdruck der von der Fakultät für Informatik
der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Thomas Neumann

Prüfer der Dissertation:

1. Christian Grothoff, Ph.D (UCLA)

2. Professor Mikhail J. Atallah

3. Univ.-Prof. Dr. Thomas Huckle

Die Dissertation wurde am 22. Juni 2011 bei der Technischen
Unversität München eingereicht und durch die Fakultät für

Informatik am 10. August 2011 angenommen.

Cataloging-in-Publication Data
Nathan S. Evans
Methods for Secure Decentralized Routing in Open Networks
Dissertation, August 2011
Network Architectures and Services, Department of Computer Science
Technische Universität München

ISBN: 3-937201-26-2
ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
Network Architectures und Services NET 2011-08-1
Series Editor: Georg Carle, Technische Universität München, Germany
© 2011, Technische Universität München, Germany

ABSTRACT

The contribution of this thesis is the study and improvement of secure, de-
centralized, robust routing algorithms for open networks including ad-hoc
networks and peer-to-peer (P2P) overlay networks. The main goals for our
secure routing algorithm are openness, efficiency, scalability and resilience to
various types of attacks. Common P2P routing algorithms trade-off decen-
tralization for security; for instance by choosing whether or not to require a
centralized authority to allow peers to join the network. Other algorithms
trade scalability for security, for example employing random search or flood-
ing to prevent certain types of attacks. Our design attempts to meet our
security goals in an open system, while limiting the performance penalties
incurred.

The first step we took towards designing our routing algorithm was an
analysis of the routing algorithm in Freenet. This algorithm is relevant be-
cause it achieves efficient (order O(log n)) routing in realistic network topolo-
gies in a fully decentralized open network. However, we demonstrate why
their algorithm is not secure, as malicious participants are able to severely
disrupt the operation of the network. The main difficulty with the Freenet
routing algorithm is that for performance it relies on information received
from untrusted peers. We also detail a range of proposed solutions, none of
which we found to fully fix the problem.

A related problem for efficient routing in sparsely connected networks is
the difficulty in sufficiently populating routing tables. One way to improve
connectivity in P2P overlay networks is by utilizing modern NAT traversal
techniques. We employ a number of standard NAT traversal techniques in
our approach, and also developed and experimented with a novel method
for NAT traversal based on ICMP and UDP hole punching. Unlike other
NAT traversal techniques ours does not require a trusted third party.

Another technique we use in our implementation to help address the
connectivity problem in sparse networks is the use of distance vector routing
in a small local neighborhood. The distance vector variant used in our
system employs onion routing to secure the resulting indirect connections.
Materially to this design, we discovered a serious vulnerability in the Tor
protocol which allowed us to use a DoS attack to reduce the anonymity
of the users of this extant anonymizing P2P network. This vulnerability
is based on allowing paths of unrestricted length for onion routes through
the network. Analyzing Tor and implementing this attack gave us valuable

ii Abstract

knowledge which helped when designing the distance vector routing protocol
for our system.

Finally, we present the design of our new secure randomized routing al-
gorithm that does not suffer from the various problems we discovered in
previous designs. Goals for the algorithm include providing efficiency and
robustness in the presence of malicious participants for an open, fully decen-
tralized network without trusted authorities. We provide a mathematical
analysis of the algorithm itself and have created and deployed an imple-
mentation of this algorithm in GNUnet. In this thesis we also provide a
detailed overview of a distributed emulation framework capable of running
a large number of nodes using our full code base as well as some of the
challenges encountered in creating and using such a testing framework. We
present extensive experimental results showing that our routing algorithm
outperforms the dominant DHT design in target topologies, and performs
comparably in other scenarios.

Abstract iii

Acknowledgments

Chapter 2 is based on work previously presented at ACSAC 2007 [59], and
was extended into the author’s master thesis [57]. The work presented in
Chapter 3 was published at P2P 2010 [122]. Chapter 4 is strongly based
on our paper published at Usenix Security 2009 [58]. Chapter 6 is a longer
version of a workshop publication published at CSET’11 [60]. Chapter 7
contains material which was, at the time of this writing, accepted for pub-
lication at NSS 2011 [56].

This research was supported in part by the NLnet Foundation from the
Netherlands (http://nlnet.nl/), under NSF Grant No. 0416969 and by
the Deutsche Forschungsgemeinschaft (DFG) under ENP GR 3688/1-1.

I would like to thank my advisor, Christian Grothoff, for his guidance
and patience throughout the course of my graduate career. Additionally,
I would like to thank other co-authors and contributors to my research ef-
forts. Specifically, Chris GauthierDickey was instrumental in the research
which led to [59]. Roger Dingledine provided key insight into Tor and asked
excellent questions which made the work presented in [58] that much more
applicable to the real world. Samy Kamkar came up with the initial tech-
nique presented in [122], and Andreas Müller provided the testbed upon
which our implementation was evaluated on real world NATed networks.
Without the ideas, critical evaluation and writing skills of these individuals
none of this research would have been possible.

Special thanks are due to Ramki Thurimella and Krista Grothoff for
their “behind the scenes” efforts which have contributed both to the quality
(and understandability) of the research presented in this thesis, and to my
personal growth throughout the course of my graduate career. In particular,
Ramki has often provided me with valuable advice on papers, presentations
and more. Krista has tirelessly put up with bad writing and edited countless
documents without remuneration.

I am unable to thank Katie Haus enough for her unending support and
encouragement in all aspects of my life throughout the course of this re-
search. She has shown patience, creativity and resolve; at times providing
solace, acting as muse, and even doing the dirty work of editing documents.
Many of the figures throughout this thesis have her touch, and she is also
very good at math!

iv Abstract

TABLE OF CONTENTS

1. Introduction . 1
1.1 Network Environment . 2

1.1.1 Network Address Translation (NAT) 3
1.1.2 Domain Name System (DNS) 4
1.1.3 Public Key Infrastructure 4
1.1.4 Trust Agility . 6
1.1.5 Summary . 6

1.2 Peer-to-Peer (P2P) Networks 6
1.2.1 Centralized P2P . 7
1.2.2 Pure P2P . 8
1.2.3 Super-peer P2P . 8

1.3 Design Goals . 9
1.4 Methodology . 12
1.5 Summary and Overview . 13

2. Routing in the Dark: Pitch Black 15
2.1 Introduction . 15
2.2 Related Work . 16

2.2.1 Distributed hash tables 16
2.2.2 Small-World networks 17

2.3 Freenet’s “darknet” routing algorithm 18
2.3.1 Network creation . 18
2.3.2 Operational overview 19
2.3.3 Location swapping . 19
2.3.4 Content Storage . 21
2.3.5 Example . 21

2.4 Security Analysis . 23
2.4.1 Active Attack . 24
2.4.2 Natural Churn . 25

2.5 Experimental Results . 27
2.5.1 Distribution of Node Locations 29
2.5.2 Routing Path Length 32
2.5.3 Availability of Content 35
2.5.4 Other Topologies . 38

2.6 Simulation of Churn . 41
2.7 Discussion . 43

vi Table of Contents

2.8 Conclusion . 45

3. Autonomous NAT Traversal 47

3.1 Introduction . 47

3.2 Technical Approach . 48

3.2.1 NAT-to-NAT Communication 50

3.2.2 Using UDP packets instead of ICMP ECHO REQUESTs 50

3.3 Implementations . 51

3.3.1 Implementation in NAT-Tester Framework 51

3.3.2 Implementation in pwnat tool 52

3.3.3 Implementation in the GNUnet Framework 52

3.4 Experimental Results . 53

3.5 Discussion . 54

3.6 Conclusion . 54

4. A Practical Congestion Attack on Tor Using Long Paths . 55

4.1 Introduction . 55

4.2 Related Work . 56

4.2.1 Tor . 57

4.2.2 Attacks on Tor and other Mixes 57

4.3 Our Attack . 60

4.3.1 JavaScript Injection 61

4.3.2 Impact of Congestion on Arrival Times 63

4.3.3 Statistical Evaluation 65

4.3.4 Congestion Attack . 66

4.3.5 Optimizations . 67

4.4 Experimental Results . 68

4.5 Proposed Solutions . 80

4.6 Low-cost Traffic Analysis Failure Against Modern Tor 85

4.7 Conclusion . 93

5. Fish-eye Bounded Distance Vector Protocol 95

5.1 Fish-eye and Zone Routing Protocols 95

5.2 Implementation . 96

5.3 Distance Vector Service . 98

5.4 Message Example . 98

5.5 Neighborhood Size Estimate 99

5.6 Distance Vector for Onion Routing 101

5.7 FBDV Caveats: Onion Routing Without Anonymity 102

5.8 Conclusion . 105

Table of Contents vii

6. Large-Scale Distributed Emulation of P2P Protocols . . . 107
6.1 Introduction . 107
6.2 Design Goals . 108
6.3 Related Work . 109

6.3.1 Simulation . 110
6.3.2 Emulation . 110
6.3.3 Combining Simulation and Emulation 111

6.4 The GNUnet P2P Framework 111
6.5 The Emulation Library . 112

6.5.1 Executing Experiments 113
6.5.2 Peer Life Cycle . 113
6.5.3 Peer Group Life Cycle 114
6.5.4 Topology . 115

6.6 Lessons Learned . 116
6.6.1 Cryptography . 117
6.6.2 Execution time . 118
6.6.3 Latency . 118
6.6.4 Sockets . 119
6.6.5 Memory . 120

6.7 Results . 120
6.8 DHT Profiler Details . 121

6.8.1 Web Trial Scheduling 122
6.8.2 Trial Execution Daemon 123
6.8.3 Profiling Driver . 123
6.8.4 Additional Trial Processing 123
6.8.5 Web Result Processing/Viewing/Comparison 125
6.8.6 Database Back-end . 128
6.8.7 Database Interaction (Data export) 129

6.9 Conclusion . 131

7. R5N– Randomized Recursive Routing for Restricted Route
Networks . 133
7.1 Introduction . 133
7.2 Related Work . 135

7.2.1 Kademlia . 135
7.2.2 Restricted-Route Topologies 136
7.2.3 T-DHT . 137
7.2.4 Freenet . 138
7.2.5 Randomized Designs 138

7.3 Design of R5N . 141
7.3.1 The Routing Table . 142
7.3.2 Fisheye Distance Vector Underlay Augmentation . . . 143
7.3.3 Routing . 143
7.3.4 Estimating Network Size 144

viii Table of Contents

7.3.5 Processing Requests and Replies 144
7.3.6 Replication . 145
7.3.7 Content Validation . 148
7.3.8 Adversary Model . 149

7.4 Mathematical Evaluation . 153
7.4.1 Hops to Reach a Nearest Peer 153
7.4.2 Total Hops – Routing with Sufficient Replication . . . 166
7.4.3 Comparison and Discussion 170

7.5 Markov Mixing Times . 170
7.6 Experimental Results . 171

7.6.1 Implementation Details 172
7.6.2 Emulation Framework for Testing and Profiling 173
7.6.3 R-Kademlia . 174
7.6.4 Network Performance 175
7.6.5 Replication . 175
7.6.6 Malicious Peers . 179

7.7 Extended Data . 182
7.7.1 Small Scale Results . 182
7.7.2 Large Scale Tests . 190

7.8 Conclusion . 199

8. Conclusion and Future Work 201
8.1 Future Work . 201

Bibliography 203

LIST OF FIGURES

2.1 Freenet: Pseudo-code for GET request routing 20

2.2 Freenet: Swap Example . 22

2.3 Freenet: GET request illustration 23

2.4 Freenet: PUT request illustration 25

2.5 Freenet: attack example; post-attack topology 26

2.6 Freenet attack: clustering effect over time, 800 nodes 30

2.7 Freenet attack: clustering effect over time, 400 nodes 31

2.8 Freenet attack: number of nodes successfully attacked over
time . 32

2.9 Freenet attack: average path length, node-to-node routing,
before and after attack . 34

2.10 Freenet attack: average path length, data routing, before and
after attack . 35

2.11 Freenet attack: average path length, data routing w/attack,
including dead-end paths . 36

2.10 Freenet attack: data loss in 800 node network, varying num-
bers of attackers . 38

2.11 Freenet attack: hop-count metrics, multiple topologies 39

2.12 Freenet attack: attack success on multiple topologies 40

2.11 Freenet: effect of churn on location distribution 42

3.1 Autonomous NAT traversal: ICMP technique illustration . . 49

4.1 Tor: ideal attack diagram . 61

4.2 Tor attack: client JavaScript code for attack 62

4.3 Tor attack: Tor internal queuing behavior 64

4.4 Tor attack: effect on latency observations 71

4.5 Tor attack: result data plotted as histogram 74

4.6 Tor attack: χ2 analysis on attack data 75

4.7 Tor attack: cumulative χ2 method data 75

4.8 Tor attack: cumulative χ2 method with multiple peers 76

4.8 Tor attack: cumulative χ2 method with multiple peers 77

4.9 Statistical analysis of histograms 82

4.10 Tor attack: plots of original attack on modern Tor network . 87

4.11 Tor attack: plotting Murdoch and Danezis attack data using
our plot format . 90

x List of Figures

4.12 Tor attack: data from Murdoch and Danezis method using
our histogram format . 92

5.1 Distance Vector: GNUnet architecture example 97
5.2 Distance vector: message sending using FBDV 99
5.3 Distance vector: neighborhood size estimate 100
5.4 Distance vector: onion routing encryption in FBDV 102
5.5 Distance vector: details of FBDV encryption process 103
5.6 Distance vector: FBDV routing table example 104
5.7 Distance vector: FBDV routing table example, after adding

a peer . 105

6.1 GNUnet testbed: peer life cycle illustration 114
6.2 GNUnet DHT Profiler: trial scheduling web page 122
6.3 GNUnet DHT Profiler: completed trial overview 125
6.4 GNUnet DHT Profiler: Trial detail webpage 126
6.5 GNUnet DHT Profiler: query detail view 127
6.6 GNUnet DHT Profiler: full route detail view 128
6.7 GNUnet DHT Profiler: related request route detail view . . . 129
6.8 GNUnet DHT Profiler: database loading time comparison . . 131

7.1 R5N : Kademlia routing in restricted-route topology 136
7.2 R5N : common restricted-route networks 137
7.3 R5N : Illustrating nearest peer definition 154
7.4 R5N : Expected random routing vs. emulation results 161
7.5 R5N : routing hops required per replica 176
7.6 R5N : average hops per replica, without max hops 177
7.7 R5N : number of replicas present over time 178
7.8 R5N : compare GET requests success rate to Kademlia w/-

malicious droppers, 2025 total peers 179
7.9 R5N : compare GET requests success rate to Kademlia w/Sy-

bil attack, 2025 total peers 180
7.10 R5N : Small scale tests, unrestricted topology varying α . . . 184
7.11 R5N : Small scale results, Sybil attack, InterNAT Topology

varying NATed % . 185
7.13 R5N : Small scale Erdős-Rényi topology, varying α w/Sybils . 189
7.14 R5N : Large scale testing, 5,000 peers, malicious droppers . . 191
7.15 R5N : Large scale testing, 5,000 peers, malicious Sybil peers . 193
7.16 R5N : routing hops required per replica, 5,000 peers 194
7.17 R5N : Large scale testing, 10,000 peers w/malicious Sybil peers195
7.18 R5N : 20,000 peers, Sybil attack 197
7.19 R5N : More than 20,000 peers 198

LIST OF TABLES

2.1 Performance metrics for DHTs 17
2.2 Comparison of DHT designs 17
2.3 Freenet attack: attack success varying parameters 33

3.1 Autonomous NAT traversal: experimental results 51

4.1 Top ten χ2 values out of 251 peers 78
4.2 Top ten χ2 values out of 200 peers 79
4.3 Top ten latency values out of 200 peers 79
4.4 Confidence levels for attack 83
4.5 Standard deviations from mean 83
4.6 Tor attack: Murdoch and Danezis correlation on modern Tor

network . 88

6.1 GNUnet testing: GNU/Linux configuration options 112
6.2 GNUnet testbed: topology generators 117
6.3 GNUnet testbed: initial topology options 117
6.4 GNUnet testbed: performance details 121
6.5 GNUnet testbed: memory consumption for GNUnet processes 121
6.6 GNUnet DHT Profiler: trial configuration options 124

7.1 R5N : nearest peers in topologies 146
7.2 R5N : bandwidth required for datastore exhaustion attack . . 152
7.3 R5N : average hops comparison with Kademlia 175

xii List of Tables

1. INTRODUCTION

Routing algorithms are at the heart of any large-scale networking applica-
tion including P2P file-sharing [32, 49, 148, 173], P2P conferencing [52, 186]
and interactive multi-player gaming [48]. Of course, any Internet application
utilizing TCP or UDP uses IP routing. Despite the ubiquity and necessity of
routing algorithms, most have serious security problems. These algorithms
enable participating malicious operators to potentially disrupt network op-
erations. Most operators are trustworthy most of the time; however, as we
show in Chapters 2 and 4, a few malicious participants often have the ability
to circumvent fundamental security goals of the respective network.

A common task for distributed systems is data storage. Distributed
hash tables (DHTs) are a type of distributed data structure that provide
operations to store and retrieve key/value pairs. Existing DHTs typically
accomplish routing in O(log n) steps under the assumption that any node
in the network is able to directly communicate with any other node in the
network [112,153,173,187]. Security designs for existing DHTs [144,154,167]
typically assume trusted authorities authenticating the participants, thereby
limiting the participation of malicious peers.

This thesis covers the motivation, related work, design, implementation
and evaluation of a secure DHT that avoids the need for participants or
operators to be authenticated by a trusted authority. We call the result-
ing network open since it allows new users to join at any time without
pre-conditions. Another major difference between our design and previous
designs is that we do not assume universal connectivity between all peers in
the network; we only require that short paths exist between all peers as is the
case in Small-World networks [183]. We term networks which lack univer-
sal connectivity restricted-route networks, including networks restricted by
network address translation (NAT), firewalls or physical restrictions. Small-
World networks are a specific type of restricted-route network that fulfills the
“short path” requirement; these are the topologies our design is primarily
focused on.

The remainder of this chapter further describes and motivates the op-
erating environment and goals for our system. In Chapter 2 we show that
Sandberg’s secure routing algorithm for restricted-route networks [158] is in
fact, not secure. Specifically, participating malicious nodes can severely de-
grade the performance of the routing algorithm and the storage capacity of
the network. Chapter 3 outlines the need for NAT traversal [151] techniques

2 1. Introduction

in any modern P2P network, and details our NAT punching technique which
operates without the use of a trusted third party. NAT traversal is necessary
for P2P networks to improve connectivity, especially when significant por-
tions of Internet users are behind NAT. Most P2P networks assume universal
connectivity, so more connections than are possible with NAT traversal is
generally useful. Chapter 4 describes a design flaw discovered in and an at-
tack on Tor [45]; which uses onion routing to anonymize peer’s actions. This
practical attack prompted us to avoid the design flaw in our implementation
of a locally bounded distance vector protocol which includes features similar
to Tor. Chapter 5 briefly describes the motivation and implementation of
the distance vector protocol designed to provide additional connectivity in
restricted-route networks. Like NAT traversal, increasing connectivity in re-
stricted route networks is desirable so that higher level routing algorithms,
such as our DHT routing algorithm, are able to route efficiently. In or-
der to show that our routing algorithm performs as expected under varying
conditions, we have created a fully distributed emulation framework which
we use to perform large scale testing. This testing and profiling framework
is described in Chapter 6. Chapter 7 outlines our design of a robust and
simple routing algorithm and discusses why our algorithm improves upon
extant designs. We provide a mathematical analysis of certain aspects of the
routing algorithm and reflect on the effects of our design choices. Finally,
Chapter 7 provides a wide range of experimental results obtained using our
testing framework. These results showcase the performance of an imple-
mentation of our design under multiple topologies, network sizes and in the
presence of malicious participants.

1.1 Network Environment

The Internet was intended to be a decentralized system of organizations
and networks providing end-to-end connectivity between any two hosts us-
ing TCP/IP [26]. Addressing on the Internet is hierarchical, with Inter-
net service providers (ISPs) assigning contiguous sub-ranges of numerical
addresses to their customers. These hierarchical address spaces form Au-
tonomous Systems (ASes) within which simple intra-domain prefix-based
routing algorithms such RIP [78] and OSPF [121] executed by routers under
the control of a single trusted entity are the norm.

There are many attacks on these low level routing algorithms [12–14,
77], such as forcing routing on a subnet to go through a specific malicious
host or denying access to specific IP addresses. These problems are well
understood and workarounds exist [23, 50, 83, 121]; however, they typically
require network operations to be authorized by a trusted authority, and do
not address scalability limitations of these routing algorithms.

Routing between ASes is typically controlled by the Border Gateway
Protocol (BGP) [145]. BGP can be tricked by malicious or incompetent AS

1.1. Network Environment 3

operators into routing information to the wrong AS or via inefficient paths.
There are two recent infamous examples of exploiting BGP in this way. The
first happened when Pakistan ISP’s attempted to block YouTube [84] by
redirecting Pakistani users to a null interface. A misconfiguration updated
the routes for most Internet users, thus globally blocking most access to
YouTube [31]. This was a mistake, but more intelligent intentional efforts
using the same family of techniques allows man-in-the-middle attacks where
inter-domain traffic can be undetectably viewed by a third party [88]. It re-
mains a mystery whether the second incident was a mistake or intentional.
Regardless, in April, 2010 a Chinese AS operator claimed roughly 15% of all
Internet routes for around 20 minutes [19]. The possibility of combining this
type of attack with the insecurity inherent in the extant public key infras-
tructure (PKI, Section 1.1.3) widely used to secure Internet communication
calls into question how “secure” these communications truly are.

In addition to BGP, there are a number of protocols and systems in
place on the Internet that form the basis of most IP communication. It
is important to understand what constraints we are under when designing
a protocol for the Internet, so we describe these realities and some of the
problems that they can lead to in the remainder of this section.

1.1.1 Network Address Translation (NAT)

NAT was introduced to extend the lifetime of IPv4 (the main addressing
scheme used on the Internet) because of address space exhaustion. NAT [54,
168] has made the assumption of universal connectivity between devices
on the Internet unrealistic. NAT hides multiple addresses on an internal
network behind one globally routable address. Specifically, this means that
computers behind the NAT device can initiate communication with globally
routable addresses, but globally routable addresses cannot generally initiate
communications to devices on the internal network. Some estimates put the
number of Internet systems behind NAT at up to 70% [27].

NAT clearly creates problems for applications that rely on universal
connectivity. This has forced designers of network applications to account
for limitations imposed by NAT. Common methods for dealing with NAT
include NAT punching, STUN and UPnP. We have developed a new au-
tonomous NAT traversal technique, described in Chapter 3. None of these
techniques are universally successful at providing connectivity to peers be-
hind NAT. Some networks are restricted for other reasons, such as ad-hoc
wireless networks where physical distance between peers makes certain con-
nections impossible. Thus, applications designed to work for NATed users
cope with problems resembling those commonly found in ad-hoc networks,
including wireless sensor networks. As a result, routing algorithms that
work well for restricted-route networks will be applicable to a broad range
of applications including Internet routing with NAT and ad-hoc networks.

4 1. Introduction

1.1.2 Domain Name System (DNS)

The DNS [118] is arguably the most important application on the Internet.
DNS enables canonical names to be resolved to IP addresses. DNS servers
are responsible for storing the name to IP address mapping so that user
applications can discover this information. DNS servers are arranged in a
tree hierarchy with so-called root servers at the top. DNS servers at each
subsequent level down store more specific information. In this way, the
responsibility for storing mappings is distributed over the tree. When a
user application needs to discover the IP address related with a canonical
name the tree is traversed (first up then down) until the query is resolved.
DNS name servers also cache results as an optimization, which allows known
results to be returned without fully traversing the tree.

There have been major problems with DNS [11,155,160,172]; due to the
treelike structure and caching. When a DNS name is “hijacked” or a cache
“poisoned”, clients retrieve an incorrect mapping between domain name and
IP address, causing them to trust or route to the wrong IP address. Domain
name system security extensions (DNSSEC) are a method currently being
deployed to solve DNS security issues. DNSSEC makes each DNS record ver-
ifiable; allowing each client to check the name to IP address mapping. This
removes the ability of an attacker to perform a man-in-the-middle attack
by returning his IP address instead of the correct one and then monitoring
the client/server connection. However, the true problem with DNSSEC is
inherent in the design; a hierarchy of trust, where malicious behavior or
benevolent incompetence at the root of the tree is disastrous.

In DNS, the canonical name can be thought of as a key being searched
for, and the IP address is the data returned. Thus, DNS could be imple-
mented over a secure DHT, which provides the same distributed key map-
ping. In fact, designs for such systems already exist [134], but have not seen
widespread use. Using such a DNS over DHT solution would reduce the
reliance of DNS on root servers. This could conceivably reduce some of the
aforementioned problems with DNS.

1.1.3 Public Key Infrastructure

The most widely used method for providing secure communication on the
Internet today is based on the secure sockets layer/transport layer security
(SSL/TLS) [41], which is a protocol for encrypting communication between
a client and server. This is based on a hierarchical public key infrastructure,
where a set of public keys for certain organizations are known and trust can
be delegated through trust chains. These high level, or “root” certificates
are also known as the trust anchors of the system. They provide the basis
from which the rest of the system derives its security. SSL works as follows; a
client has a list of “trusted” public root certificates, the server (and possibly

1.1. Network Environment 5

also the client) has obtained a private certificate signed by one of the private
root certificates (or via intermediate certificate authorities or CA’s). Based
on this verifiable signature the client trusts that the server is valid, and
from these certificates an encrypted tunnel can be created between client
and server.

This system is easily understood, and has worked rather well since its
inception, but there are a number of glaring flaws. The first problem is
serious; clients are forced to put trust in certificate authorities may or may
not actually be trustworthy. Common browsers contain up to 124 [51] root
certificates, and there are upwards of 650 CA’s which are able of sign certifi-
cates. It is impossible for users to actually trust all of these, and any of them
can sign certificates for any domain. As an example, if a “rogue” CA signed
a citibank.com certificate for a malicious operator, that operator could per-
form man-in-the-middle attacks for citibank.com users. More troubling,
there have been reports of lax practices by certificate issuers, including is-
suing certificates for incorrect domains and wild-card certificates [51]. Also,
government operated CA’s such as those run by the United States depart-
ment of homeland security and the Chinese government raise the possibility
of silent interception, monitoring, etc. of “secured” communications for
users.

There have been multiple proposed fixes for SSL, including certificate
revocation lists (CRLs) and the on-line certificate status protocol (OCSP).
CRLs are lists of previously issued certificates that are no longer valid. CRLs
are a good idea, though modern browsers do not use them. Issues cited by
browser developers include the dynamic nature and large size of CRLs which
make distribution and updates prohibitively costly. OCSP is a protocol
allowing clients to query a server about the status of a certificate. The
server checks a live CRL and issues a response regarding certificate validity.
This shifts the CRL update issue from each client to a centralized server.
While some browsers support OCSP, it is up to the CAs to provide a working
implementation; thus, a failure to receive a response to an OCSP request is
not treated as a revocation.

Perhaps the best example of the insecurity of SSL and the failure of
CRLs and OCSP is an incident that occurred in March, 2011. At this
time, a “hacker” infiltrated a CA’s systems and issued signed certificates
for nine high risk domains including login.live.com, mail.google.com

and login.skype.com. Using these certificates the attacker could have
performed undetectable man-in-the-middle attacks. The most worrisome
details of this attack are not directly observed consequences but how the
breach was handled. Specifically, the CA in question waited a number of
days before informing browser developers, and over 9 days before publicly
revealing the breach. More worrying still, it may have never become pub-
lic knowledge but for the sharp watch kept on CRL and browser updates
released. An independent researcher released a blog report [3] detailing

6 1. Introduction

signs of the breach which may have prompted the public admission days
later. Also, because of the sad state of CRLs and OCSP, browser source
code modification (explicitly blocking the compromised certificates) was re-
quired. Only users that updated their browser binaries were protected from
these “revoked” certificates. Clearly, this is not a tenable way to provide
good security to users in the Internet.

1.1.4 Trust Agility

Mentioned previously, DNSSEC is one fix for the man-in-the-middle attack
possible on the public key infrastructure which employs SSL for domain
security. The problem with DNSSEC is that it is based on essentially the
same chain-of-trust relationships as SSL. Trust is anchored in operating
system defined certificates, just like SSL (only SSL’s are in the browser),
and trust is still delegated to third parties including top level domains and
registrars. While DNSSEC is an improvement over DNS, it remains a system
where users must put their trust in others, who may not always have user
security at the forefront of their interests. This problem has been stated as
a lack of so called “trust agility” [109], where users are unable to selectively
choose where they anchor their trust, and be able to alter that choice in
the future. With an open P2P network, on the other hand, there are no
trust anchors. Replacing DNS with an open P2P based DHT changes the
problem of trust to one of having the correct data stored in the network.

1.1.5 Summary

In this section we have described some of the issues that are prevalent in the
networking environment that makes up the Internet. Due to the common
usage of these designs and since they are required to function for the millions
of Internet users, change comes very slowly to fix their issues. Some of these
problems stem from how routing works in the network underlay. Some of
these issues also limit the design of new routing algorithms. However, new
techniques for routing have been developed, mainly in the domain of peer-to-
peer (P2P) networks. Routing is important in P2P communication between
peers at the overlay level. We provide an introduction to P2P networks in
the next section.

1.2 Peer-to-Peer (P2P) Networks

Distributed systems are those that mete out work or responsibility across
a set of nodes in order to pool the resources provided by the collective
participants of the system. A pure P2P system is a distributed system in
which all participants are “equal”. This generally means that responsibility
is evenly distributed among the members, and that no single node is more

1.2. Peer-to-Peer (P2P) Networks 7

powerful than any other. This type of design has some clear advantages
over centralized system designs, such as lacking a single point of failure,
distribution of bandwidth or computation across peers, etc. P2P systems
are commonly scalable; as more nodes are added to the system they add to
the total resources of the system. In a client/server system, adding clients
puts more load only on servers and therefore does not scale without adding
more servers (which increases costs for the server operator). P2P systems
allow load to be spread across all participants, which provides automatic
load balancing compared to a centralized server handling all the load in the
network.

P2P networks also allow new protocols to be developed for networking
without the need to rewrite the networking stack on the operating system
level. This is facilitated by the overlay nature of P2P systems. It can be
argued that IP is fundamentally a P2P design; enabling peers in a network
to route data to each other. P2P overlay networks may reveal new (and
better) designs that can eventually be used at lower levels for routing. Of
course, there are trade-offs which must be considered when designing any
network; P2P networks work well in cases where decentralization, openness
and scalability are required.

There are some drawbacks to P2P systems, such as the lack of trust
between peers, the spread of malicious data and sometimes high latencies.
Since peers often should not trust one another, additional security needs to
be incorporated into P2P designs. Viruses and worms have been injected
into P2P networks and disguised in order to get unsuspecting and overly
trusting peers infected. Low resource peers participating in P2P networks
can degrade performance for other peers. This makes it difficult or impos-
sible to provide guarantees on data transfer rates or the wall-clock time
required to perform a computation.

Definition 1.1 (P2P Network). A network of peers in which all peers par-
ticipate in both providing and utilizing services.

1.2.1 Centralized P2P

A centralized P2P system is one in which participants can freely join the
network, but contact a central authority for certain required information.
Probably the best example of a centralized P2P system used on a large
scale is BitTorrent [32]. BitTorrent is a content distribution protocol that
leverages the decentralized nature and low cost of P2P. With BitTorrent,
a single distribution source (the central “authority”) releases content for
download. As peers in the network download the content, they also upload
parts of it to other peers. At the start, there is only a single source from
which to download the content, but each downloading peer also acts as a
source. In this way the original distributor need not provide the capacity

8 1. Introduction

in bandwidth for each peer that downloads the file, and the load is spread
across all peers. BitTorrent traffic has been estimated to account for between
30 and 75 percent of all Internet traffic [162]; these numbers vary widely
regionally, but BitTorrent certainly accounts for a significant portion of all
Internet traffic today.

Another example of a centralized P2P system was Napster [62]. File
sharing may have been the first mainstream use of P2P, and Napster [62]
certainly brought it to the average computer user. Napster (in its original
incarnation) was a system in which peers could join the network and share
files with other peers. Napster was a P2P network because transfers were
made between peers directly, but it was centralized because a central server
was used to index which peers were storing which content.

Centralized P2P systems work well because they do not require a sophis-
ticated routing algorithm. The indexing or controlling central server simply
stores all the information required to connect peers, or parcels out jobs to
be performed by the peers in the network. However, the centralized aspect
of these networks can also be a problem as the central server responsibilities
may not scale as new peers are added, and the central server may represent
a single point of failure.

1.2.2 Pure P2P

A pure P2P system is a network in which peers can participate without the
need for any central authority and peers are supposed to operate according
to the same protocol. Pure P2P systems can be used for distributed com-
putation, such as SETI@home [2] and Globus [66]. These allow networks of
peers to pool processing power to solve computationally intensive problems.
Pure P2P designs are used for diverse forms of communication including
VoIP [186] teleconferencing, instant messaging [156] and on-line collabora-
tion [52]. Other pure P2P systems include mobile sensor networks [96],
ad-hoc wireless and mesh networks [174], TV [105,127], and anonymity sys-
tems [190].

Pure P2P designs are the most decentralized P2P systems, as no peers
in the network are required to have more resources or responsibility than
any other peers. However, resource discovery can be more difficult in these
networks, as well as connecting peers in an appropriate topology.

1.2.3 Super-peer P2P

A super-peer P2P system is one which combines elements of centralized and
pure P2P designs. Super-peer designs are made up mostly of peers with
relatively few connections. However, there are some peers that have many
more connections than normal peers; these peers are known as super-peers
or ultra-peers. The main advantage of these super-peers is that routing

1.3. Design Goals 9

requires fewer hops due to the high level of connectivity.
A popular super-peer network is Gnutella [49], a file sharing design that

has seen widespread use [7]. Average Gnutella peers have approximately
3 connections; super-peers in the network by design have around 32 peer
connections [49]. The main disadvantage of a super-peer design is that
the super-peers are required to have more connections and provide more
resources than other peers. The popular VoIP software, Skype, utilizes
super-peers to provide connectivity for users behind NAT. In December of
2010, a software update was released which caused communication with
these super-peers to fail. As a result, the number of Skype users plummeted
from 23M to less than 2M over the course of hours [135]. While the outage
lasted less than a few days for most users, this underscores how important
a few key peers are in super-peer networks.

Super-peers also raise questions about the security of users of the P2P
network. Malicious participants in the network could “volunteer” to become
super-peers and conceivably monitor the actions of a large number of users
in the network. This ranges from benign behavior such as monitoring the
size of the network to malicious goals like a government determining dissi-
dents in order to persecute them. While these actions are possible in any
P2P network (depending on the security of the design), super-peers provide
obvious targets for attacks.

1.3 Design Goals

Our design is a pure P2P system due to our focus on openness and decen-
tralization. In this section we outline common goals for P2P systems, and
explain which of these goals we focus on with our design and which goals
are less important.

Definition 1.2 (Efficient Routing). A P2P routing algorithm is efficient if
routing can be performed sub-linearly; as the number of peers in the network
(n) increases, the number of operations per request increases sub-linearly
(i.e. O(

√
n), O(log n), etc.).

A specific concern of DHT designs, and P2P routing algorithms in gen-
eral is efficiency. Efficiency is defined in terms of the number of nodes a
request traverses before routing terminates. This measure is referred to as
the number of “hops” a request must travel before termination. We relate
the number of hops that a query takes to the number of nodes in the network
n; therefore efficiency also encompasses scalability.

The best performance achieved in other DHT networks [112,143,173,187]
is O(log n), the theoretical best case performance [139] with a routing ta-
ble of size O(log n). More efficient networks (such as [49, 62]) typically
rely on a centralized authority, “super peers” or routing tables with greater
than O(log n) entries. Networks with a hierarchical structure are also able

10 1. Introduction

to achieve better efficiency than DHT networks [111], but these networks
require peers at the “top” of the hierarchy to handle more requests than
those “lower” levels. DHT routing algorithms which achieve routing in
O(log n) steps require universal connectivity, so that routing tables can
be constructed optimally. This routing table construction creates a highly
structured network which enables efficient routing. However, these algo-
rithms perform much worse in restricted-route topologies, where the desired
network structure is impossible to achieve.

Definition 1.3 (Decentralization). A decentralized [93] routing algorithm
operates only using local knowledge; including immediate neighbors, the route
traversed so far, and the relation of the target of the request to the overall
structure.

Decentralization is an important goal for our system, so that it will work
in a self forming manner and not be reliant on any trusted third party, or give
certain peers more control over the network than others. We will consider
our system to have fulfilled the goal of decentralization if all peers are equally
distrusted and responsibility for requests and data storage is evenly spread
amongst those peers.

Our network design must not assume any form of centralized control,
meaning there is no way to authenticate peers in the network, nor is there a
central point of contact that all peers can communicate with. This restric-
tion comes from two points. First, centralization either requires a trusted
third party or some system of distributed trust (which requires too much
overhead to maintain and generally needs a routing algorithm to begin with).
Second, in a restricted-route network peers may be participating in the net-
work but unable to directly communicate with a central authority. More
generally, two arbitrary peers can not be assumed to be able to communi-
cate directly in a restricted-route network.

A subset of goals important for our design are security related. For
instance, in our design, we leave the problems of authenticity (data verifica-
tion), integrity (data cannot be altered) and confidentiality (data cannot be
viewed in transit) to higher-level protocols [17, 30]. Common security goals
for routing algorithms encompass the rest of our definitions.

Definition 1.4 (Reliability). A routing algorithm is reliable if a route to
the intended target is found with high probability provided such a route exists
(and does not include malicious peers).

Reliability is arguably the most important property of a routing algo-
rithm; as such, it is crucial that our algorithm be reliable. Many DHT
designs are unable to provide guarantees that data stored in the system will

1.3. Design Goals 11

be retrievable by other peers with high probability. This limitation is caused
by two main problems, either the route through the network fails to find the
proper peer, or the peer responsible for the data is malicious.

Definition 1.5 (Fault-tolerance). A system is byzantine [97] fault-tolerant
if it functions in the presence of arbitrary behavior by participating peers.

Due to the openness and lack of trust inherent in our design, we must
make our system as fault tolerant as possible. This means that our system
needs to be resistant to DoS attacks and misbehaving peers. There are
many different kinds of attacks which must be considered, including those
described in Chapter 2 and Chapter 4.

We need to consider how malicious participants or adversaries affect the
network, and limit the harm they are able to do. This is a fundamental as-
pect of fault-tolerance, as the open nature of P2P networks makes them easy
targets for attacks. A fault-tolerant algorithm should not allow malicious
peers to use more resources in the network than non-malicious participants.
Also, requests should not able to be crafted such that they allow asym-
metric resource usage. Asymmetric resource attacks are possible in some
P2P networks, and are easy methods for performing denial of service (DoS)
attacks.

Definition 1.6 (Availability). A DHT provides good availability if data
previously stored in the network is returned with high probability.

Availability is a fundamental requirement for our design. Perfect avail-
ability is impossible, but provided that our algorithm finds data with high
probability (for some measure of “high probability”) is sufficient for our
goals. Availability also concerns distributing data across the network so it
cannot be lost unless a significant portion of peers go off-line, meaning data
remains in the network when nodes go off-line.

Definition 1.7 (Consistency). A routing algorithm provides consistent
performance if performance data shows little variation.

Little variation in this case generally translates to a small standard de-
viation in relation to the average value. A routing algorithm that provides
consistent performance is desirable because bandwidth and latency estimates
can be easily obtained. This is generally achievable if the routing algorithm
is deterministic, and identical requests will be routed the same way each
time. Consistency is not the focus of our routing algorithm, because we
have chosen other goals such as decentralization and fault tolerance to be of
greater importance.

Definition 1.8 (Anonymity). A routing algorithm provides anonymity if
the mapping between operations and the peer that performed those operations
cannot be determined.

12 1. Introduction

Anonymity is not currently a property that we have integrated into our
routing design. Though not precluded from our design, it is not essential for
our system. Providing strong anonymity is difficult, as shown in Chapter 4.
We incorporate some of the techniques of onion routing [71, 177] as a part
of our design, described in Chapter 5. Our usage of onion routing is not
intended to provide anonymity, though it could potentially be used to do so
in the future.

Definition 1.9 (Data Integrity). Data that is found in the DHT can be
verified as the correct data that was searched for.

There is inherent difficulty in guaranteeing that data returned by a rout-
ing algorithm is the correct data. For instance, the same “malicious” file
to one user may be the botnet kit searched for by another user. While this
is an important goal, it is problematic to provide at a low level, so we do
not focus on this goal at the routing algorithm level. High-level content
verification can be better provided by applications which use the low-level
DHT routing algorithm.

1.4 Methodology

So far we have described the design goals for a secure, decentralized DHT
routing algorithm for P2P networks. We describe our implementation in
detail in Chapter 7, but instead of jumping directly into the design and
implementation it is important to describe our methods for evaluation of
other protocols and systems in this domain. The general approach we have
is as follows: identify P2P systems that are in use that have requirements
similar to our own, study these designs from a security perspective, identify
any problems or flaws with these designs or implementations and evaluate
those issues for practical usage. By doing so, we are able to identify im-
portant factors that we then take into consideration with our design and
implementation. Evaluations which reveal some of these factors are the
topic of Chapter 2 and Chapter 4. We perform evaluations by performing
simulations or attacks on the real network based on the flaws we discover.
In some cases, specifically Chapter 3 and Chapter 5, we identify an extant
problem with the underlay topologies our P2P design is meant for. These
chapters provide background and steps towards mitigating these problems,
which enable our routing algorithm to perform properly. We then move on
to an explanation the framework for our design evaluation in Chapter 6,
then finally present the design and analysis in the Chapter 7.

The next chapter details the difficulty in making a secure routing algo-
rithm for restricted-route networks. This shows the importance of consider-
ing design goals, previous work, and potential adversaries and attack vectors
when designing a routing algorithm.

1.5. Summary and Overview 13

1.5 Summary and Overview

P2P systems and the applications built upon them make up a large portion
of the usage of the Internet today [162], yet they tend to lack good security
and efficiency or trade off one for the other. There is a demand for a secure
and efficient routing design which works well in the kind of networks used
today, which we provide in this thesis. The Internet, while a large and mostly
robust system, has a number of problems such as DNS poisoning and route
hijacking through BGP vulnerabilities that may never be completely fixed.
There is a need for a routing algorithm that works well both on the current
NAT restricted Internet as well as for other uses, such as in ad-hoc networks.
Before presenting our P2P routing algorithm which we provide as a partial
solution to these problems, we describe our research evaluating other P2P
routing algorithms. We also detail some of the work we have done to reduce
the effect of NAT and restricted route networks on P2P overlays in general.
The next chapter describes our detailed analysis of a first attempt at the
creation of a self organizing P2P overlay network for use in restricted-route
networks, and why this solution was found to be lacking in some of our
design goals.

14 1. Introduction

2. ROUTING IN THE DARK: PITCH BLACK

This chapter introduces Sandberg’s Freenet 0.7 routing algorithm, which
provides efficient routing in restricted-route networks. Before creating our
own routing algorithm design, we sought to evaluate extant designs that al-
ready claimed to provide solutions to the problem. After a detailed analysis,
we found that the Freenet routing algorithm does not provide an acceptable
solution to the problem, because a small number low-cost attackers are able
to severely disrupt the operation of the network. However, analyzing Sand-
berg’s routing algorithm has provided key insights into pitfalls to avoid when
designing our own. This Chapter is based on work previously presented at
ACSAC 2007 [59], and also the author’s master thesis [57].

2.1 Introduction

Fully decentralized and efficient routing algorithms for restricted route net-
works promise to solve crucial problems for a wide variety of networking ap-
plications. Efficient decentralized routing is important for sensor and general
wireless networks, peer-to-peer overlay networks and theoretically even next
generation Internet (IP) routing. A number of distributed peer-to-peer rout-
ing protocols developed in recent years achieve scalable and efficient routing
by constructing a structured overlay topology [33,72,112,143,173]. However,
all of these designs are unable to work in real-world networks with restricted-
routes. In a restricted-route topology, nodes can only directly communicate
with a subset of other nodes in the network. Such restrictions arise from a
variety of sources, such as physical limitations of the communications infras-
tructure (wireless signals, physical network topology), policies (firewalls) or
limitations of underlying protocols (NAT, IPv6-IPv4 interaction).

Recently, a new routing algorithm for restricted-route topologies was
proposed [158] and implemented in version 0.7 of Freenet, an anonymous
peer-to-peer file-sharing network [30]. The proposed algorithm achieves
routing in expected O(log n) hops for Small-World networks with n nodes
and O(log n) neighbors1 by having nodes swap locations in the overlay un-
der certain conditions. This significant achievement raises the question of
whether the algorithm is robust enough to become the foundation for the
large domain of routing in restricted-route networks.

1 Given only a constant number of neighbors, the routing cost increases to O(log2 n).

16 2. Routing in the Dark: Pitch Black

The research presented in this chapter shows that any participating node
in the Freenet network can severely degrade the performance of the rout-
ing algorithm by changing the way it behaves during the location swapping
portion of the protocol. Most of the guards in the existing routing imple-
mentation are ineffective or severely limited and in particular fail to reliably
detect the malicious nodes. Experiments using a Freenet testbed show that
a small fraction of malicious nodes can dramatically degenerate routing per-
formance and cause massive content loss in a short period of time. Our
research also illuminates why churn impacts the structure of the overlay
negatively, a phenomenon that was observed by Freenet users in practice
but has, to the best of our knowledge, never been explained.

The chapter is structured as follows. Section 2.2 describes related work
focusing on distributed hash tables and Small-World networks. Section 2.3
details Freenet’s distributed friend-to-friend (or, as termed by the Freenet
authors, “darknet”) routing algorithm for Small-World networks. The pro-
posed attack is described in Section 2.4, followed by experimental results
showing the effects of the attack in Section 2.5. Possible defenses and their
limitations are discussed in Section 2.7.

2.2 Related Work

2.2.1 Distributed hash tables

A distributed hash table is a data structure that enables efficient key-based
lookup of data in a peer-to-peer overlay network. Generally, the partici-
pating peers maintain connections to a relatively small subset of the other
participants in the overlay. Each peer is responsible for storing a subset of
key-value pairs and for routing requests to other peers. In other words, a
key property of the use of DHTs in a peer-to-peer setting is the need to
route queries in a network over multiple hops based on limited knowledge
about which peers exist in the overlay network. Part of the DHT protocol
definition is thus concerned with maintaining the structure of the network
as peers join or leave the overlay.

DHT designs can be characterized using the performance metrics given in
Table 2.1. Routing in DHTs is generally done in a greedy fashion and resem-
bles lookups in skip lists [141]. Table 2.2 summarizes the key properties of
various existing DHT designs. The table does not capture properties which
are hard to quantify, such as fault-tolerance. Given a uniform distribution
of keys, most existing DHT designs achieve near perfect load balancing be-
tween peers. Hosts that can provide significantly more resources than others
are usually accommodated by associating multiple locations in the overlay
with a single host. In some sense, those hosts are counted as multiple peers.

A major limitation of the DHT designs listed in Table 2.2 is that they
do not support routing in restricted-route topologies. These DHTs assume

2.2. Related Work 17

(1) Messages required for each key lookup

(2) Messages required for each store operation

(3) Messages needed to integrate a new peer

(4) Messages needed to manage a peer leaving

(5) Number of connections maintained per peer

(6) Topology can be adjusted to minimize per-hop latency (yes/no)

(7) Connections are symmetric or asymmetric

Tab. 2.1: Performance metrics for DHTs.

Chord [173] Pastry [153] Kademlia [112] CAN [143] RSG [72]

(1) O(log n) O(log n) O(log n) O(n−d) O(log n)
(2) O(log n) O(log n) O(log n) O(n−d) O(log n)

(3) O(log2 n) O(log n) O(log n) O(d+ n−d) O(log n)

(4) O(log2 n) O(1) O(1) O(d) O(log n)
(5) O(log n) O(log n) O(log n) O(d) O(1)
(6) no yes yes yes no
(7) asymmetric asymmetric symmetric symmetric asymmetric

Tab. 2.2: Comparison of DHT designs. The numbers refer to the list
of performance metrics given in Table 2.1. The value d is a
system parameter for CAN.

that it is generally possible for any peer to connect to any other peer. How-
ever, firewalls and NAT make this assumption unrealistic over the current
Internet, where large-scale studies have shown that over 70% of machines
are NATed [27].

In contrast to the DHT designs from Table 2.2, the Freenet routing
algorithm achieves expected O(log n) routing in restricted-route topologies
under the assumption that the restricted network topology has Small-World
properties.

2.2.2 Small-World networks

A Small-World network is informally defined as a network where the aver-
age shortest path between any two nodes is “small” compared to the size
of the network, where “small” is generally considered to mean at least loga-
rithmic in relation to the size of the network. Small-World networks occur
frequently in the real world [183], the most prominent example being social
networks [115].

Watts and Strogatz [183] characterized Small-World networks as an in-
termediate stage between completely structured networks and random net-
works. According to their definition, small world networks with n nodes

18 2. Routing in the Dark: Pitch Black

have on average k edges per vertex where n >> k >> log n. They define a
clustering coefficient which captures the amount of structure (clustering) in
a given network. Small-World networks are then networks with a cluster-
ing coefficient significantly larger than the coefficients of completely random
networks and with average shortest path lengths close to those of completely
random networks. Watts and Strogatz’ work explains why short paths exist
in real-world networks.

Kleinberg [92,93] generalized Watts and Strogatz’ construction of Small-
World networks and gave sufficient and necessary conditions for the existence
of efficient distributed routing algorithms for these constructions. Klein-
berg’s model for distributed routing algorithms does not include the possi-
bility of nodes swapping locations, which is a fundamental part of Freenet’s
“darknet” routing algorithm.

2.3 Freenet’s “darknet” routing algorithm

Freenet [30] is a peer-to-peer network where the operator of each node spec-
ifies which other peers are allowed to connect to the node. The main reason
for this is to obscure the participation of a node in the network – each
node is only directly visible to the friends of its’ operator. Peer-to-peer net-
works that limit connections to friend-to-friend interactions are sometimes
called darknets. Given that social networks are Small-World networks and
that Small-World networks commonly arise given a certain amount of “ran-
domness” in the graph construction, it is realistic to assume that Freenet’s
darknet is a Small-World network. The routing restrictions imposed on
the Freenet overlay could technically model arbitrary network limitations;
consequently, an efficient distributed routing algorithm for such a topology
should easily generalize to any Small-World network.

2.3.1 Network creation

The graph of the Freenet network consists of vertices, which are peers, and
edges, which are created by friend relationships. An edge only exists between
peers if both operators have agreed to the connection a priori. Freenet
assumes that a sufficient number of edges (or friend relationships) between
peers will exist so that the network will be connected.

Each Freenet node is created with a unique, immutable identifier and a
randomly generated initial location. The identifier is used by operators to
specify which connections are allowed, while the location is used for routing.
The location space has a range of [0, 1) and is cyclic with 0 and 1 being the
same point. For example, the distance between nodes at locations 0.1 and
0.9 is 0.2.

Data stored in the Freenet network is associated with a specific key from
the range of the location space. The routing algorithm transmits GET and

2.3. Freenet’s “darknet” routing algorithm 19

PUT requests from node A to the neighbors of A starting with the neighbor
with the closest location to the key of the request.

2.3.2 Operational overview

The basic strategy of the routing algorithm is to greedily forward a request
to the neighbor whose location is closest to the key. However, the simple
greedy forwarding is not guaranteed to find the closest peer – initially, the
location of each peer is completely random and connections between peers
are restricted (since a peer can only establish connections to other peers
which the operator has explicitly allowed). Consequently, the basic greedy
algorithm is extended to a depth-first search of the topology (with bounded
depth) where the order of the traversal is determined by the distance of the
nodes to the key [159]. Figure 2.1 shows the routing algorithm for GET op-
erations in pseudo-code. A PUT operation is routed in the same fashion and
reaches exactly the same peers as an unsuccessful GET operation. In addi-
tion, Freenet replicates content transmitted as part of a GET response or as
part of a PUT operation at nodes that are encountered during the routing
process where the node’s location is closer to the key than the location of
any of the peer’s neighbors.

Both GET and PUT requests include a hops-to-live value which is ini-
tially set to the node’s pre-set maximum and used to limit traversal of the
network. Each request also includes the closest location (in relation to the
key) of any node encountered so far during the routing process.

2.3.3 Location swapping

To make the routing algorithm find the data faster, Freenet attempts to
cluster nodes with similar locations. Let L(n) denote the current location
of node n. The network achieves this by having nodes periodically consider
swapping their locations using the following algorithm:

1. A node A randomly chooses a node B in its proximity and initiates
a swap request. Both nodes share the locations of their respective
neighbors and calculate D1(A,B). D1(A,B) is the product of the
existing distances between A and each of A’s neighbors |L(a)− L(n)|
multiplied by the product of the existing distances between B and each
of B’s neighbors.

D1(A,B) =
∏

(A,n)∈E

|L(A)− L(n)| ·
∏

(B,n)∈E

|L(B)− L(n)| (2.1)

2. The nodes also compute D2(A,B), the product of the products of the
differences between their locations and their neighbors’ locations after

20 2. Routing in the Dark: Pitch Black

a potential swap:

D2(A,B) =
∏

(A,n)∈E

|L(B)− L(n)| ·
∏

(B,n)∈E

|L(A)− L(n)| (2.2)

3. If the nodes find that D2(A,B) ≤ D1(A,B), they swap locations, oth-

erwise they swap locations with probability D1(A,B)
D2(A,B) . The deterministic

swap always decreases the average distances of nodes with their neigh-
bors. The probabilistic swap is used to escape local minima.

The overlay becomes semi-structured as a result of swapping locations;
the routing algorithm’s depth first search can utilize this structure in order
to find short paths with high probability. Sandberg’s thesis [158] shows
that the Freenet routing algorithm converges towards routing in O(log n)
steps (with high probability) under the assumption that the set of legal
connections specified by the node operators forms a Small-World network.
This is a significant result because it describes the first fully decentralized
distributed hash table (DHT) design that achieves O(log n) routing with
(severely) restricted-routes. Most other DHT designs make the unrealistic
assumption that every node is able to directly communicate with every other
node [72,112,153,173].

Fig. 2.1: Pseudo-code for routing of a GET request.

1. Check that the new GET request is not identical to recently processed
requests; if the request is a duplicate, notify sender about duplication
status, otherwise continue.

2. Check local data store for the data; if the data is found, send response
to sender, otherwise continue.

3. If the current location is closer to the key than any previously visited
location, reset hops-to-live to the maximum value.

4. If hops-to-live of the request is zero, respond with data not found,
otherwise continue.

5. Find the closest neighbor (in terms of peer location) with respect to the
key of the GET request, excluding those routed to already. Forward
the request to the closest peer with a (probabilistically) decremented
hops-to-live counter. If valid content is found, forward the content to
sender, otherwise, repeat step 5.

2.3. Freenet’s “darknet” routing algorithm 21

2.3.4 Content Storage

Each Freenet node stores content in a datastore of bounded size. Freenet
uses a least-recently-used content replacement policy, removing the least-
recently-used content when necessary to keep the size of the datastore below
the user-specified limit.

2.3.5 Example

Figure 2.2a shows a small example network. Each node is labeled with its
location (Ln ∈ [0, 1)) in the network. Bi-directional edges indicate direct
connections between nodes. In a friend-to-friend network, these are the
connections that were specifically allowed by the individual node operators,
and each node is only aware of its immediate neighbors. Similarly, in an ad-
hoc wireless network, the edges would indicate which nodes could physically
communicate with each other. While our example network lacks cycles,
any connected graph is allowed; the Small-World property is only required
to achieve O(log n) routing performance, as the algorithm works for any
connected graph.

0.60

0.10

.50

0.90

Swap?

0.30

.40

0.45

0.85

0.40

.25

0.25

.35

(a) An example network with two nodes considering a swap. The
result of the swap equation is D1 = .60 * .65 * .25 * .50 = .04875
and D2 = .30 * .35 * .05 * .80 = .0042. Since D1 > D2, they swap.

Fig. 2.2

The network illustrated in Figure 2.2a happens to have an assignment
of locations that would cause the nodes with locations 0.60 and 0.90 to per-
form a swap in order to minimize the distance product from Equation (2.1).
Figure 2.2b shows the new assignment of locations after the swap. Note

22 2. Routing in the Dark: Pitch Black

0.90

0.10

0.20

0.60

0.30

0.30

0.45

0.85

0.40

0.05

0.25

0.35

(b) Post-swap

Fig. 2.2: This figure shows an example network before and after a swap
occurs.

that after a swap each node retains exactly the same set of connections; the
only change is in the location identifiers of the nodes. This change in node
locations impacts the order of traversal during routing.

Figure 2.3 shows how a GET request would be routed after the swap
(with a maximum value of hops-to-live larger or equal to two). Starting
at the node with location 0.90 and targeting the key 0.23, the node picks
its closest neighbor (with respect to the key), which is 0.10. However, 0.10
does not have the content and also lacks other neighbors to route to and
thus responds with a “content not found” message. Then 0.90 attempts its’
second-closest neighbor, 0.60. Again, 0.60 does not have the content, but
it has other neighbors. The 0.25 neighbor is closest to 0.23. The content
is found at that node and returned via 0.60 (the restricted-route topology
does not allow 0.25 to send the result directly back to 0.90).

Finally, Figure 2.4 illustrates how Freenet routes a PUT request with a
maximum value of 1 for hops-to-live (in practice, the maximum value would
be bigger). The algorithm again attempts to find the node with the closest
location in a greedy fashion. Once the closest node (0.90 in this case) is
found, the request is sent to all neighboring nodes. These neighbors do not
forward the request (since 0.90 is closer to the key than they are), thus
ending the routing process.

2.4. Security Analysis 23

2.4 Security Analysis

The routing algorithm works under the assumption that the distribution of
the keys and peer locations is random. In that case, the load is balanced.
In particular, all nodes are expected to store roughly the same amount of
content and all nodes are expected to receive roughly an equivalent numbers
of requests.

The basic idea behind the attack is to de-randomize the distribution of
the node locations. The attacker tries to cluster the locations around a par-
ticular small set of values. Since the distribution of the keys is still random
and independent of the distribution of the node locations, the clustering of
node locations around particular values results in an uneven load distribu-
tion. Nodes within the clusters are responsible for less content (because
many other nodes are also close to the same set of keys), whereas the load
for nodes outside of the clusters is disproportionately high.

We will now detail two scenarios which destroy the initial random dis-
tribution of node locations resulting in the clustering of locations around
particular values. The first scenario uses attack nodes inside the network.
This attack quickly unbalances the load in the network, causing significant
data loss; the reason for the data loss is that the imbalance causes some
nodes to greatly exceed their storage capacity, whereas other nodes store

0.90

0.10

0.60

0.30

0.25
Found!

0.45

0.85

0.40

Fig. 2.3: Illustrates the path of a GET request initiated from the node
with location of 0.90. The request is looking for data with
a key value of .23, which is stored at the node identified by
the location 0.25. The path that the GET request travels is
displayed as the dotted lines which travel from 0.90 → 0.10 →
0.90 → 0.60 → 0.25 where the data is found.

24 2. Routing in the Dark: Pitch Black

0.90

0.10

0.60

0.30 0.45

0.85

0.40

0.25

(a) Path of a PUT request inserting data with a key of .96. The
request is initiated from node with location 0.25. The path that
the PUT request travels is displayed as the dotted lines which
travel from 0.25 → 0.60 → 0.90, where the data is stored.

Fig. 2.4

nothing. The second scenario illustrates how location imbalance can occur
naturally even without an adversary due to churn.

2.4.1 Active Attack

As described in Section 2.3.3, a Freenet node attempts to swap with random
peers periodically. Suppose that an attacker wants to bias the location
distribution towards a particular location, m. In order to facilitate the
attack, the attacker assumes that particular location (sets its location to m).
This malicious behavior cannot be detected by the node’s neighbors because
the attacker can claim to have obtained this location from swapping. A
neighbor cannot verify whether such a swap has occurred because the friend-
to-friend (F2F) topology restricts communication to immediate neighbors.

Suppose an attacker node A intends to force a swap with a victim N so
that L(N) = m afterwards. Let N have k neighbors. Then A will initiate a
swap request with N claiming to have at least k+1 neighbors with locations
favoring a swap according to Equation (2.1). Specifically, the locations of the
neighbors should be either close to L(N) or close to the maximum distance
from L(A) = m. The attacker then creates swap requests in accordance
with the Freenet protocol. Again, the F2F topology prevents the neighbor
involved in the swap from checking the validity of this information. After
the swap, the attack node can again assume the original location m and

2.4. Security Analysis 25

0.90

0.10

0.60

0.85

0.30 0.45

0.40

0.25

(b) Result once a PUT has reached a node whose neighbors are all
further away from the key. The node 0.90 (as all of the prede-
cessors on the path) resets the hops-to-live value to its maximum
(in this case, one) and forwards the PUT request to all of its
neighbors. Since these neighbors are not closer to the key than
their predecessor they do not reset hops-to-live. Since the value
reaches zero, routing ends.

Fig. 2.4: The graph on top illustrates the

continue to try to swap with its other neighbors whose locations are still
random.

The neighbors that have swapped with an attacker then continue to swap
in accordance with the swapping algorithm, possibly spreading the malicious
location. Once the location has been spread, the adversary subjects another
neighbor to a swap, removing yet another random location from the network.
Figure 2.5 illustrates the impact of a malicious node on the example network
after a few swaps (with the attacker using m ≈ 0.5). The likelihood of
neighbors spreading the malicious location by swapping can be improved
by using multiple attack locations. Thus, a trade-off exists between the
speed of penetration and the impact of the attack in terms of causing load
imbalances.

2.4.2 Natural Churn

Network churn, the joining and leaving of nodes in the network, is a crucial
issue that any peer-to-peer routing protocol needs to address. We have
ignored churn until now because the attack described in the previous section
does not require it. Intuition may suggest that natural churn may help the
network against the attack by supplying a constant influx of fresh, truly

26 2. Routing in the Dark: Pitch Black

0.504

0.501

0.502

0.30 0.500

0.503

0.40

0.25

Fig. 2.5: This figure shows the example network after a malicious node
has started to spread locations close to 0.5 by swapping. In
this figure the malicious node currently has location = 0.504

random locations. This section illustrates that the opposite is the case:
natural churn can strengthen the attack and even degenerate the Freenet
network in the same manner without the presence of malicious nodes.

For the purpose of this discussion, we need to distinguish two types of
churn. The first kind, leave-join churn, describes fluctuations in peer avail-
ability due to a peer leaving the network for a while and then joining again.
In this case, the network has to cope with a temporary loss of availability
in terms of connectivity and access to content stored at the node. Freenet’s
use of content replication and its routing algorithm are well-suited to handle
this type of churn. Most importantly, a node leaving does not immediately
trigger significant changes at any other node. As a result, an adversary
cannot use leave-join churn to disrupt network operations. Since honest
Freenet peers re-join with the same location that they last had when they
left the network, leave-join churn does not impact the overall distribution of
locations in the network.

The second kind, join-leave churn, describes peers who join the network
and then leave for good. In this case, the network has to cope with the
permanent loss of data stored at this peer. In the absence of adversaries,
join-leave churn may be less common in peer-to-peer networks; however, it is
always possible for users to discontinue using a particular application. Also,
often users may just test an application once and decide that it does not
meet their needs. Again, we believe that Freenet’s content replication will
likely avoid significant loss of content due to realistic amounts of join-leave
churn.

2.5. Experimental Results 27

However, natural join-leave churn has another, rather unexpected im-
pact on the distribution of locations in the Freenet overlay. This additional
impact requires that the overlay has a stable core of peers that are highly
available and strongly interconnected, which is a common phenomenon in
most peer-to-peer networks. In contrast to this set of stable core-peers, peers
that contribute to join-leave churn are likely to participate only briefly and
have relatively few connections. Suppose the locations γi of the core-peers
are initially biased towards (or clustered around) a location α ∈ [0, 1). Fur-
thermore, suppose that (over time) thousands of peers with few connections
(located at the fringe of the network) contribute to join-leave churn.

Each of these fringe-peers will initially assign itself a random location
β ∈ [0, 1). In some cases, this random choice β will be closer to α than some
of the γi-locations of the core nodes. In that case, the routing algorithm
is likely to swap locations between these fringe-peers and core-peers in or-
der to reduce the overall distances to neighbors (as calculated according to
Equation (2.1)). Peers in the core have neighbors close to α, so exchanging
one of the γi’s for β will reduce their overall distances. The fringe peers are
likely to have few connections to the core group and thus the overall product
after a swap is likely to decrease.

Consequently, non-adversarial join-leave churn strengthens any existing
bias in the distribution of locations among the long-lived peers. The long-
term results of join-leave churn are equivalent to what the attack from Sec-
tion 2.4.1 is able to produce quickly – most peers end up with locations
clustering around a few values. Note that this phenomenon has been ob-
served by Freenet users and was reported to the Freenet developers – who
so far have failed to explain the cause of this degeneration.2 Since both the
attack and natural churn have essentially the same implications for the rout-
ing algorithm, the performance implications established by our experimental
results (Section 2.5) hold for both scenarios.

2.5 Experimental Results

This section presents experimental results obtained from a Freenet 0.7 testbed
with up to 800 active nodes. The testbed, consisting of up to 19 GNU/Linux
machines, runs the actual Freenet 0.7 code. For the main results presented
here, the nodes are connected to form a Small-World topology (using Klein-
berg’s 2d-torus model [92]) with on average O(log2 n) connections per node.
As mentioned previously this is because we believe (as did the Freenet 0.7
authors/developers) that a small world network was likely to emerge from
the “darknet” construction of the network. However, to be thorough we also

2 https://bugs.freenetproject.org/view.php?id=647, April 2007. We suspect that
the clustering around 0.0 is caused by software bugs, resulting in an initial bias for this
particular value, which is then strengthened by churn.

28 2. Routing in the Dark: Pitch Black

experimented with some other topologies which have been commonly used in
P2P networks. These topologies include: Small-World networks without a
2d-torus, a 2d-torus only, a 2d-torus with “super-nodes”, and a Small-World
graph augmented with super-nodes. Super-nodes are common in some net-
works such as [49] and are very highly connected nodes in the network. The
reason for the relatively small number of nodes (800 and 400) for our experi-
ments is twofold. First, the estimated size of the actual Freenet 0.7 network
based on open experimentation before we began our research was between
100 and 500 nodes. Therefore we feel that 800 and 400 nodes are good test
sizes, as they are larger (or equal to) the size of the real network (at least
when we began our research). The second reason is that we were bounded
in our experiments by memory. Since Freenet 0.7 is a Java application we
needed to use a Java virtual machine, and after some experimentation we
chose the Sun JavaEE 1.6 SDK. Although we can limit the total amount of
memory that the virtual machine could use, we found that each Freenet 0.7
node required about 64 MB to run smoothly. Since our lab machines are
tasked for other purposes as well as ours, we found we could only run 50
Freenet 0.7 nodes per machine at any given time. Using 800 nodes compu-
tationally bounded us as well for simulating the routing that occurs in the
Freenet 0.7 network, which meant that an 800 node test took greater than
5 hours. We found that we could do a test with 400 nodes in about one
hour, and could try many more topologies and attacker configurations with
the 400 node tests.

Each experiment consists of a number of iterations, where each iteration
corresponds to 90 seconds of real time in the case of 800 node experiments,
and 45 seconds for the 400 node experiments. In each iteration, nodes are
given this amount of time in order to allow them to swap locations. Then
the performance of the network is evaluated. The main performance metrics
are the average path length needed to find the node that is responsible for a
particular key not including dead end paths or failed searches, the average
number of actual hops needed to terminate the query (including dead end
paths), the average number of hops assuming that failed queries would reach
all nodes, the number of “poisoned” locations, and the percentage of the
content originally available in the network that can successfully be retrieved.

All nodes are configured with the same amount of storage space. Before
each experiment, the network is seeded with content with a random key
distribution. The amount of content is fixed at a quarter of the storage
capacity of the entire network (unless otherwise specified). The content is
always (initially and after each iteration) placed at the node with the closest
location to the key. Nodes discard content if they do not have sufficient
space. Discarded content is lost for the duration of the experiment.

Depending on the goals of the experiment, certain nodes are switched
into attack mode starting at a particular iteration. The attacking nodes are
randomly chosen, and behave exactly as all of the other nodes, except for

2.5. Experimental Results 29

aggressively propagating malicious node locations when swapping.

2.5.1 Distribution of Node Locations

Figures 2.6a, 2.6b, 2.6c and 2.6d illustrate the distribution of node locations
on a circle before, during and after an attack. The initial distribution in
Figure 2.6a consists of 800 randomly chosen locations, which are evenly
distributed over the entire interval (with the exception of some noticeable
clustering around 0.0, which we believe is due to implementation problems).

The distributions shown in Figures 2.6b, 2.6c and 2.6d illustrate the
effect of two nodes attacking the network in an attempt to create eight
clusters around particular locations. Note that the number of attackers and
the number of cluster locations can be chosen independently. We chose two
attackers because it is believable that an adversary could run enough nodes
to compromise .125 percent of all nodes given the small size of the actual
network, and the choice of eight locations was because we found that to
be a sufficient number for the attack to spread quickly. Figure 2.6b shows
the node locations at an early point in the attack, after the 15th attack
iteration (90 total iterations). Even so, the clustering effect of our location
swapping attack can be seen. In 2.6c the attack has been carried out for 75
iterations and the distribution of node locations can clearly be seen to be
skewed towards the eight attacker chosen locations. Figure 2.6d shows the
last picture of node locations at the very end of the attack; almost all nodes
in the network have been forced to have an attacker chosen location. This
example illustrates quite clearly how easy it is to remove the randomness
necessary in node distributions in the Freenet 0.7 network. These results
are also very typical, in all of the trials we performed with our attackers on
the Freenet 0.7 testbed we saw nearly identical results.

All the plots use thicker dots in order to highlight spots where many
peers are in close proximity. Particularly after the attack, peers often have
locations that are so close to each other (at the order of 2−30) that a simple
plot of the individual locations would just show a single dot. Thicker dots
illustrate the number of peers in close proximity, but the spread of their
locations is actually much smaller than the thickness may suggest. The
precise method for determining point size is as follows; each point plotted
on the circle has an x, y coordinate. The Cartesian distance from each point
i to every other point j ∈ S (where S is the set of all points), is calculated as

Di,j =
√

(x1 − x2)2 + (y1 − y2)2, and if that Di,j is less than some threshold,
that point’s “size value” is incremented. To keep the points from growing
out of control the log2 of each size value is used as a multiplier applied to the
base size of the points plotted. To give some scale as to how close together
two points need to be to increase the size of the displayed dot, the chosen
threshold distance between points is 1

100000000 .
The second set of plots show the effectiveness of the attack in the same

30 2. Routing in the Dark: Pitch Black

(a) Pre-attack (b) 15 iterations into attack

(c) 90 iterations into attack (d) End of attack

Fig. 2.6: Plot of node locations on a circle representing the Freenet ad-
dress space for an 800 node Freenet network. Dot size is scaled
to show the number of nodes clustered at particular locations.
Over time, the attack successfully clusters nodes at the 8 at-
tacker locations.

manner on the 400 node test network, this time using 16 malicious nodes
with the attack nodes spreading only four locations. These results are im-
pressive given that in this scenario the attack lasts only 1/4th as long as the
800 node attack. Figure 2.7a shows the initial plot of node locations, evenly
spread over the range of possible values. Figure 2.7b shows the picture af-
ter 25 iterations of the attacked network, and again the effect of the attack
is readily apparent, and Figure 2.7c, showing the result of 50 iterations of
attack time tells the same story. Figure 2.7d shows the attack at the final
attack measurement, 75 iterations after the attack began. Another way to
see the effectiveness of the malicious swapping algorithm is shown in Fig-
ure 2.8, which plots the number of poisoned nodes against the trial iteration.
It is clear that shortly after the attack begins in the 25th iteration, swaps
are forced with all of the malicious nodes immediate neighbors. After this
spike, malicious node locations can only be spread by the normal swapping

2.5. Experimental Results 31

(a) Pre-attack (b) 25 attack iterations

(c) 50 attack iterations (d) Post-attack

Fig. 2.7: Plot of node locations on a circle representing the Freenet ad-
dress space for a network of 400 nodes. Dot size is scaled to
show the number of nodes clustered at particular locations.
Over time, the attack successfully clusters nodes at the 4 at-
tacker locations.

algorithm; therefore the number of malicious locations increase more slowly,
but steadily throughout the attack duration.

Table 2.3 shows the number of nodes that have been poisoned by at-
tacking the network at different stages of the attack. The table displays the
average number of bad nodes for varying numbers of attackers and node
locations used in our 400 node testbed. The data is displayed for the first
round, where there are no attackers, and then subsequent rounds 50, 75 and
100 to cover the full duration of the attacks. The obvious conclusion is that
adding more attackers makes the attack work faster and that using more
locations for a particular number of attackers generally also increases the
number of nodes that take on poisonous locations. Round one is included
because it is not a given that there are not always no nodes categorized as
poisoned at the beginning of the attack. It is possible for a node to be ran-
domly given a location which meets the criteria for being a “bad” location.

32 2. Routing in the Dark: Pitch Black

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

N
um

be
r
of

N
od

es
P
oi

so
ne

d

Run Number

Number of Poisoned Nodes by Run for 16 Attackers with 4 Locations

NumPoisoned/Run Number

Fig. 2.8: Plot of the number of nodes that have been “poisoned” by run
number.

However, this only happened in one of our experiments out of around 300
trials. It should also be noted that these averages are rounded up to the
nearest whole number.

2.5.2 Routing Path Length

An important aspect of any routing algorithm is the number of hops that
a message must travel before terminating, either in failure or in success.
However, there are a number of different metrics for determining the number
of hops. In the Freenet 0.7 routing algorithm, the maximum number of hops
that a message can travel along a single path is capped at a constant of 10.
For most of our hop counts we use this cap as well. One different metric
for counting routing hops that we employ is a count of how many hops
are traversed when route lengths are capped at a higher number (in our
case this is unlimited). We used this measure because we thought it might
give different numbers than the bounded hop count. Figures 2.9 show an
example of this metric for a 400 node network where the attack begins at
the 25th iteration using 8 malicious nodes and 8 locations. The effect of
the attack can clearly be seen in this plot, the number of hops needed for
queries initially drop sharply as the network converges via the swapping
algorithm. Once the attack is started the number of hops jumps back up,

2.5. Experimental Results 33

Attackers # Locations Round 1 Round 50 Round 75 Round 100

1 2 0 29 29 39
1 4 0 31 56 67
1 8 0 32 60 69
1 16 0 23 48 80
2 2 0 44 51 59
2 4 0 57 66 75
2 8 0 77 113 137
2 16 0 73 120 145
4 2 0 67 75 86
4 4 0 79 99 114
4 8 1 110 139 155
4 16 0 139 197 224
8 2 0 101 112 121
8 4 0 157 169 178
8 8 0 194 211 225
8 16 0 192 244 256
16 2 0 113 174 183
16 4 0 205 215 231
16 8 0 239 253 266
16 16 0 272 289 299

Tab. 2.3: Data showing average number of poisoned nodes for varying
configurations of our 400 node testbed and different points in
time.

34 2. Routing in the Dark: Pitch Black

16

18

20

22

24

26

28

30

0 20 40 60 80 100

A
ve

ra
ge

pa
th

le
ng

th

Run Number

Avg. Node to Node search (infinite path length) for 8 Attackers with 8 Locations

Avg. Hops/Run Number

Fig. 2.9: Graph showing average path length of completed requests when
routing is unbounded.

although never deteriorating to the length of the paths at the beginning of
the experiment. We plot the mean of the averages over 5 runs in the graphs
in this section, leaving out standard deviations for clarity.

Even using this max single path length still leaves some choices for mea-
surements. As described in Chapter 2.3, if routing along one path fails then
the next closest node is chosen until all nodes have been tried. Therefore
there is the count of hops that are between the initiator and the destination
node, and also a count of all the hops along all the paths that were traversed
prior to the desired node being found. We utilize both of these measures
because it is important to know how many actual nodes are traversed in
a GET or PUT request. Figures 2.10 and 2.11 show the number of hops
between source and destination and the cumulative hops traversed including
dead-end paths, respectively. As described previously, routing down a par-
ticular path fails when the path length is 10. These graphs show the large
discrepancy between cumulative hops traversed before a query is successful
and counting only those along the successful path. Although the cumulative
lengths decrease for the duration of the experiment (with a noticeable spike
when the attack is started) the lowest number of hops is still high. This may
be an important factor when considering the costs to the network routing
these requests. Counting only the successful path lengths reveals another
aspect of the Freenet 0.7 network; while the un-converged network has a

2.5. Experimental Results 35

5.5

6

6.5

7

7.5

8

8.5

0 20 40 60 80 100

A
ve
ra
ge

pa
th
le
ng
th

Run Number

Avg. Node to Data Search (excluding failed searches) for 8 Attackers with 8 Locations

Avg. Hops/RunNumber

Fig. 2.10: Graph showing average path length from source to destination
of completed requests.

low number of hops and convergence decreases the hops, our attack nearly
removes all the gains of this convergence.

When searching for data in the network we know a priori whether or
not a node is actually storing data (as we insert it at the appropriate node
for each run). For efficiency we do not attempt to route these requests for
missing data, but assume that such a message would traverse all nodes in
the network before terminating. This is a reasonable assumption given that
nodes have O(log n) neighbors and the network diameter is assumed to be
O(log n), which is less than the maximum path length.

2.5.3 Availability of Content

Figures 2.12a, 2.11b and 2.10c show the data loss in a simulated Freenet 0.7
network with 800 nodes and two, four and eight attackers respectively. The
attackers attempt to use swapping in order to cluster the locations of nodes
in the network around eight pre-determined values. The resulting clustering
of many nodes around particular locations causes the remaining nodes to
be responsible for disproportionately large areas in the key space. If this
content assignment requires a particular node to store more content than
the node has space available for, content is lost.

The attack is initiated after 75 iterations of ordinary network operation.

36 2. Routing in the Dark: Pitch Black

40

60

80

100

120

140

160

0 20 40 60 80 100

A
ve

ra
ge

pa
th

le
ng

th

Run Number

Avg. Node to Data search (including all paths taken) for 8 Attackers with 8 Locations

Avg. Hops/Run Number

Fig. 2.11: Graph showing average cumulative path length including all
nodes traversed of completed requests.

After just 200 iterations the network has lost on average between 15% and
60% of its content, depending on the number of attackers. Note that in our
model, an individual attacker is granted precisely the same resources as any
ordinary user and if the attacker is deemed the node responsible for the data
it will return it when queried. Obviously if the attacker were truly malicious,
it could just drop the data, or refuse to answer queries that reach it, which
would further reduce the storage capacity of the network. Our results do
not show an attacker that takes this further step to hinder data being found.
The figures show the average data loss (with standard deviations) over five
runs of our test bed. For each run, the positions of the attackers were chosen
randomly among the 800 nodes.

Some criticisms may come of the fact that we seed the network with an
evenly distributed quarter of the total storage capacity of the network. It
may be suggested that this is too high of an initial amount of data for the
distributed system to handle. This is really a moot point because changing
the initial amount of data in the network only increases the time that it
takes for an attacker to reduce the total storage capacity. The locations that
malicious nodes propagate are so close together that once clusters of enough
nodes are formed data is irrevocably lost. Given enough time malicious
nodes would cause the just as much data to be lost, but for our experiments
to be short lived we chose what might be considered a high initial amount

2.5. Experimental Results 37

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

at
a

lo
ss

Time (in iterations of 90 seconds)

Average Loss over time with Std. Dev.

(a) Graph showing average data loss over 5 runs with 800 total
nodes and 2 attack nodes using 8 attacker chosen locations
with the attack starting at iteration 75 (horizontal line de-
picts attack start time).

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

at
a

lo
ss

Time (in iterations of 90 seconds)

Average Loss over time with Std. Dev.

(b) Graph showing average data loss over 5 runs with 800 total
nodes and 4 attack nodes using 8 attacker chosen locations
with the attack starting at iteration 75 (horizontal line
depicts attack start time).

of data. As discussed in Section 2.5.2 the length the paths needed in order
to find data in the network also plays an important part; if the path to the

38 2. Routing in the Dark: Pitch Black

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

at
a

lo
ss

Time (in iterations of 90 seconds)

Average Loss over time with Std. Dev.

(c) Graph showing average data loss over 5 runs with 800 total
nodes and 8 attack nodes using 8 attacker chosen locations
with the attack starting at iteration 75 (horizontal line de-
picts attack start time).

Fig. 2.10: These figures show the increased success of the attack when
using more attacker nodes. Note that the final graph still has
only 1/100th of the total nodes as attackers.

data is too long the query will still fail even if the data is present in the
network.

2.5.4 Other Topologies

Though the Freenet 0.7 routing algorithm theoretically works best in net-
works with Small-World topologies, it is interesting to see how it performs in
other topologies as well. We will demonstrate the differences between these
topologies by comparing the metrics collected as described in Sections 2.5.2
for each of the topologies presented. In addition to our “normal” Small-
World topology that we use for most of our experiments we introduce four
modified topologies. Since we build our Small-World topology by augment-
ing a 2d-grid, we thought it would be interesting to compare measurements
with an un-augmented 2d-grid. In this case, each node in the network has
exactly four connections corresponding to the nodes immediately above, be-
low, right and left in the Cartesian system. We also wanted to see what the
results looked like in the absence of the 2d-grid; meaning that we use the
grid coordinates initially to find Cartesian distances between nodes (which
is necessary for Small-World construction, see Section 2.3.1 for details) but

2.5. Experimental Results 39

we do not necessarily connect nodes into the 2d-grid. If two grid neighbor
nodes are connected based on the randomized connection process they are
not removed, so we are not forcing the absence of original grid connections,
just not ensuring they are there.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

A
ve
ra
ge
P
at
h
Le
ng
th

Run Number

Node to Data search for 8 Attackers with 8 Locations (including failed searches)

2D Grid Only
2D GridW/Supernodes
Small World No Grid

Small WorldW/Supernodes
Normal Small World

(a) Average routing hops for queries when failed searches are assumed
to reach all nodes.

Fig. 2.11: Results from multiple topologies for different hop-count met-
rics.

Our other two topologies use the concept of “super-nodes” [49], where
certain nodes exist in the network that are much more highly connected
(or universally connected) than “normal” nodes. We implemented super-
nodes very simply in our topology construction; when enabled, we selected
1 percent of the total nodes probabilistically to be super-nodes, which we
augmented with an additional 20 percent of the total peers as direct connec-
tions. The 20 percent of nodes that were added as additional connections
were also uniformly randomly selected from the set of all nodes, unlike the
weighted random selection used for the Small-World construction. We used
these super-nodes in two scenarios, with our normal Small-World topology
and with the simple 2d-grid topology.

The graphs in this section each have 5 lines, one for each topology and
are labeled as such. For consistent comparison between each topology, all re-
sults are from graphs with 400 nodes, 8 malicious nodes which are switched
into attack mode at iteration 25 with the malicious nodes rotating through
8 locations over the course of the attack. The figures follow the same pro-

40 2. Routing in the Dark: Pitch Black

gression as those from Section 2.5.2.

Figure 2.11 probably provides the best argument for the properties in-
herent in Small-World graphs based on a 2d-grid topology. In this graph
the two Small-World graphs and the 2d-grid augmented with super-nodes
are shown to be the least effected by our attack. The 2d-grid with super-
nodes is relatively the same across the board, which means that convergence
due to the swapping algorithm and our attack have little effect on routing.
The Small-World with super-nodes graph starts out lower than the normal
Small-World, but is more wild once the attack begins. The normal Small-
World topology performs the best in this instance, although the proportion
of poisoned nodes is still high.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

N
um

be
r
of
N
od
es

P
oi
so
ne
d

Run Number

Number of PoisonedNodes byRun for 8 Attackers with 8 Locations by Topology

2D Grid Only
2D GridW/Supernodes

Small World No Grid
Small WorldW/Supernodes

Normal Small World

Fig. 2.12: Number of poisoned nodes over time for multiple topologies.

The final figure in this section shows the results of the number of poi-
soned nodes in the network as the attack progresses. This data, shown in
Figure 2.12, is basically what we would expect. The normal Small-World
topology and the Small-World with no grid show the biggest impact of our
attack, with > 50% of nodes poisoned by the time the attack ends. The
2d-grid also shows a high number of poisoned nodes, presumably because
attack locations spread out faster from the malicious nodes because each
node has only 4 total connections, so the likelihood an attacker chosen lo-
cation is close to the node’s location goes up. The 2d-grid with super-nodes
shows the least number of poisoned locations, though still close to 1

4 of all
locations have been subverted. The most surprising result is that of the low

2.6. Simulation of Churn 41

(a) 0 rounds of churn (b) 100 rounds of churn

number poisoned for the Small-World with super-node topology. However,
the growth remains steady which is the only real requirement for us to prove
that our attack works in various topologies.

2.6 Simulation of Churn

Figure 2.11 shows the results of a simulation of join-leave churn on the
distribution of node locations in the Freenet 0.7 network. The total network
size used for this simulation was 600 nodes, out of which 500 are stable
(as described in Section 2.4.2). In each round of simulated churn, ten of
the remaining one hundred nodes drop out of the network and join as fresh
nodes with a new random location and randomly chosen connections. During
each round, the network performs the swap protocol corresponding to about
400ms of a real Freenet 0.7 network. The experiment was done with various
different topologies with similar results. The figures show the results for
a topology where the 500 stable nodes are randomly chosen from a Small-
World network, that is, they are not better connected than any of nodes
experiencing churn. In all of our simulations, the locations rapidly converge
towards a small set of all the possible locations.

These results are particularly interesting because they show that the kind
of location clustering which is produced by our attack will also happen in
a network with no attackers, but has a stable core of peers and experiences
churn. This is actually a very likely situation for any peer-to-peer network,

42 2. Routing in the Dark: Pitch Black

(c) 2,000 rounds of churn (d) 10,000 rounds of churn

(e) 50,000 rounds of churn (f) 100,000 rounds of churn

Fig. 2.11: Plots of node locations on a circle representing the Freenet
address space. Each figure shows the stable core of 500 nodes
in the same network after varying amounts of churn; the result
of which is clustering similar to our attack result.

2.7. Discussion 43

as there are typically peers of developers/enthusiasts which are likely to
be long lived. However a larger number of peers will join and leave as
the network is tried out and then left due to a mismatch between what
the user wants and what the network provides. As we have shown in our
Freenet 0.7 testbed, this kind of clustering is not good for the network, as
it puts severe strain on those peers at the edges of clusters and generally
unevenly distributes the processing and storage load of the entire network.
In a distributed file system application like Freenet 0.7, uneven distribution
is the the opposite of what the network design was created to achieve in the
first place.

The negative impact of churn may be lessened by swapping locations
only with long lived peers. Recent measurement studies in peer-to-peer
networks have shown a power-law distribution of the uptime of peers; a large
percentage of peers have a short uptime [175]. By adjusting the probability
of location swapping to be proportional to the uptime of both peers, the
network may be able to slow down the clustering of the locations of long-
lived peers due to join-leave churn. This is only a conjecture however, we
did not do experiments that show this to be a plausible way to reduce the
clustering caused by churn but it is an interesting idea.

2.7 Discussion

Various techniques have been proposed that may be able to limit the impact
of the attack described in this chapter, including changing the swapping pol-
icy, malicious node detection, and secure multi-party computation. While
some of these strategies can reduce the impact of the attack, we do not be-
lieve that adopting any of the suggested measures would address the attack
in a satisfactory manner. We will now discuss these measures and their
limitations insofar as we have identified them.

One possibility for reducing the effect of the attack proposed here is to
increase the amount of time between attempts to swap, or to have each
node in the network periodically reset its location to a random value. The
idea is that the malicious node locations would spread more slowly and
eventually be discarded. However, while this would limit the impact of
the attack, this defense also slows and limits the progress of the network
converging to the most fortuitous topology. Specifically, the amount of time
used between swaps must be chosen carefully. In order to accurately choose
the swap frequency, the number of nodes in the network (and the number
of “poisoned” nodes, see below) need to be estimated. Both numbers are
difficult to accurately attain. Also, as shown in Section 2.5, the malicious
nodes are able to spread the “bad” locations chosen very quickly; within a
few rounds of swapping a large proportion of the network has been poisoned.
This implies that even frequent resets and increased swap frequency will
do little to stop malicious nodes to any worthwhile degree. Another real

44 2. Routing in the Dark: Pitch Black

problem with resetting node locations periodically is that in Freenet 0.7,
data is assumed to be stored (and is actually stored) at the closest node to
the data in the network. This means that when a node resets its location,
the data that it is responsible for will likely no longer be at the closest node
(with respect to the data) in the network. Resetting a node’s location would
mean that either the data would be unable to be found, or measures to resend
the data out to the correct nearest node would have to be implemented. Of
course, for data to stay in the network indefinitely it needs to be refreshed
periodically. However, if all nodes reset their locations in a short time period
the network could be flooded with data being as the nearest peer in the
network is constantly changing.

Another possible method for mitigating our outlined attack involves each
peer determining malicious nodes based on knowing the size of the network.
If a Freenet 0.7 node were able to accurately produce a close estimation of
the size of the network, it could detect if an attacker was swapping locations
that are significantly closer than what would be statistically likely based on
a random distribution of locations. The problem with this approach is that
in an open F2F network it is difficult to reliably estimate the network’s size.
It is not easy for any single node to estimate the size of the network because
the only information it knows is how many peers it has (and the peers of
its neighbors). But this knowledge may be completely unrepresentative of
the rest of the network. In fact, since the network is a “darknet” it would
be likely that nodes have wide variation in their number of peers. Any
estimate based on such information would likely be wrong, or at least vary
widely between peers in the network. One way to estimate the number
of nodes in the network would be to take the number of neighbors and fit
them in a distribution based on closeness. This would imply that if a node
has many neighbors with locations close to its own, the assumption might
be made that the network is very large. This could be completely wrong,
especially when the clustering effect shown previously in a network with
churn is at work! These reasons make malicious node detection and altering
the swapping frequency rife with problems.

If there were a way for a node which purported to have a certain num-
ber of friends to prove that all those friends existed, nodes could be more
confident about swapping. The Freenet developers suggested using a secure
multi-party computation as a way for a node to prove that it has n connec-
tions. The idea would be for the swapping peers to exchange the the results
of a computation that could only be performed by their respective neighbors.
But because nodes can only directly communicate with their direct neigh-
bors (F2F), any such computation could easily be faked given appropriate
computational resources. Of course, if a node could directly communicate
with another node’s neighbors, then the topology could be discerned. How-
ever, in that case the protocol no longer works for restricted-route networks.
This method would also work provided that there were some trusted third

2.8. Conclusion 45

party disseminating public/private key pairs to each node, but this is an un-
likely step for an open peer-to-peer network to take for two reasons. First,
peers joining a network have no reason to trust any third party, and second
the third party would then know all of the members of the P2P network,
which would defeat the idea of Freenet 0.7 being a “darknet” where only a
node’s friends know of that nodes participation in the network.

2.8 Conclusion

The new Freenet routing algorithm is unable to provide reasonable availabil-
ity guarantees in networks where adversaries are able to participate. The
algorithm also degenerates over time (even without active adversaries) if the
network experiences churn. The recommended approach to address both
problems is to periodically reset the locations of peers. While this limits the
deterioration of the routes through adversaries and churn, such resets also
sacrifice the potential convergence towards highly efficient routes. Secure
and efficient routing in restricted-route networks remains an open problem.

In the scope of this thesis, this chapter provides unique insight into a
key problem when designing a routing algorithm for restricted-route topolo-
gies. Specifically, we need to be very careful in what information nodes use
to make decisions about routing. If any of that information comes from
untrusted (or untrustworthy) sources it needs to be handled very carefully.
As we describe in Chapter 7, our routing algorithm uses no information
obtained from other peers directly. However, other peers may be used for
routing if the fish-eye bounded distance vector transport is used. This trans-
port facilitates efficient routing in topologies where the base topology is too
sparse for our routing algorithm. Distance vector can allow virtual connec-
tions between distant peers even in physical networks. The issues inherent
in the distance vector design, and protections against attacks based on it
are provided in Chapter 5. Commonly, network topologies on the Internet
are restricted by NAT, which also can make routing tables too bare for our
routing algorithm to perform well. For this reason,in the next chapter we
explore a method we designed and implemented for providing additional
connectivity options for peers behind NAT devices.

46 2. Routing in the Dark: Pitch Black

3. AUTONOMOUS NAT TRAVERSAL

From a P2P networking perspective, and more specifically for our DHT
routing algorithm operating in restricted-route networks; the goal of NAT
traversal techniques is to provide a greater number of direct connections to
peers than would otherwise be possible. Many techniques exist for NAT
traversal; and the framework in which we have implemented our DHT rout-
ing algorithm employs as many of these techniques as possible to provide
better connectivity to users. The framework implementation is out of the
scope of this thesis; however the novel method presented in this chapter fol-
lows closely the design goals of our routing algorithm. It operates without
the help of a trusted third party, and increases the chances of success of pro-
viding connectivity to peers behind NATs along with other NAT traversal
techniques. The work presented in this chapter was previously published in
the proceedings of P2P 2010 [122].

3.1 Introduction

Traditional NAT traversal methods require the help of a third party for sig-
naling. This chapter investigates a new autonomous method for establishing
connections to peers behind NAT. The proposed method for autonomous
NAT traversal uses fake ICMP messages to initially contact a NATed peer.
In this chapter we also present the theoretical basis for the method, dis-
cuss some possible variations which may provide better results in certain
scenarios, introduce various concrete implementations of the approach and
evaluate empirical results of a measurement study designed to evaluate the
efficacy of the method in the real world.

A large fraction of the hosts in a typical peer-to-peer network are in home
networks. Most home networks use network address translation (NAT) [53]
to facilitate multiple computers sharing a single global public IP address, to
enhance security or simply because the provider’s hardware often defaults
to this configuration. Recent studies have reported that up to 70% of users
access P2P networks from behind a NAT system [27]. This creates a well-
known problem for peer-to-peer networks since it is not trivial to initiate
a connection to a peer behind NAT. In this chapter, we will use the term
server to denote a peer behind NAT and the term client for any other peer
trying to initiate a connection to the server.

Unless configured otherwise (protocols such as the Internet Gateway

48 3. Autonomous NAT Traversal

Device Protocol [86] are counted as configuration in this context), almost
all NAT implementations refuse to forward inbound traffic that does not
correspond to a matching recently issued outbound request. This is not
primarily an implementation issue: if there are multiple hosts in the private
network, the NAT is likely unable to tell which host is the intended recipient.
Configuration of the NAT is not always an alternative; problems range from
end-user convenience and capabilities of the specific NAT implementation to
administrative policies that may prohibit changes to the NAT configuration
(for example, due to security concerns).

Since NAT systems prohibit inbound requests that do not match a pre-
vious outbound request, all existing NAT traversal techniques (aside from
those require a configuration change to the NAT box) that we are aware of
require some amount of active facilitation by a third party [151, 152]. The
basic approach in most of these cases is that the server in the private net-
work behind the NAT is notified by the third party that the client would
like to establish a connection. The server then initiates the connection to
the client. This requires that the server maintains a connection to a third
party, that the client is able to locate the responsible third party and that
the third party acts according to a specific protocol.

The goal of the method described in this chapter is autonomous NAT
traversal, meaning NAT traversal without reliance on a third party. Us-
ing third parties increases the complexity of the software and potentially
introduces new vulnerabilities. For example, if anonymizing peer-to-peer
networks (such as gnunet [16] or Tor [45]) used third parties for NAT
traversal, an attacker may be able to monitor connections or even traffic
volumes of peers behind NATs which in turn might enable deanonymization
attacks [58, 126]. Another problem is that the decrease in available glob-
ally routable IPv4 addresses [85] will in the near future sharply reduce the
fraction of hosts that would be able to facilitate NAT traversal.

3.2 Technical Approach

The proposed technique assumes that the client has somehow learned the
current external (globally routable) IP address of the server’s NAT. This
could be due to a previous connection between the two systems, a third party
having provided the IP address in a previous exchange or some other out of
band method (e.g. email, phone call). Note that we specifically assume that
no third party is available at the time when the client attempts to connect
to the server behind the NAT, or that the server does not subscribe to any
of the third party services which facilitate NAT traversal.

The first goal of the presented NAT traversal method is to communicate
the public IP address of a client that wants to connect to the server behind
the NAT. After the server is aware of the IP address of the client, it connects
to the client (similar to NAT traversal methods that involve a third party).

3.2. Technical Approach 49

1

2

1.2.3.4

NAT Host

Non-NAT Host

Fig. 3.1: This figure diagrams the process of sending and receiving the
fake ICMP messages for the server and client. In step 1, the
server sends a fake ICMP request to 1.2.3.4 and in step 2 the
client sends the matching reply. Note that this is a fake re-
ply since the client never receives the ICMP request sent to
1.2.3.4 by the server. The important information contained in
the actual packets is displayed for each step. The blue (solid)
line shows the ICMP request path and the dashed (green) line
shows the ICMP reply path.

The key idea for enabling the server to learn the client’s IP address is
for the server to periodically send a message to a fixed, known IP address.
The simplest approach uses ICMP ECHO REQUEST messages to an unal-
located IP address, such as 1.2.3.4. Since 1.2.3.4 is not allocated, the ICMP
REQUEST will will not be routed by routers without a default route; ICMP
DESTINATION UNREACHABLE messages that may be created by those
routers can just be ignored by the server.

As a result of the messages sent to 1.2.3.4, the NAT will enable routing of
replies in response to this request. The connecting client will then fake such
a reply. Specifically, the client will transmit an ICMP message indicating
TTL EXPIRED (Figure 3.1). Such a message could legitimately be transmitted
by any Internet router and the sender address would not be expected to
match the server’s target IP.

The server listens for (fake) ICMP replies and upon receipt initiates
a connection to the sender IP specified in the ICMP reply. If the client
is using a globally routable IP address, this is entirely unproblematic and
both TCP or UDP can be used to establish a bi-directional connection if
the client listens on a pre-agreed port. In cases where there is no pre-agreed
port, a port number can in most cases be communicated as part of the
payload of the ICMP ECHO RESPONSE, which is typically not checked

50 3. Autonomous NAT Traversal

against the payload of the corresponding ICMP ECHO REQUEST by NAT
implementations.

3.2.1 NAT-to-NAT Communication

Further complications arise if both the client and the server are behind NAT.
In this case, often the client will be unable to transmit a fake ICMP response
to the server due to restrictions imposed by the NAT implementation of the
client. One possible idea for circumventing this problem is for the client to
send the same message that the server is sending except with TTL 1 to its
NAT. If the NAT accepts the packet despite the forged sender IP address
it might theoretically generate the desired ICMP response and forward it
to the external network. However, in practice we did not find NATs where
generating the necessary ICMP message using a TTL of 1 works.

Even if the client is able to transmit the fake ICMP response, the next
step; in which both the client and server are aware of the others IP ad-
dress and now intend to establish a TCP or UDP connection can still be
complicated. The reason is that NAT systems can change the source port
numbers of outbound messages. Without a third party, both client and
server would have to guess matching source and destination port numbers
as chosen (possibly at random) by their respective NAT implementations.
Depending on the type of the NAT implementations (Full cone, restricted
cone, port-restricted, symmetric), finding the correct port may take sev-
eral messages. Client and server can reduce the total number of messages
required by transmitting and listening on multiple ports in this phase.

3.2.2 Using UDP packets instead of ICMP ECHO REQUESTs

A possible alternative to having the sender transmit ICMP ECHO RE-
QUESTs to a fixed, known IP address is having the sender transmit UDP
packets to a fixed, known IP address and port. In this case, the client would
again forge an ICMP TTL EXPIRED message, only this time using the
UDP format. The main disadvantage of this variation is that the sender
has to guess the external UDP sender port number when faking the ICMP
response. Since some NAT implementations randomly change those port
numbers, the server might have to send UDP packets using multiple sender
ports in order to give the client a sufficient chance at guessing correctly.

The main advantage of this technique is that the server no longer needs
to send using RAW sockets, which may reduce the privileges required for
the server. Note that the server still needs to be able to listen for the ICMP
reply, which requires RAW sockets on Linux. In the case of a full-cone
NAT, using UDP packets instead of ICMP ECHO REQUESTs also has the
advantage of establishing a port mapping which can then be used as an
alternative method for contacting the peer.

3.3. Implementations 51

Full cone Restricted Cone Port-restricted Symmetric Overall

Echo-Server 0/4 9/31 37/56 2/3 53/103 (51%)
Echo-Client 1/4 5/34 2/71 2/5 10/123 (8%)
UDP-Server 1/4 26/40 82/91 3/5 121/149 (81%)

ICMP-UDP-Client 1/4 5/34 2/71 2/5 10/123 (9%)
Preserves Ports 0/4 16/43 72/98 6/6 100/162 (62%)

Any Server 1/4 26/40 83/91 3/5 122/149 (82%)
Two-Message Success 0/4 9/31 43/56 2/3 62/103 (60%)

Tab. 3.1: Experimental evaluation. Echo-Server lists the number of
NAT implementations allowing fake ICMP TTL EXPIRED replies
to traverse the NAT device. Echo-Client lists the number
of NAT implementations that allow clients to transmit fake
ICMP TTL EXPIRED messages. ICMP-UDP-Client/UDP-Server show
results when using UDP packets instead of ICMP ECHO REQUESTs.
Preserves Ports indicates implementations that preserve the
sender’s local port.Any server lists the NATs where either the
ECHO-Server or the UDP-Server work. Two-Message Success lists
the number of NATs where autonomous NAT traversal suc-
ceeds with Echo-Server or UDP with port preservation.

Another difference between the two approaches is the possible payload
that can be embedded in the response. With ICMP ECHO REQUESTs, the
payload can be as big as the packet size permits and is hence only limited by
the MTU of the respective physical network. Well-formed ICMP UDP TTL
exceeded replies on the other hand can only contain 32 bits of payload: the
ICMP TTL EXCEEDED response contains the first 64 bits of the payload
of the original IP packet. In those 64 bits, the 16-bit UDP checksum field
and the 16-bit UDP packet length are unverifiable (for NATs that do not
track extensive information about outgoing UDP packets) and can hence
be used to transmit 32 bits of information to the server (in addition to the
sender’s IP address). With our approach, either of these payload sizes is
enough as we only transmit a port number in addition to the IP address.

3.3 Implementations

This section summarizes the three implementations of the proposed method
that we have done so far. All of the presented implementations are freely
available from the web pages of the respective projects.

3.3.1 Implementation in NAT-Tester Framework

Our implementation in the NAT-Tester framework was used to gather the
data for the data presented in this chapter. It transmits the various packet
types (with or without payload) using raw sockets and uses libpcap to
determine which messages were forwarded by the NAT. The client is cur-
rently available for W32 and Linux and must be run with administrator

52 3. Autonomous NAT Traversal

rights. This implementation is useful for researchers interested in exploring
the various variations of this and other NAT traversal methods.

3.3.2 Implementation in pwnat tool

The pwnat tool1 is a GNU/Linux-only stand-alone implementation of au-
tonomous NAT traversal. After contacting the server behind the NAT, it
establishes a channel with TCP-semantics using UDP packets. It supports
both client and server behind NAT (if one of the NATs allows the fake ICMP
messages to be transmitted). This implementation targets end-users.

3.3.3 Implementation in the GNUnet Framework

Finally, we have created a re-usable implementation of the presented ICMP-
based NAT traversal method in gnunet, GNU’s framework for secure peer-
to-peer networking [16]. Since the use of ICMP requires the use of non-
portable and often privileged system calls, this implementation is split into
three main components:

ICMP server
This component is a small program that provides the core ICMP-
related functionality for the server. The code periodically generates
the ICMP ECHO REQUEST message and also listens for incoming
ICMP TTL EXCEEDED responses. If such a response is received, it
simply prints the IP address of the sender to stdout. If the ICMP
also contains a 16-byte payload, it is interpreted as a port number and
also printed.

ICMP client
This component is a small binary which simply sends a single (fake)
ICMP message to the IP address specified at the command line. An
additional argument can be given which will be interpreted as a port
number to be transmitted in the payload of the fake ICMP response
message.

Transport plugin
This component implements a gnunet transport plugin [63] and is thus
specific to the gnunet peer-to-peer framework. Depending on how the
peer is configured, it controls ICMP servers or clients and ultimately
establishes connections between peers.

Splitting the implementation into these three components has the ad-
vantage of minimizing the amount of code that must run with super-user
privileges on POSIX systems (by installing the ICMP server and client with

1 http://samy.pl/pwnat/

http://samy.pl/pwnat/

3.4. Experimental Results 53

the SUID bit set). Furthermore, since the ICMP code is platform-specific,
this makes it easier to manage this platform-specific part of the code. Fi-
nally, this split makes it easy to share the platform-specific but peer-to-peer
network agnostic ICMP code so that it can be used with other peer-to-
peer applications. This implementation is suitable as a starting point for
developers of P2P networks.

3.4 Experimental Results

We have evaluated the proposed autonomous NAT traversal techniques
on a large number of NAT implementations using our NAT-Tester frame-
work [123, 124]. The framework consists of a public client that volunteers
download and execute. The client then performs various tests against the
local NAT implementation and reports the results back to the NAT-Tester
server. This enables us to evaluate NAT traversal strategies against a wide
range of NAT implementations. Detailed results are made public on the
NAT-Tester web page.2 In this section we will summarize the results based
on the data available so far.

Table 3.1 summarizes which fractions of the NAT implementations evalu-
ated so far support the proposed method for autonomous NAT traversal. We
distinguish between behavior relevant for using autonomous NAT traversal
from the point of view of both clients and servers behind NAT. We consider
two cases: the case where the server uses ICMP ECHO REQUESTs and the
case where the server transmits UDP packets. We also consider the extend
of UDP port randomization which determines how efficient the second stage
in the case of NAT-to-NAT communication would be. NAT implementa-
tions are categorized into the typical four types (full cone, restricted cone,
port-restricted, symmetric) in cases where NAT-Tester is able to determine
the type. NAT implementations that do not seem to fall into any of these
categories are only included in the total.

The data shows that in virtually all cases NATs forward the faked ICMP
messages for UDP (UDP-Server), but only in about half the cases for ICMP
ECHO REQUESTs (Echo-Server). Furthermore, a significant majority of
all NATs also preserve the source port (when possible), so the additional re-
quirement of guessing the port for faking the ICMP response for a UDP mes-
sage does not change the overall cost of the approach. Finally, NATs virtu-
ally always prevent their clients from transmitting the fake ICMP messages
used by our clients (Echo-Client, ICMP-UDP-Client). Based on what we
have seen from inspecting NAT configurations directly, the reason seems to
be that NAT rules typically only allow ICMP packets for the states “NEW”
and “ESTABLISHED” in the state machine [142] — and the fake response
falls into neither category.

2 http://nattest.net.in.tum.de/

http://nattest.net.in.tum.de/

54 3. Autonomous NAT Traversal

3.5 Discussion

The proposed method of autonomous NAT traversal works well in the case
of an unrestricted client attempting to initiate a connection to a server
behind NAT. Here, in virtually all cases a single ICMP message by the
client would be followed by traditional connection reversal [169] which then
reliably creates a UDP or TCP connection. In other words, there is no need
for third parties to help initiate connections to NATed servers in this case.

On the other hand, if both systems are behind NAT, the proposed
method rarely works and a third party is required. Assuming 70% of the
peers in a network are behind NAT, this means that roughly 50% of all
possible connections can be established using autonomous NAT traversal.
However, even in the case where both systems are behind NAT a possible
advantage of the proposed method remains; it is easy to create a simple,
generic and fully stateless service that receives requests from NATed peers
and generates fake ICMP replies to notify the server behind NAT. In this
case, the payload of the ICMP reply would need to contain the original IP
address (and likely source port number) of the client since the IP header of
the faked ICMP response would now contain the IP address of the service.

3.6 Conclusion

Fake replies can enable autonomous NAT traversal in a number of cases.
As with most NAT traversal techniques, this approach does not work for
all installations. What is unusual about the presented method is that it
works extremely well if only one peer is behind NAT and virtually never if
both peers are behind NAT. Systems that require high NAT traversal success
rates typically implement a number of traversal techniques and the presented
approach extends the set of available methods by one that, if applicable, is
cheaper and simpler than most of the existing techniques. NAT traversal is
inherently unreliable, and limited connectivity may be due to issues other
than NAT restrictions such as ad-hoc wireless networks limited by physical
range, or social networks limited by relationships. Therefore, NAT traversal
by itself is not enough to ensure connectivity depending on the type of
underlay network upon which a P2P overlay is built. For these reasons, we
have created another method to help provide additional connectivity to peers
with limited connectivity, detailed in Chapter 5. This method utilizes onion
routing, so the next chapter details an analysis and attack on the dominant
onion routing P2P network, Tor. This analysis leads to key choices in our
design, discussed further in Chapter 5.

4. A PRACTICAL CONGESTION ATTACK ON TOR
USING LONG PATHS

The fish-eye bounded distance vector protocol, which we present in Chap-
ter 5, relies on directly connected peers providing tunneled connections to
distant peers. As described in the next chapter, this is very similar to onion
routing. This chapter investigates the ability of a specific attack on Tor
(which employs onion routing to provide anonymity to users) to perform an
asymmetric denial-of-service (DoS) attack. This attack exploits a flaw in
the protocol which allows paths of virtually any length to be created. This
attack also results in a decrease in anonymity for users of the Tor network.
While our distance vector design enables onion routing, we have avoided the
flaw that was present in Tor; preventing this specific denial of service attack
against our design. The rest of this chapter describes details of the flaw in
the design of Tor, the attack, and results from our implementation of the
attack on the Tor network. This chapter is based on a paper of the same
name published at Usenix Security 2009 [58].

4.1 Introduction

We present an attack which exploits a weakness in Tor’s circuit construction
protocol to implement an improved variant of Murdoch and Danezis’s con-
gestion attack [125, 126]. Tor [45] is an anonymizing peer-to-peer network
that provides users with the ability to establish low-latency TCP tunnels,
called circuits, through a network of relays provided by the peers in the
network. In 2005, Murdoch and Danezis were able to determine the path
that messages take through the Tor network by causing congestion in the
network and then observing the resulting changes in the traffic patterns.

While Murdoch and Danezis’s work popularized the idea proposed in [6]
of an adversary perturbing traffic patterns of a low-latency network to de-
anonymize its users, the original attack no longer works on the modern Tor
network. In a network with thousands of relays, too many relays share simi-
lar latency characteristics and the amount of congestion that was detectable
in 2005 is no longer significant; thus, the traffic of a single normal user
does not leave an easily distinguishable signature in the significantly larger
volume of data routed by today’s Tor network.

We address the original attacks’ weaknesses by combining JavaScript
injection with a selective and asymmetric denial-of-service (DoS) attack to

56 4. A Practical Congestion Attack on Tor Using Long Paths

obtain specific information about the path selected by the victim. As a
result, we are able to identify the entire path for a user of today’s Tor
network. Because our attack magnifies the congestion effects of the original
attack, it requires little bandwidth on the part of the attacker. We also
provide an improved method for evaluating the statistical significance of the
obtained data, based on Tor’s message scheduling algorithm. As a result, we
are not only able to determine which relays make up the circuit with high
probability, we can also quantify the extent to which the attack succeeds.
This chapter presents the attack and experimental results obtained from the
actual Tor network.

We propose some non-trivial modifications to the current Tor protocol
and implementation which would raise the cost of the attack. However, we
emphasize that a full defense against our attack is still not known.

Just as Murdoch and Danezis’s work applied to other systems such as
MorphMix [113] or Tarzan [184], our improved attack and suggested partial
defense can also be generalized to other networks using onion routing. Also,
in contrast to previously proposed solutions to congestion attacks [74, 99,
101, 113, 129, 133, 164, 184], our proposed modifications do not impact the
performance of the anonymizing network.

This attack and analysis led us to careful consideration when using a sim-
ilar technique to onion routing to provide additional connectivity to peers
in very sparse topologies. This technique, presented in Chapter 5, uses en-
crypted tunnels through the network in a similar manner as Tor. However,
we build these tunnels in different ways so as to avoid the DoS attack pre-
sented in this chapter.

4.2 Related Work

Chaum’s mixes [28] are a commonly used method for achieving anonymity.
Multiple encrypted messages are sent to a mix from different sources and
each is forwarded by the mix to its respective destination. Combinations of
artificial delays, changes in message order, message batching, uniform mes-
sage formats (after encryption), and chaining of multiple mixes are used to
further mask the correspondence between input and output flows in vari-
ations of the design [35, 39, 40, 73, 91, 119, 138, 146]. Onion routing [71] is
essentially the process of using an initiator-selected chain of low-latency
mixes for the transmission of encrypted streams of messages in such a way
that each mix only knows the previous and the next mix in the chain, thus
providing initiator-anonymity even if some of the mixes are controlled by an
adversary.

4.2. Related Work 57

4.2.1 Tor

Tor [45] is a distributed anonymizing network that uses onion routing to
provide its users with anonymity. Most Tor users access the Tor network
via a local proxy program such as Privoxy [90] to tunnel the HTTP requests
of their browser through the Tor network. The goal is to make it difficult for
web servers to ascertain the IP address of the browsing user. Tor provides
anonymity by utilizing a large number of distributed volunteer-run relays
(or routers). The Tor client software retrieves a list of participating relays,
randomly chooses some number of them, and creates a circuit (a chain of
relays) through the network. The circuit setup involves establishing a session
key with each router in the circuit, so that data sent can be encrypted in
multiple layers that are peeled off as the data travels through the network.
The client encrypts the data once for each relay, and then sends it to the
first relay in the circuit; each relay successively peels off one encryption
layer and forwards the traffic to the next link in the chain until it reaches
the final node, the exit router of the circuit, which sends the traffic out to
the destination on the Internet.

Data that passes through the Tor network is packaged into fixed-sized
cells, which are queued upon receipt for processing and forwarding. For each
circuit that a Tor router is participating in, the router maintains a separate
queue and processes these queues in a round-robin fashion. If a queue for
a circuit is empty it is skipped. Other than using this fairness scheme, Tor
does not intentionally introduce any latency when forwarding cells.

The threat model assumed by Tor differs from the usual model for
anonymity schemes [45]. The traditional threat model is that of a global pas-
sive adversary: one that can observe all traffic on the network between any
two links. In contrast, Tor assumes a non-global adversary which can only
observe some subset of the connections and can control only a subset of Tor
nodes. Well-known attack strategies such as blending attacks [163] require
more powerful attackers than those permitted by Tor’s attacker model. Tor’s
model is still valuable, as the resulting design achieves a level of anonymity
that is sufficient for many users while providing reasonable performance.
Unlike the aforementioned strategies, the adversary used in this chapter
operates within the limits set by Tor’s attacker model. Specifically, our ad-
versary is simply able to run a Tor exit node and access the Tor network
with resources similar to those of a normal Tor user.

4.2.2 Attacks on Tor and other Mixes

Many different attacks on low-latency mix networks and other anonymiza-
tion schemes exist, and a fair number of these are specifically aimed at the
Tor network. These attacks can be broadly grouped into three categories:
path selection attacks, passive attacks, and active attacks. Path selection

58 4. A Practical Congestion Attack on Tor Using Long Paths

attacks attempt to invalidate the assumption that selecting relays at ran-
dom will usually result in a safe circuit. Passive attacks are those where the
adversary in large part simply observes the network in order to reduce the
anonymity of users. Active attacks are those where the adversary uses its
resources to modify the behavior of the network; we’ll focus here on a class
of active attacks known as congestion or interference attacks.

4.2.2.1 Path Selection Attacks

Path selection is crucial for the security of Tor users; in order to retain
anonymity, the initiator needs to choose a path such that the first and last
relay in the circuit won’t collude. By selecting relays at random during cir-
cuit creation, it could be assumed that the probability of finding at least
one non-malicious relay would increase with longer paths. However, this
reasoning ignores the possibility that malicious Tor routers might choose
only to facilitate connections with other adversary-controlled relays and dis-
card all other connections [22]; thus the initiator either constructs a fully
malicious circuit upon randomly selecting a malicious node, or fails that
circuit and tries again. This type of attack suggests that longer circuits do
not guarantee stronger anonymity.

A variant of this attack called “packet spinning” [133] attempts to force
users to select malicious routers by causing legitimate routers to time out.
Here the attacker builds circular paths throughout the Tor network and
transmits large amounts of data through those paths in order to keep le-
gitimate relays busy. The attacker then runs another set of (malicious)
servers which would eventually be selected by users because of the attacker-
generated load on all legitimate mixes. The attack is successful if, as a
result, the initiator chooses only malicious servers for its circuit, making
deanonymization trivial.

4.2.2.2 Passive Attacks

Several passive attacks on mix systems were proposed by Back et al. [6]. The
first of these attacks is a “packet counting” attack, where a global passive
adversary simply monitors the initiator’s output to discover the number of
packets sent to the first mix, then observes the first mix to watch for the same
number of packets going to some other destination. In this way, a global
passive adversary could correlate traffic to a specific user. As described by
Levine et al. [101], the main method of defeating such attacks is to pad
the links between mixes with cover traffic. This defense is costly and may
not solve the problem when faced with an active attacker with significant
resources; an adversary with enough bandwidth can deal with cover traffic
by using up as much of the allotted traffic between two nodes as possible
with adversary-generated traffic [34]. As a result, no remaining bandwidth

4.2. Related Work 59

is available for legitimate cover traffic and the adversary can still deduce
the amount of legitimate traffic that is being processed by the mix. This
attack (as well as others described in this context) requires the adversary
to have significant bandwidth. It should be noted that in contrast, the
adversary described by our attack requires only the resources of an average
mix operator.

Low-latency anonymity systems are also vulnerable to more active timing
analysis variations. The attack presented in [101] is based on an adversary’s
ability to track specific data through the network by making minor timing
modifications to it. The attack assumes that the adversary controls the first
and last nodes in the path through the network, with the goal of discovering
which destination the initiator is communicating with. The authors discuss
both correlating traffic “as is” as well as altering the traffic pattern at the
first node in order to make correlation easier at the last node. For this second
correlation attack, they describe a packet dropping technique which creates
holes in the traffic; these holes then percolate through the network to the
last router in the path. The analysis showed that without cover traffic (as
employed in Tarzan [68,69]) or defensive dropping [101], it is relatively easy
to correlate communications through mix networks. Even with “normal”
cover traffic where all packets between nodes look the same, Shmatikov and
Wang show that the traffic analysis attacks are still viable [164]. Their
proposed solution is to add cover traffic that mimics traffic flows from the
initiator’s application.

A major limitation of all of the attacks described so far is that while
they work well for small networks, they do not scale and may fail to produce
reliable results for larger anonymizing networks. For example, Back’s active
latency measuring attack [6] describes measuring the latencies of circuits
and then trying to determine the nodes that were being utilized from the
latency of a specific circuit. As the number of nodes grows, this attack
becomes more difficult (due to an increased number of possible circuits),
especially as more and more circuits have similar latencies.

4.2.2.3 Congestion Attacks

A more powerful relative of the described timing attacks is the clogging or
congestion attack. In a clogging attack, the adversary not only monitors the
connection between two nodes but also creates paths through other nodes
and tries to use all of their available capacity [6]; if one of the nodes in the
target path is clogged by the attacker, the observed speed of the victim’s
connection should change.

In 2005, Murdoch and Danezis described an attack on Tor [126] in which
they could reveal all of the routers involved in a Tor circuit. They achieved
this result using a combination of a circuit clogging attack and timing anal-
ysis. By measuring the load of each node in the network and then sub-

60 4. A Practical Congestion Attack on Tor Using Long Paths

sequently congesting nodes, they were able to discover which nodes were
participating in a particular circuit. This result is significant, as it reduces
Tor’s security during a successful attack to that of a collection of one hop
proxies. This particular attack worked well on the fledgling Tor network
with approximately fifty nodes; the authors experienced a high success rate
and no false positives. However, their clogging attack no longer produces a
signal that stands out on the current Tor network with thousands of nodes.
Because today’s Tor network is more heavily used, circuits are created and
destroyed more frequently, so the addition of a single clogging circuit has
less impact. Also, the increased traffic transmitted through the routers leads
to false positives or false negatives due to normal network fluctuations. We
provide details about our attempt to reproduce Murdoch and Danezis’s work
in Section 4.6.

McLachlan and Hopper [113] propose a similar circuit clogging attack
against MorphMix [146], disproving claims made in [184] that MorphMix is
invulnerable to such an attack. Because all MorphMix users are required to
also be mix servers, McLachlan and Hopper achieve a stronger result than
Murdoch and Danezis: they can identify not only the circuit, but the user
as well.

Hopper et al. [82] build on the original clogging attack idea to construct
a network latency attack to guess the location of Tor users. Their attack is
two-phase: first use a congestion attack to identify the relays in the circuit,
and then build a parallel circuit through those relays to estimate the latency
between the victim and the first relay. A key contribution from their work
is a more mathematical approach that quantifies the amount of information
leaked in bits over time. We also note that without a working congestion
attack, the practicality of their overall approach is limited.

4.3 Our Attack

Three features of Tor’s design are crucial for our attack. First of all, Tor
routers do not introduce any artificial delays when routing requests. As a
result, it is easy for an adversary to observe changes in request latency. Sec-
ond, the addresses of all Tor routers are publicly known and easily obtained
from the directory servers. Tor developers are working on extensions to Tor
(called bridge nodes [43,44]) that would invalidate this assumption, but this
service was not widely used at the time of this writing. Finally, the latest Tor
server implementation that was available at the time we concluded our orig-
inal attacks (Tor version 0.2.0.29-rc) did not restrict users from establishing
paths of arbitrary length, meaning that there was no restriction in place
to limit constructing long paths through Tor servers.1 We used a modified

1 Tor version 0.2.1.3-alpha and later servers restrict path lengths to a maximum of eight
because of this work.

4.3. Our Attack 61

Client

Tor Node 3 - Our Exit Node

Server

Tor Node 1 - Unknown Node Malicious Client

Tor Node 2 - Known High BW Tor Node 1

High BW Tor Node 2 Malicious Server

Fig. 4.1: Attack setup. This figure illustrates the normal circuit con-
structed by the victim to the malicious Tor exit node and the
“long” circuit constructed by the attacker to congest the en-
try (or guard) node used by the victim. The normal thin line
from the client node to the server represents the victim cir-
cuit through the Tor network. The unwitting client has chosen
the exit server controlled by the adversary, which allows the
JavaScript injection. The double thick lines represent the long
circular route created by the malicious client through the first
Tor router chosen by the client. The dotted line shows the path
that the JavaScript pings travel.

client version (based on 0.2.0.22-rc) which used a small fixed path length
(specifically three) but modified it to use a variable path length specified by
our attacker.

Fig. 4.1 illustrates the three main steps of our attack. First, the ad-
versary needs to ensure that the initiator repeatedly performs requests at
known intervals. Second, the adversary observes the pattern in arrival times
of these requests. Finally, the adversary changes the pattern by selectively
performing a novel clogging attack on Tor routers to determine the entry
node. We will now describe each of these steps in more detail.

4.3.1 JavaScript Injection

Our attack assumes that the adversary controls an exit node which is used
by the victim to access an HTTP server. The attacker uses the Tor exit node
to inject a small piece of JavaScript code (shown in Fig. 4.2) into an HTML
response. It should be noted that most Tor users do not disable JavaScript
and that the popular Tor Button plugin [137] and Privoxy [90] also do not
disable JavaScript code; doing so would prevent Tor users from accessing

62 4. A Practical Congestion Attack on Tor Using Long Paths

<script language="javascript">

var count ,timer ,xmlhttp = 0;

function runonce () { xmlhttp = new XMLHttpRequest (); }

function start () {

xmlhttp.abort();

xmlhttp = new XMLHttpRequest ();

count ++;

if (timer) clearTimeout(timer);

timer = setTimeout("start ()", 1000);

myDate = new Date();

xmlhttp.open("GET", "/reportIn.html?num=" + count + "&

time="

+ myDate.getTime (),true);

xmlhttp.send("");

}

</script >

Fig. 4.2: JavaScript code injected by the adversary’s exit node. Note
that other techniques such as HTML refresh, could also be
used to cause the browser to perform periodic requests.

too many web pages. The JavaScript code causes the browser to perform an
HTTP request every second, and in response to each request, the adversary
uses the exit node to return an empty response, which is thrown away by
the browser. Since the JavaScript code may not be able to issue requests
precisely every second, it also transmits the local system time (in millisec-
onds) as part of the request. This allows the adversary to determine the
time difference between requests performed by the browser with sufficient
precision 2. While JavaScript is not the only conceivable way for an attacker
to cause a browser to transmit data at regular intervals (alternatives include
HTTP headers like refresh [65] and HTML images [82]), JavaScript pro-
vides an easy and generally rather dependable method to generate such a
signal.

The adversary then captures the arrival times of the periodic requests
performed by the browser. Since the requests are small, an idle Tor network
would result in the differences in arrival times being roughly the same as
the departure time differences — these are known because they were added
by the JavaScript as parameters to the requests. Our experiments suggest
that this is often true for the real network, as most routers are not seriously
congested most of the time. This is most likely in part due to TCP’s con-
gestion control and Tor’s built-in load balancing features. Specifically, the
variance in latency between the periodic HTTP requests without an active

2 Clock skew on the systems of the adversary and the victim is usually insignificant for
the duration of the attack.

4.3. Our Attack 63

congestion attack is typically in the range of 0–5s.

However, the current Tor network is usually not entirely idle and mak-
ing the assumption that the victim’s circuit is idle is thus not acceptable.
Observing congestion on a circuit is not enough to establish that the node
under the congestion attack by the adversary is part of the circuit; the cir-
cuit may be congested for other reasons. Hence, the adversary needs to also
establish a baseline for the congestion of the circuit without an active con-
gestion attack. Establishing measurements for the baseline is done before
and after causing congestion in order to ensure that observed changes dur-
ing the attack are caused by the congestion attack and not due to unrelated
changes in network characteristics.

The attacker can repeatedly perform interleaved measurements of both
the baseline congestion of the circuit and the congestion of the circuit while
attacking a node presumed to be on the circuit. The attacker can continue
the measurements until either the victim stops using the circuit or until the
mathematical analysis yields a node with a substantially higher deviation
from the baseline under congestion compared to all other nodes. Before
we can describe details of the mathematical analysis, however, we have to
discuss how congestion is expected to impact the latency measurements.

4.3.2 Impact of Congestion on Arrival Times

In order to understand how the congestion attack is expected to impact
latency measurements, we first need to take a closer look at how Tor sched-
ules data for routing. Tor makes routing decisions on the level of fixed-size
cells, each containing 512 bytes of data. Each Tor node routes cells by going
round-robin through the list of all circuits, transmitting one packet from
each circuit with pending data (see Fig. 4.3a). Usually the number of (ac-
tive) circuits is small, resulting in little to no delay. If the number of busy
circuits is large, messages may start to experience significant delays as the
Tor router iterates over the list (see Fig. 4.3b).

Since the HTTP requests transmitted by the injected JavaScript code
are small (∼250 bytes, depending on count and time), more than one request
can fit into a single Tor cell. As a result multiple of these requests will be
transmitted at the same time if there is congestion at a router. A possible
improvement to our attack would be to use a lower level API to send the
packets, as the XMLHttpRequest object inserts unnecessary headers into
the request/response objects.

We will now characterize the network’s behavior under congestion with
respect to request arrival times. Assuming that the browser transmits re-
quests at a perfectly steady rate of one request per second, a congested
router introducing a delay of (at most) n seconds would cause groups of n
HTTP requests to arrive with delays of approximately 0, 1, . . . , n−1 seconds
respectively: the first cell is delayed by n − 1 seconds, the cell arriving a

64 4. A Practical Congestion Attack on Tor Using Long Paths

A B

B1

B2

B3

B4

B5

B6

C

C1

C2

C0

t = 0

A0

t = 1

B0

t = 2
Output Queue

A B

B1

B2

B3

B4

B5

B6

C

C2

C0

t = 0

A0

t = 1

B0

t = 2

C1

t = 3
Output Queue

(a) This example illustrates a Tor router which is handling three
circuits at two points in time (t = 3 and t = 4). Cells are pro-
cessed one at a time in a round-robin fashion. As the number
of circuits increases so does the time to iterate over the queues.
The left figure shows the circuit queues and output queue be-
fore selection of cell C1 for output and the right figure shows the
queues after queuing C1 for output. The thicker bottom box
of queue C (left) and queue B (right) shows the current posi-
tion of the round-robin queue iterator. At time t = 1 the last
cell from queue A was processed leaving the queue A empty so
queue A is skipped after processing queue C.

Fig. 4.3

A B

B0

B1

C

C1

C2

C3

C4

C5

D

D1

D2

D3

E

E1

E2

E3

E4

E5

F

F0

F1

F2

F3

F4

F5

F6

G

G0

G1

H

H0

H1

H2

H3

H4

H5

I

I0

J K

K0

K1

K2

K3

L

L0

L1

M

M0

M1

M2

M3

M4

N

N0

N1

N2

N3

O

O0

O1

O2

C0

t = 0

D0

t = 1

E0

t = 2
Output Queue

A B

B0

B1

C

C1

C2

C3

C4

C5

D

D1

D2

D3

E

E1

E2

E3

E4

E5

F

F1

F2

F3

F4

F5

F6

G

G0

G1

H

H0

H1

H2

H3

H4

H5

I

I0

J K

K0

K1

K2

K3

L

L0

L1

M

M0

M1

M2

M3

M4

N

N0

N1

N2

N3

O

O0

O1

O2

C0

t = 0

D0

t = 1

E0

t = 2

F0

t = 3
Output Queue

(b) This example illustrates a Tor router under congestion attack
handling 15 circuit queues. Note that if a circuit includes a
node multiple times, the node assigns the circuit multiple cir-
cuit queues. In this example, not all of the circuit queues
are busy — this may be because the circuits are not in use
or because other routers on the circuit are congested. As in
Fig. 4.3a, the left and right figures show the state of the mix
before and after queuing a cell, in this case F0.

Fig. 4.3: These figures demonstrate the internal queuing in Tor, and why
a busy node takes longer to process individual cells.

4.3. Our Attack 65

second later by n−2 seconds, and the n-th cell arrives just before the round-
robin scheduler processes the circuit and sends all n requests in one batch.
This characterization is of course a slight idealization in that it assumes
that n is small enough to allow all of the HTTP requests to be grouped
into one Tor cell and that there are no other significant fluctuations. Fur-
thermore, it assumes that the amount of congestion caused by the attacker
is perfectly steady for the duration of the time measurements, which may
not be the case. However, even without these idealizations it is easy to see
that the resulting latency histograms would still become “flat” (just not as
perfectly regular in terms of arrival patterns) assuming the load caused by
the attacker is sufficiently high.

Since we ideally expect delays in message arrival times for a congested
circuit to follow a roughly flat distribution between zero and n, it makes
sense to compute a histogram of the delays in message arrival times. If the
congestion attack is targeting a node on the circuit, we would expect to see
a roughly equal number of messages in each interval of the histogram. We
will call the shape of the resulting histogram horizontal. If the circuit is not
congested, we expect to see most messages arrive without significant delay
which would place them in the bucket for the lowest latency. We will call
the shape of the resulting histogram vertical. So for example, in Figure 4.5
the control data are vertical, whereas the attack data are more horizontal.

Note that the clock difference between the victim’s system and the ad-
versary as well as the minimal network delay are easily eliminated by nor-
malizing the observed time differences. As a result, the latency histograms
should use the increases in latency over the smallest observed latency, not
absolute latencies.

4.3.3 Statistical Evaluation

In order to numerically capture congestion at nodes we first measure the
node’s baseline latency, that is, latency without an active congestion attack
(at least as far as we know). We then use the observed latencies to create n
bins of latency intervals such that each bin contains the same number of data
points. Using the χ2-test we could then determine if the latency pattern at
the respective peer has changed “significantly”. However, this simplistic test
is insufficient. Due to the high level of normal user activity, nodes frequently
do change their behavior in terms of latencies, either by becoming congested
or by congestion easing due to clients switching to other circuits. For the
attacker, congestion easing (the latency histogram getting more vertical) is
exactly the opposite of the desired effect. Hence the ordinary χ2 test should
not be applied without modification. What the attacker is looking for is the
histogram becoming more horizontal, which for the distribution of the bins
means that there are fewer values in the low-latency bins and more values
in the high-latency bins. For the medium-latency bins no significant change

66 4. A Practical Congestion Attack on Tor Using Long Paths

is expected (and any change there is most likely noise).

Hence we modify our computation of the χ2 value such that we only in-
clude changes in the anticipated direction: for the bins corresponding to the
lowest third of the latencies, the square of the difference between expected
and observed number of events is only counted in the summation if the num-
ber of observed events is lower than expected. For the bins corresponding
to the highest third of the latencies, the square of the difference between
expected and observed number of events is only counted if the number of
observed events is higher than expected. Since changes to the bins in the
middle third are most likely noise, those bins are not included in the χ2

calculation at all (except as a single additional degree of freedom).

Using this method, a single iteration of measuring the baseline and then
determining that there was a significant increase in latency (evidenced by a
large χ2-value), only signifies that congestion at the guard for the victim cir-
cuit was correlated (in time) with the congestion caused by the attacker. Of
course, correlation does not imply causality; in fact, for short (30–60 s) at-
tack runs it frequently happens that the observed χ2-value is higher for some
false-positive node than when attacking the correct guard node. However,
such accidental correlations virtually never survive iterated measurements
of the latency baseline and χ2-values under attack.

4.3.4 Congestion Attack

Now we focus on how the attacker controlling the exit node of the circuit
will cause significant congestion at nodes that are suspected to be part of
the circuit. In general, we will assume that all Tor routers are suspects
and that in the simplest case, the attacker will iterate over all known Tor
routers with the goal of finding which of these routers is the entry point of
the circuit.

For each router X, the attacker constructs a long circuit that repeatedly
includes X on the path. Since Tor relays will tear down a circuit that
tries to extend to the previous node, we have to use two (or more) other
(preferably high-bandwidth) Tor routers before looping back to X. Note
that the attacker could choose two different (involuntary) helper nodes in
each loop involving X. Since X does not know that the circuit has looped
back to X, Tor will treat the long attack circuit as many different circuits
when it comes to packet scheduling (Fig. 4.3b).

Once the circuit is sufficiently long (we typically found 24 hops to be
effective, but in general this depends on the amount of congestion estab-
lished during the baseline measurements), the attacker uses the circuit to
transmit data. Note that a circuit of length m would allow an attacker
with p bandwidth to consume m · p bandwidth on the Tor network, with
X routing as much as m·p

3 bandwidth. Since X now has to iterate over an
additional m

3 circuits, this allows the attacker to introduce large delays at

4.3. Our Attack 67

this specific router. The main limitation for the attacker here is time. The
larger the desired delay d and the smaller the available attacker bandwidth
p the longer it will take to construct an attack circuit of sufficient length
m: the number of times that the victim node is part of the attack circuit is
proportional to the length of the circuit m. In other words, the relationship
between p, m and the delay d is d ∼ p ·m.

If the router X is independent of the victim circuit, the measured delays
should not change significantly when the attack is running. If X is the entry
node, the attacker should observe a delay pattern that matches the power of
the attack – resulting in a horizontal latency variance histogram as described
in Section 4.3.2. The attacker can vary the strength of the attack (or just
switch the long attack circuit between idle and busy a few times) to confirm
that the victim’s circuit latency changes correlate with the attack. It should
be noted that the attacker should be careful to not make the congestion at-
tack too powerful, especially for low-bandwidth targets. In our experiments
we sometimes knocked out routers (for a while) by giving them far too much
traffic. As a result, instead of receiving requests from the JavaScript code
with increasing latencies, the attacker suddenly no longer receives requests
at all, which gives no useful data for the statistical evaluation.

4.3.5 Optimizations

The adversary can establish many long circuits to be used for attacks be-
fore trying to de-anonymize a particular victim. Since idle circuits would
not have any impact on measuring the baseline (or the impact of using an-
other attack circuit), this technique allows an adversary to eliminate the
time needed to establish circuits. As users can only be expected to run their
browser for a few minutes, eliminating this delay may be important in prac-
tice; even users that may use their browser for hours are likely to change
between pages (which might cause Tor to change exit nodes) or disable Tor.

In order to further speed up the process, an adversary can try to perform
a binary search for X by initially running attacks on half of the routers in the
Tor network. With pre-built attack circuits adding an almost unbounded
multiplier to the adversary’s resources, it is conceivable that a sophisticated
attacker could probe a network of size s in log2 s rounds of attacks.

In practice, pre-building a single circuit that would cause congestion
for half the network is not feasible; the Tor network is not stable enough to
sustain circuits that are thousands of hops long. Furthermore, the differences
in available bandwidth between the routers complicates the path selection
process. In practice, an adversary would most likely pre-build many circuits
of moderate size, forgoing some theoretical bandwidth and attack duration
reductions for circuits that are more reliable. Furthermore, the adversary
may be able to exclude certain Tor routers from the set of candidates for the
first hop based on the overall round-trip latency of the victim’s circuit. The

68 4. A Practical Congestion Attack on Tor Using Long Paths

Tor network allows the adversary to measure the latency between any two
Tor routers [82, 126]; if the overall latency of the victim’s circuit is smaller
than the latency between the known second router on the path and another
router Y , then Y is most likely not a candidate for the entry point.

Finally, the adversary needs to take into consideration that by default, a
Tor user switches circuits every 10 minutes. This further limits the window
of opportunity for the attacker. However, depending on the browser, the
adversary may be able to cause the browser to pipeline HTTP requests
which would not allow Tor to switch circuits (since the HTTP session would
not end). Tor’s circuit switching also has advantages for the adversary: every
10 minutes there is a new chance that the adversary-controlled exit node is
chosen by a particular victim. Since users only use a small number of nodes
for the first node on a circuit (these nodes are called guard nodes [131]), the
adversary has a reasonable chance over time to determine these guard nodes.
Compromising one of the guard nodes would then allow full deanonymization
of the target user.

4.4 Experimental Results

The results for this chapter were obtained by attacking Tor routers on
the real, deployed Tor network (initial measurements were done during
the Spring and Summer of 2008; additional data was gathered in Spring
2009 with an insignificantly modified attacker setup; the modifications were
needed because our original attack client was too outdated to work with
the majority of Tor routers at the time). In order to confirm the accu-
racy of our experiments and avoid ethical problems, we did not attempt
to de-anonymize real users. Instead, we established our own client circuits
through the Tor network to our malicious exit node and then confirmed that
our statistical analysis was able to determine the entry node used by our
own client. Both the entry nodes and the second nodes on the circuits were
normal nodes in the Tor network outside of our control.

The various roles associated with the adversary (exit node, malicious cir-
cuit client, and malicious circuit webserver) as well as the “de-anonymized”
victim were distributed across different machines in order to minimize in-
terference between the attacking systems and the targeted systems. For the
measurements we had the simulated victim running a browser requesting
and executing the malicious JavaScript code, as well as a machine running
the listening server to which the client transmits the “ping” signal approxi-
mately every second (Fig. 4.1). The browser always connected to the same
unmodified Tor client via Privoxy [90]. The Tor client used the standard
configuration except that we configured it to use our malicious exit node
for its circuits. The other two nodes in the circuit were chosen at random
by Tor. Our malicious exit node participated as a normal Tor router in
the Tor network for the duration of the study (approximately six weeks).

4.4. Experimental Results 69

For our tests we did not actually make the exit server inject the JavaScript
code; while this is a relatively trivial modification to the Tor code we used
a simplified setup with a webserver serving pages with the JavaScript code
already present.

The congestion part of the attack requires three components: a simple
HTTP server serving an “infinite” stream of random data, a simple HTTP
client downloading this stream of data via Tor, and finally a modified Tor
client that constructs “long” circuits through those Tor nodes that the at-
tacker would like to congest. Specifically, the modified Tor client allows the
attacker to choose two (or more) routers with high bandwidth and a specific
target Tor node, and build a long circuit by repeatedly alternating between
the target node and the other high bandwidth nodes. The circuit is eventu-
ally terminated by connecting from some high-bandwidth exit node to the
attacker’s HTTP server which serves the “infinite” stream of random data
as fast as the network can process it. As a result, the attacker maximizes
the utilization of the Tor circuit. Even so, an attacker with significant band-
width can elect to build multiple circuits in parallel or build shorter circuits
and still exhaust the bandwidth resources of the target Tor router.

In order to cause congestion, we simply started the malicious client Tor
process with the three chosen Tor routers and route length as parameters and
then attempted to connect via libcurl [37] to the respective malicious server
process. The amount of data received was recorded in order to determine
bandwidth consumed during the tests. In order to further increase the load
on the Tor network the experiments presented actually used two identical
attacker setups with a total of six machines duplicating the three machine
setup described in the previous paragraph. We found path lengths of 24
(making our attack strength eight times the attacker bandwidth) sufficient
to alter latencies. The overall strength of the attack was measured by the
sum of the number of bytes routed through the Tor network by both attacker
setups. For each trial, we waited to receive six hundred responses from
the “victim”; since the browser transmitted requests to Tor at roughly one
request per second, a trial typically took approximately ten minutes.

In addition to measuring the variance in packet arrival time while con-
gesting a particular Tor router, each trial also included baseline measure-
ments of the “un-congested” network to discover the normal variance in
packet arrival time for a particular circuit. As discussed earlier, these base-
line measurements are crucial for determining the significance of the effect
that the congestion attack has had on the target circuit.

Figure 4.4 illustrates how running the attack on the first hop of a cir-
cuit changes the latency of the received HTTP requests generated by the
JavaScript code. The figure uses the same style chosen by Murdoch and
Danezis [126], except that an additional line was added to indicate the
strength of the attack (as measured by the amount of traffic provided by
the adversary). For comparison, the first half of each of the figures shows

70 4. A Practical Congestion Attack on Tor Using Long Paths

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 0 200 400 600 800 1000 1200

10

20

30

40

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

B
yt

es
 e

xp
en

de
d

by
 a

tta
ck

er
 (

in
 k

B
)

Sample number

Latency measurement graph carini

Control Run
Attack Run

Downloaded Data

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

 0 200 400 600 800 1000 1200

10

20

30

40

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

B
yt

es
 e

xp
en

de
d

by
 a

tta
ck

er
 (

in
 k

B
)

Sample number

Latency measurement graph carini

Control Run
Attack Run

Downloaded Data

(b)

Fig. 4.4

4.4. Experimental Results 71

1

2

3

4

5

6

7

 0 200 400 600 800 1000 1200

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

B
yt

es
 e

xp
en

de
d

by
 a

tta
ck

er
 (

in
 k

B
)

Sample number

Latency measurement graph freedomsurfers

Control Run
Attack Run

Downloaded Data

(c)

1

5

10

15

20

25

30
31

 0 200 400 600 800 1000 1200

10

20

30

40

50

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

B
yt

es
 e

xp
en

de
d

by
 a

tta
ck

er
 (

in
 k

B
)

Sample number

Latency measurement graph bloxortsipt41

Control Run
Attack Run

Downloaded Data

(d)

Fig. 4.4: Result of of circuit perturbation on latency. The x-axes are
sample numbers (one/second), y-axes are latency variance ob-
served on the circuits in seconds. Each attack starts at time
600; the third line shows the amount of data (scaled) that trans-
ferred through the attack circuit.

72 4. A Practical Congestion Attack on Tor Using Long Paths

the node latency variance when it is not under active congestion attack (or
at least not by us).

While the plots in Figure 4.4 visualize the impact of the congestion
attack in a simple manner, histograms showing the variance in latency are
more suitable to demonstrate the significance of the statistical difference
in the traffic patterns. Figure 4.5 shows the artificial delay experienced by
requests traveling through the Tor network as observed by the adversary.
Since Tor is a low-latency anonymization service, the requests group around
a low value for a circuit that is not under attack. As expected, if the entry
node is under attack, the delay distribution changes from a steep vertical
peak to a mostly horizontal distribution. Figure 4.5 also includes the best-fit
linear approximation functions for the latency histograms which we use to
characterize how vertical or how horizontal the histogram is as described in
Section 4.3.2.

Fig. 4.6 illustrates how the χ2 values evolve for various nodes over time.
Here, we first characterized the baseline congestion for the router for five
minutes. Then, the congestion attack was initiated (congesting the various
guard nodes). For each attacked node, we used the modified χ2 summation
(from Section 4.3.3) to determine how congested the victim’s circuit had
become at that time. We computed (cumulative) χ2 values after 30 s, 60 s,
90 s and so forth. For the χ2 calculations, we used 60 bins for 300 baseline
values; in other words, the time intervals for the bins were chosen so that
each bin contained five data points during the five minutes of baseline mea-
surement. The 20 bins in the middle were not included in the summation,
resulting in 40 degrees of freedom. As expected, given only 30 s of attack
data some “innocent” nodes have higher χ2 values compared to the entry
node (false-positives). However, given more samples, the χ2 values for those
nodes typically drop sharply whereas the χ2 value when congesting the entry
node increases or remains high. Of course, false-positive node’s χ2 values
may increase due to network fluctuations over time as well.

Unlucky baseline measurements and shifts in the baseline latency of a
router over time can be addressed by iterating between measuring baseline
congestion and attack measurements. Fig. 4.7 shows three iterations of first
determining the current baseline and then computing χ2 values under attack.
Again the correct entry node exhibits the largest χ2 values each time after
about a minute of gathering latency data under attack.

Given the possibility of false-positives showing up initially when com-
puting χ2 values, the attacker should target “all” suspected guard nodes for
the first few iterations, and then focus his efforts on those nodes that scored
highly. Figure 4.8 illustrates this approach. In them, we combine the data
from multiple iterations of baseline measurements and χ2 calculations from
attack runs. The attacker determines for each χ2 value the corresponding
confidence interval. These values are frequently large (99.9999% or higher
are not uncommon) since Tor routers do frequently experience significant

4.4. Experimental Results 73

(a)

(b)

Fig. 4.5

changes in congestion. Given these individual confidence values for each in-
dividual iteration, a cumulative score is computed as the product3 of these
values. Figure 4.8 shows the Tor routers with the highest cumulative scores
using this metric from trials on two different entry nodes. Note that fewer
iterations were performed for routers with low cumulative scores; the router
with the highest score (after roughly five iterations) and the most overall
iterations is the correctly identified entry node of the circuit in both cases.

Table 4.1 contrasts the product of χ2 values (as introduced in Sec-

3 It is conceivable that multiplying χ2 values may cause false-negatives should a single
near-zero χ2 value for the correct entry node be observed. While we have not encountered
this problem in practice, using the mean of χ2 values would provide a way to avoid this
theoretical problem.

74 4. A Practical Congestion Attack on Tor Using Long Paths

(c)

(d)

Fig. 4.5: Results from congestion attack. The x-axes bucket latency vari-
ance values, the y-axes are the number of readings received in
the range. The hash marked bars represent the unperturbed
measurements on a circuit and the plain bars show measure-
ments from the same circuit under attack, which results in a
shift to higher latency values. We overlaid linear least squares
fit approximations for the baseline and congestion runs.

tion 4.3.3) obtained while attacking the actual first hop with the product
while attacking other Tor routers. This shows our attack can be used to
distinguish the first hop from other routers when controlling the exit.

Finally, by comparing the highest latency observed during the baseline
measurement with the highest latency observed under attack, Table 4.3
provides a simple illustration showing that the congestion attack actually
has a significant effect.

4.4. Experimental Results 75

 0

 50

 100

 150

 200

 250

 300

30 60 90 120 150 180 210 240 270

C
hi

 S
qu

ar
e

V
al

ue
s

of
 A

tta
ck

 v
s.

 B
as

el
in

e

Seconds of Measurement for Attack Run

Rattensalat
DigitalBrains
BlueStar88a

BlueStar88a-2
elc1

Fig. 4.6: Development of χ2 values (χ2 calculation in Section 4.3.3) for
performing a congestion attack on the various nodes. χ2 val-
ues computed against a five-minute baseline obtained prior to
the congestion attack. The χ2 value of the correct entry node
quickly rises to the top whereas the χ2 values for all of the
other candidates are typically lower after about a minute. A
few minutes are typically sufficient to obtain a meaningful χ2

value.

 0

 50

 100

 150

 200

 250

 300

 350

30 60 90 120 0 30 60 90 120 0 30 60 90 120

C
hi

 S
qu

ar
e

V
al

ue

Seconds of Measurement in Run

Chi Sq. Values for Router Rattensalat
Chi Sq. Values for Router TorSchleim

Chi Sq. Values for Router DigitalBrains

Fig. 4.7: Three sets of cumulative χ2 computations for three nodes;
the actual entry node (Rattensalat), a node that initially
shows up as a false-positive (TorSchleim) and a typical negative
(DigitalBrains). The χ2 values (at time 120 s) are consistently
the highest for the correct node; false-positives can be ruled
out through repeated measurements.

76 4. A Practical Congestion Attack on Tor Using Long Paths

1-1x10-20

1-1x10-10

.99999

.99
.9

0
 0 5 10 15 20 25 30

P
ro

du
ct

 o
f C

on
fid

en
ce

 V
al

ue
s

Number of Runs

Rattensalat
SEC

wie6ud6B
hamakor

yavs
auk

dontmesswithme
cThor

Raccoon
eponymousraga

BlueStar88a
wranglerrutgersedu

conf555nick
mf62525

miskatonic
WeAreAHedge

anon1984n2
c64177124055

bond
server3

(a)

Fig. 4.8: Plot of the product of χ2 p-values for the top 20 candidate nodes
out of ∼250 by run (a run is 300 s baseline vs. 300 s attack)
for entry node Rattensalat. We expect an attacker to perform
more measurements for routers that score high to validate the
correct entry node was found. Our measurements demonstrate
that the multiplied p-value remains consistently high for the
correct entry node. The y-axis is plotted on a log scale from 0
to 1− 1× 10−20.

4.4. Experimental Results 77

1-1x10-10

.99999

.99

.9

0
 0 2 4 6 8 10 12 14

P
ro

du
ct

 o
f C

on
fid

en
ce

 V
al

ue
s

Number of Runs

Privacyhosting
c64177124055

DieYouRebelScum1
ArikaYumemiya

auk
mrkoolltor

TorSchleim
myrnaloy

judas
Doodles123

tin0
baphomet

kallio
diora

aquatorius
Einlauf

dontmesswithme
askatasuna

century

(b)

Fig. 4.8: Plot of the product of χ2 p-values for the top 20 candidate nodes
out of ∼200 by run for router Privacyhosting. We speculate
that the lower maximum value for Privacyhosting is due to its
higher bandwidth (900 kB/s vs. 231 kB/s for Rattensalat).

78 4. A Practical Congestion Attack on Tor Using Long Paths

Router Πp r Peak BW Configured BW

Rattensalat 0.999991 44 231 kB/s 210 kB/s

c64177124055 0.903 3 569 kB/s 512 kB/s

Raccoon 0.891 8 3337 kB/s 4100 kB/s

wie6ud6B 0.890 11 120 kB/s 100 kB/s

SEC 0.870 13 4707 kB/s 5120 kB/s

cThor 0.789 8 553 kB/s 500 kB/s

BlueStar88a 0.734 7 111 kB/s 100 kB/s

bond 0.697 3 407 kB/s 384 kB/s

eponymousraga 0.458 7 118 kB/s 100 kB/s

conf555nick 0.450 5 275 kB/s 200 kB/s

Tab. 4.1: This table lists the top ten (out of 251 total) products of con-
fidence intervals (p-values). r is the number of iterations (and
hence the number of factors in Πp) that was performed for the
respective router. As expected, the entry node Rattensalat

achieves the highest score.

We eventually decided upon using the χ2 distribution test to evaluate our
attack because we had some initial difficulty mathematically characterizing
how “vertical” or “horizontal” a histogram was in a statistically sound way.
Here we detail the first method in which we tried to capture this expected
change in distributions using linear least squares best fit approximations.
This method correctly captured the difference between baseline and attack
trials, but using descriptive statistics to attempt to compare aggregate data
proves much more difficult.

We can numerically characterize how vertical or how horizontal a his-
togram is by computing the angle of a least squares best-fit linear regression
function through the origin of the coordinate system and the weighted points
of the histogram. For the best-fit, a point representing k measurements in a
particular time interval is given weight k. As discussed, based on Tor’s cell
scheduling algorithm (Fig. 4.3a) and the small message size of the requests
generated by the JavaScript code (Fig. 4.2), we would, under ideal circum-
stances, expect an angle near zero if the node under the congestion attack is
part of the circuit and, given suitably large latency intervals, a steep linear
approximation function for the baseline histograms (as well as for the case
of the congestion attack targeting the wrong node).

The specific numerical angle of the linear approximation function for
these histograms is meaningless — the x-axis of the histogram is time and
the y-axis is the number of data points; thus, the absolute values cannot
even be compared. However, it is possible to establish an expected range
for the angles for an uncongested (or vertical) histogram. If the adversary is
then able to selectively congest a particular node in the network and obtain a

4.4. Experimental Results 79

Router Πp r Peak BW Configured BW

Privacyhosting 0.9993 17 911 kB/s 5120 kB/s

askatasuna 0.994 3 116 kB/s 75 kB/s

myrnaloy 0.985 9 4824 kB/s 102400 kB/s

dontmesswithme 0.877 4 119 kB/s 100 kB/s

diora 0.633 5 1503 kB/s 2048 kB/s

mrkoolltor 0.575 10 79 kB/s 64 kB/s

ArikaYumemiya 0.520 10 565 kB/s 500 kB/s

Einlauf 0.291 5 56 kB/s 50 kB/s

judas 0.171 5 311 kB/s 75 kB/s

baphomet 0.013 5 208 kB/s 170 kB/s

Tab. 4.2: This table lists the top ten (out of 200 total) products of con-
fidence intervals (p-values). The entry node Privacyhosting

achieves the highest score.

Router Max Avg.
Attacked Latency Latency Runs

Difference Difference
Rattensalat 70352 ms 25822 ms 41
Wiia 46215 ms 470 ms 5
downtownzion 39522 ms 2625 ms 9
dontmesswithme 37648 ms 166 ms 8
wie6ud6B 35058 ms 9628 ms 9
TorSchleim 28630 ms 5765 ms 15
hamakor 25975 ms 6532 ms 8
Vault24 24330 ms 4647 ms 7
Einlauf 22626 ms 2017 ms 8
grsrlfz 22545 ms 10112 ms 2

Tab. 4.3: This table shows the top ten highest latency differences be-
tween the maximum observed measurement in attack runs
versus the baseline runs for each router. Unsurprisingly, the
difference between the maximum latency observed during the
congestion attack and the baseline measurement is significantly
higher when attacking the correct first hop compared to at-
tacking other routers. Also included for comparison is the
average max latency over all iterations (also higher for the
correct first hop), and the number of runs.

80 4. A Practical Congestion Attack on Tor Using Long Paths

latency histogram for the victim’s circuit with a linear approximation that
has an angle outside of the expected range for vertical histograms, then
the congested node is likely to be part of the circuit. Specifically, if the
angle of the linear approximation is outside of the p% confidence interval
for un-congested “vertical” histograms, then the probability is p% that the
congested node is part of the circuit. Depending on the stage of the attack,
the adversary may preferentially choose to congest a larger set of nodes at
the same time. In that case, p% is the probability that one of the congested
nodes is part of the circuit.

We repeated the baseline measurements to construct an expected range
of angles for the approximation function. Figure 4.9 show the average angle
of the latency distribution that is expected if the circuit’s nodes are not under
attack, the expected interval (in standard deviations) and the angle of the
same circuit under attack. Remember that if the angle changes significantly,
the attacker can be confident that the attacked node is on the circuit.

Table 4.4 lists the confidence levels that we were able to achieve in our
experiments for the different circuits and their respective entry-nodes on the
Tor network. A high confidence level of c means that either the measure-
ment is in the 1− c fraction of all measurements with a natural significant
deviation from the baseline or that the congestion caused by the attack on
the node had a significant impact on the latency of the circuit. Table 4.5
contrasts the standard deviation (of the histogram angle from Section 4.3.2)
obtained while attacking the first hop with standard deviations observed
while attacking other Tor routers. The data shows that our attack can be
used to distinguish the first hop from other routers.

While this method gave us results that were correct, the numbers are not
necessarily meaningful in a classic statistical way. For instance, when calcu-
lating our range of possible angles, the predicted 3rd standard deviation-out
line on either side of the mean line often fell below zero degrees or greater
than ninety degrees (i.e. outside of quadrant 1 in a standard Cartesian
plane). These values are obviously outside of the range of possible angles,
which makes using the percentiles from standard deviations virtually mean-
ingless. However, this method still gave us the most likely candidate, but
the resulting numbers lacked the normal statistical meaning which makes
the results difficult to understand.

4.5 Proposed Solutions

An immediate workaround that would address the presented attack would be
disabling of JavaScript by the end user. However, JavaScript is not the only
means by which an attacker could obtain timing information. For example,
redirects embedded in the HTML header could also be used (they would,
however, be more visible to the end user). Links to images, frames and
other features of HTML could also conceivably be used to generate repeated

4.5. Proposed Solutions 81

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000

Linear least sq. of carini latency measurements w/StdDev
Attack Line
Mean Line

-1 StdDev Line
-2 StdDev Line

Range of measurements (in milliseconds)

of

 m
ea

su
re

m
en

ts
 in

 r
an

ge

(a)

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000

Linear least sq. of carini latency measurements w/StdDev
Attack Line
Mean Line

-1 StdDev Line
-2 StdDev Line

Range of measurements (in milliseconds)

of

 m
ea

su
re

m
en

ts
 in

 r
an

ge

(b)

Fig. 4.9

82 4. A Practical Congestion Attack on Tor Using Long Paths

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000

Linear least sq. of freedomsurfers latency measurements w/StdDev
Attack Line
Mean Line

-1 StdDev Line
-2 StdDev Line

Range of measurements (in milliseconds)

of

 m
ea

su
re

m
en

ts
 in

 r
an

ge

(c)

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000

Attack Line
Mean Line

-1 StdDev Line
-2 StdDev Line

Linear least sq. of bloxortsipt41 latency measurements w/StdDev

Range of measurements (in milliseconds)

of

 m
ea

su
re

m
en

ts
 in

 r
an

ge

(d)

Fig. 4.9: Statistical analysis of the histograms created from the measure-
ments obtained in the Tor network. The subjective results in
this light are clear: the attack regression line is typically signif-
icantly outside the range of likely values, as objectively shown
in Table 4.4.

4.5. Proposed Solutions 83

Router Peak Configured Avg. Confidence Attack
BW BW Attack Cost Duration

freedomsurfers 173.9 kB/s 153.6 kB/s 28.2 kB/s 0.9938 10m

bloxortsipt41 54.1 kB/s 51.0 kB/s 4.5 kB/s 0.9826 10m

carini 98.2 kB/s 61.4 kB/s 3.0 kB/s 0.9772 10m
(attack 1)
carini 98.2 kB/s 61.4 kB/s 5.4 kB/s 0.8944 10m
(attack 2)
carini 98.2 kB/s 61.4 kB/s 4.2 kB/s 0.9950 20m
(combined)

Tab. 4.4: This table shows the confidence levels established by our anal-
ysis for three circuits and the respective first router of each
circuit. The stated confidence that the entry node belongs to
the circuit is determined by how far outside the expected range
the recorded data under congestion attack was. The table also
lists basic properties of the entry node and the duration of
the congestion attack. We list the bandwidth of the routers
because this is the primary factor that determines how hard
it is to congest the node. We obtained geographic information
from the hostip.info website; the first entry was from Zurich,
Switzerland, the second from Florida, USA an the rest from
Virginia, USA.

Router Std. Dev. Peak BW Configured BW
from Mean

carini 2.57 98 kB/s 61 kB/s

bettyboop 1.59 2,000 kB/s 102,000 kB/s

1john2 1.15 122 kB/s 20 kB/s

NSAFortMeade -0.41 202 kB/s 150 kB/s

zedz -0.44 3,000 kB/s 100,000 kB/s

Tab. 4.5: This table lists the standard deviations from the mean ob-
served in the angle of the linear approximations of latency his-
tograms obtained for a circuit with carini as the first hop while
congesting various Tor routers (including carini). The peak
bandwidth is the maximum amount of traffic routed by the
respective router in a 10 s interval over the past day. The con-
figured bandwidth is the bandwidth cap specified by the user
in the Tor configuration. A negative standard deviation is used
to indicate that the latencies were lower than expected (the
distribution was more vertical). A high positive standard de-
viation shows a strong correlation between the attacked router
and the first router in the victim circuit.

84 4. A Practical Congestion Attack on Tor Using Long Paths

requests. Disabling all of these features has the disadvantage that the end
user’s browsing experience would suffer.

A better solution would be to thwart the denial-of-service attack inher-
ent in the Tor protocol. Attackers with limited bandwidth would then no
longer be able to significantly impact Tor’s performance. Without the abil-
ity to selectively increase the latency of a particular Tor router, the resulting
timing measurements would most likely give too many false positives. We
have extended the Tor protocol to limit the length of a path. The details
are described in [42]; we will detail the key points here.

In the modified design, Tor routers now must keep track of how often
each circuit has been extended and refuse to route messages that would
extend the circuit beyond a given threshold t. This can be done by tagging
messages that may extend the circuit with a special flag that is not part of the
encrypted stream. The easiest way to do this is to introduce a new Tor cell
type that is used to flag cells that may extend the circuit. Routers then count
the number of messages with the special flag and refuse to route more than a
given small number (at the moment, eight) of those messages. Routers that
receive a circuit-extension request check that the circuit-extension message
is contained in a cell of the appropriate type. Note that these additional
checks do not change the performance characteristics of the Tor network.
An attacker could still create a long circuit by looping back to an adversary-
controlled node every t hops; however, the adversary would then have to
provide bandwidth to route every t-th packet; as a result, the bandwidth
consumption by the attacker is still bounded by the small constant t instead
of the theoretically unbounded path length m.

While this change prevents an attacker from constructing a circuit of
arbitrary length, it does not fully prevent the attacker from constructing a
path of arbitrary length. The remaining problem is that the attacker could
establish a circuit and then from the exit node reconnect to the Tor network
again as a client. We could imagine configuring all Tor relays to refuse
incoming connections from known exit relays, but even this approach does
not entirely solve the problem: the attacker can use any external proxies
he likes (e.g. open proxies, unlisted Tor relays, other anonymity networks)
to “glue” his circuits together. Assuming external proxies with sufficient
aggregate bandwidth are available for gluing, he can build a chain of circuits
with arbitrary length. Note that the solution proposed in [133] — limiting
circuit construction to trees — does not address this issue; furthermore, it
increases overheads and implementation complexity far beyond the change
proposed here and (contrary to the claims in [133]) may also have an impact
on anonymity, since it requires Tor to fundamentally change the way circuits
are constructed. We leave a full solution to this problem as an open research
question.

Finally, given that strong adversaries may be able to mount latency
altering attacks without Tor’s “help”, Tor users might consider using a

4.6. Low-cost Traffic Analysis Failure Against Modern Tor 85

longer path length than the minimalistic default of three. This would in-
volve changes to Tor, as currently the only way for a user to change the
default path length would be to edit and recompile the code (probably out
of scope for a “normal” user). While the presented attack can be made to
work for longer paths, the number of false positives and the time required for
a successful path discovery increase significantly with each extra hop. Using
a random path length between four and six would furthermore require the
adversary to confirm that the first hop was actually found (by determining
that none of the other Tor routers could be a predecessor). However, in-
creasing the path length from three to six would significantly increase the
latency and bandwidth requirements of the Tor network and might also hurt
with respect to other attacks [22].

4.6 Low-cost Traffic Analysis Failure Against Modern Tor

We attempted to reproduce Murdoch and Danezis’s work [126] on the Tor
network of 2008. Murdoch provided us with their code and statistical anal-
ysis framework which performs their congestion attack while measuring the
latency of the circuit. Their analysis also determines the average latency
and uses normalized latencies as the strength of the signal.

The main difference in terms of how data is obtained between Murdoch
and Danezis and the attack presented in Section 4.3 is that Murdoch and
Danezis use a circuit constructed by the attacker to measure the latency
introduced by the victim circuit whereas our attack uses a circuit constructed
by the victim to measure the latency introduced by the attacker.

As described herein, the Murdoch and Danezis style attacker repeatedly
switches the congestion attack on and off; a high correlation between the
presence of high latency values and the congestion attack being active is used
to determine that a particular router is on the circuit. If such a correlation is
absent for the correct router, the attack produces false negatives and fails. If
a strong correlation is present between high latency values and random time
periods (without an active attack) then the attack produces false positives
and also fails.

Figure 4.10 shows examples of our attempts at the method used in [126],
two with the congestion attack being active and two without. Our experi-
ments reproduced Murdoch and Danezis’s attack setup where the attacker
tries to measure the congestion caused by the victim’s circuit. Note that
in the graphs on the bottom, the congestion attack was run against a Tor
router unrelated to the circuit and thus inactive for the circuit that was
measured. Any correlation observed in this case implies that Murdoch and
Danezis’s attack produces false positives. The “visual” look of the graphs
is the same whether the attack is targeted at that relay or not. Specifically,
the graphs on the bottom suggest a similar correlation pattern even when
the attack was “off” (or targeting unrelated Tor routers). This is due to the

86 4. A Practical Congestion Attack on Tor Using Long Paths

0 100 200 300 400 500 600

0.
8

0.
9

1.
0

1.
1

1.
2

M&D Correlation on xbotA with Attack

Time

la
te

nc
y

(a)

0 100 200 300 400 500 600

0.
8

0.
9

1.
0

1.
1

1.
2

M&D Correlation on chaoscomputerclub42 w/o Attack

Time

la
te

nc
y

(b)

Fig. 4.10

high volume of traffic on today’s Tor network causing baseline congestion
which makes their analysis too indiscriminate.

4.6. Low-cost Traffic Analysis Failure Against Modern Tor 87

0 100 200 300 400 500 600

0.
8

0.
9

1.
0

1.
1

1.
2

M&D Correlation on charlesbabbage with Attack

Time

la
te

nc
y

(c)

0 100 200 300 400 500 600

0.
8

0.
9

1.
0

1.
1

1.
2

M&D Correlation on sipbtor w/o Attack

Time

la
te

nc
y

(d)

Fig. 4.10: Four runs of the method used in [126], two with the congestion
attack being active (on top) and two without (on the bottom).
The first two are indistinguishable, as are the second two. This
shows that the background Tor traffic is too high for their
attack to work.

88 4. A Practical Congestion Attack on Tor Using Long Paths

Router Correlation Attacked? Peak BW Configured BW

morphiumpherrex 1.43 Yes 222 kB/s 201 kB/s

chaoscomputerclub23 1.34 No 5414 kB/s 5120 kB/s

humanistischeunion1 1.18 No 5195 kB/s 6000 kB/s

mikezhangwithtor 1.07 No 1848 kB/s 2000 kB/s

hummingbird 1.03 No 710 kB/s 600 kB/s

chaoscomputerclub42 1.00 Yes 1704 kB/s 5120 kB/s

degaussYourself 1.00 No 4013 kB/s 4096 kB/s

ephemera 0.91 Yes 445 kB/s 150 kB/s

fissefjaes 0.99 Yes 382 kB/s 50 kB/s

zymurgy 0.86 Yes 230 kB/s 100 kB/s

charlesbabbage 0.53 Yes 2604 kB/s 1300 kB/s

Tab. 4.6: Correlation values calculated using the Murdoch and Danezis’s
method. False positives and negatives abound.

Table 4.6 shows some representative correlation values that were com-
puted using the statistical analysis from [126] when performed on the modern
Tor network. Note that the correlation values are high regardless of whether
or not the congestion attack was actually performed on the respective router.
For Murdoch and Danezis’s analysis to work, high correlation values should
only appear for the attacked router.

The problem with Murdoch and Danezis’s attack and analysis is not pri-
marily with the statistical method; the single-circuit attack itself is simply
not generating a sufficiently strong signal on the modern network. Fig-
ure 4.11 plots the baseline latencies of Tor routers as well as the latencies of
routers subjected to Murdoch and Danezis’s congestion attack in the style
we used in Figure 4.5. There are hardly any noticeable differences between
routers under Murdoch and Danezis’s congestion attack and the baseline.
Figure 4.12 show the latency histograms for the same data; in contrast to
the histograms in Figure 4.5 there is little difference between the histograms
for the baseline and the attack.

In conclusion, due to the large amount of traffic on the modern Tor
network, Murdoch and Danezis’s analysis is unable to differentiate between
normal congestion and congestion caused by the attacker; the small amount
of congestion caused by their style attack is lost in the noise of the net-
work. As a result, their analysis produces many false positives and false
negatives. While these experiments only represent a limited case-study and
while Murdoch and Danezis’s analysis may still work in some cases, we never
got reasonable results on the modern Tor network.

4.6. Low-cost Traffic Analysis Failure Against Modern Tor 89

1

 0 1000 2000 3000 4000 5000 6000

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

Sample number

Latency measurement graph xbotA

Control Run
Attack Run

(a)

1

2

 0 1000 2000 3000 4000 5000 6000

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

Sample number

Latency measurement graph chaoscomputerclub42

Control Run
Attack Run

(b)

Fig. 4.11

90 4. A Practical Congestion Attack on Tor Using Long Paths

1

5

10

15

20

25

30

35

40

45

50

55

 0 1000 2000 3000 4000 5000 6000

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

Sample number

Latency measurement graph charlesbabbage

Control Run
Attack Run

(c)

1

 0 1000 2000 3000 4000 5000 6000

La
te

nc
y

va
ria

nc
e

(in
 s

ec
on

ds
)

Sample number

Latency measurement graph sipbtor

Control Run
Attack Run

(d)

Fig. 4.11: Data from Figure 4.10, in the style of Figure 4.4. During
the attack phase the congestion circuit is turned on and off as
detailed by the original Murdoch and Danezis attack. Latency
measurements are virtually identical whether the attack was
present or not.

4.6. Low-cost Traffic Analysis Failure Against Modern Tor 91

Fig. 4.12

92 4. A Practical Congestion Attack on Tor Using Long Paths

Fig. 4.12: Once more we show the same data for comparison as shown
in Figure 4.10, this time in the histogram style we use in Fig-
ure 4.5. The overlap between the control run and the attack
run is difficult to see due to the similarity of latency distribu-
tions.

4.7. Conclusion 93

4.7 Conclusion

The possibility of constructing circuits of arbitrary length was previously
seen as a minor problem that could lead to a DoS attack on Tor. This
work shows that the problem is more serious, in that an adversary could use
such circuits to improve methods for determining the path that packets take
through the Tor network. Furthermore, Tor’s minimalistic default choice to
use circuits of length three is questionable, given that an adversary control-
ling an exit node would only need to recover a tiny amount of information
to learn the entire circuit. We have made some minimal changes to the Tor
protocol that make it more difficult (but not impossible) for an adversary
to construct long circuits.

The impact of this work on our design is explained in the next chapter.
This attack and analysis of Tor led us to be more cautious in our distance
vector transport protocol which is designed to give better connectivity to
peers using the GNUnet P2P networking framework. This type of transport
has similarities to Tor and onion routing, as data is multiply encrypted and
routed indirectly to a destination through other “relay” peers. We specif-
ically made design choices that give us protection against peers building
routes of arbitrary length through GNUnet using this transport, and thus
prevent the possible DoS attack which is inherent in the original Tor design.

94 4. A Practical Congestion Attack on Tor Using Long Paths

5. FISH-EYE BOUNDED DISTANCE VECTOR
PROTOCOL

For efficient routing in a DHT, it is quite common for each peer to have at
leastO(log n) other peers in its routing table [30,107,112,143,173] (ideally se-
lectively added from the set of all n total peers). However, sparse topologies
such as a 2d-grid or wireless mesh networks, or any topology where direct
connections can not be made to arbitrary peers, generally do not provide the
specific O(log n) connections which are required for efficient DHT routing.
For this reason, we have implemented a distance vector routing algorithm
which provides connectivity to peers within a certain number of hops dis-
tant by relaying data between directly connected peers. Following [10,136],
we call this a “fish-eye bounded distance vector” (FBDV) routing algorithm,
where nodes gain local knowledge of the network out to some number of hops
(the fish-eye bound) beyond their direct connections. This is achieved by
peers gossiping about their nearby neighbors to each other (in the same way
that distance vector routing protocols do). This both establishes shortest
path routes between close nodes (with relation to hops) as well as provid-
ing a greater number of peers for higher level protocols. With the added
peers, our DHT routing algorithm can perform more efficiently than it could
otherwise in topologies where connectivity is restricted.

5.1 Fish-eye and Zone Routing Protocols

The Bellman-Ford [10] algorithm is a distance vector routing algorithm able
to find shortest paths between nodes in a graph iteratively by periodically
exchanging cost information. While this algorithm works well for small
graphs (where the number of updates and nodes is relatively small) it is
problematic when there are a large number of nodes and edges. Specifically,
this is because all nodes must continually send updates about all other nodes
in the graph until the distances converge, which can be quite costly and time
consuming.

The Fish-eye routing design, originally proposed in [136], is a method for
maintaining routing state in an efficient manner. Because it is a link state
design, every node has knowledge of the global topology of the network.
State is updated by each node in the network periodically sending link state
information (such as cost) to each other node. The “closer” a node a to
another node b, the more often a is informed of the link information of b’s

96 5. Fish-eye Bounded Distance Vector Protocol

neighbors. Essentially, this reduces the communication cost of updating
state information because closer nodes are communicated with more often.
The clear advantage of this kind of design is that “close” nodes are kept
more up to date about a neighbor than “far” nodes which makes sense as
long as closer nodes are communicated with more often than more distant
nodes.

Our Fish-eye Distance Vector route maintenance is also quite similar to
the proactive routing of the Zone Routing Protocol (ZRP) [9]. ZRP combines
two routing protocols; traditional flooding distance vector state maintenance
is used for a k-hop out neighborhood of nodes and a less expensive (in
terms of routing table size) reactive routing protocol is employed for sending
messages out of this local neighborhood. We utilize the idea of having a
local k-distance neighborhood for our design, but leave routing outside the
neighborhood to our higher level (DHT) routing protocol.

The main idea for our combination Fish-eye/ZRP design is that nodes
are not aware of global state, but communicate topology information to
nodes within a certain maximum “distance” (where distance can be number
of hops, link cost, or a combination of the two) to establish a neighborhood
of peers. We reduce the cost of maintenance further than [136], as topology
information is only sent when new peers are connected or disconnected.

Using the FBDV algorithm provides the benefits of a local distance vector
algorithm in a k-size neighborhood while reducing the number of messages
sent over costly/distant links. This gives better connectivity for higher level
applications, such as our DHT routing algorithm. If sufficient connectivity
exists in the network, FBDV is simply not used.

5.2 Implementation

GNUnet is a P2P networking framework which provides connectivity to
peers and cryptographic key exchange for encrypted communication between
those peers. GNUnet employs a plugin-based transport service, so that mul-
tiple types of transports can be used and the best one can be selected based
on user specified criteria. For instance, there are UDP and TCP plugins
which can both be used at the same time; two peers can be connected via
either, both or neither of them. The transport service can choose which
of any type of loaded plugins to use for communication depending on mea-
surements i.e., latency, or configuration options such as allowed bandwidth,
etc. The FBDV protocol in GNUnet is implemented as a transport plugin,
thus it can be used transparently by other P2P applications in the GNUnet
system for communication.

GNUnet separates the functionality of a single peer into a number of
operating system processes for purposes of fault isolation. This process sep-
aration is shown in Figure 5.1, as an example of a simple peer running only
four services. Due to this process separation, the distance vector implemen-

5.2. Implementation 97

GNUnet CORE Service
encryption

bandwidth allocation

core API

GNUnet DHT Service
distributed data store

DHT API

GNUnet Peerinfo Service
known peers

persistent peer storage

peerinfo API

WLANDV HTTP

GNUnet Transport Service
host transport selection

send/receive

transport API

FS

TCP UDP
GNUnet GNUnet GNUnet GNUnet GNUnet

: TCP I/O

Fig. 5.1: The high level view of a single GNUnet peer. Each box repre-
sents a process; directed edges show data flow between these
processes. This “peer” is made up of four service processes
(core, DHT, peerinfo, transport) and a single user process
(FS). The “plugs” under the transport service represent mul-
tiple transport plugins enabling low-level communication with
other peers.

tation is split into a service which handles communication with the GNUnet
core service (providing overlay connections to other peers), and a transport
service plugin (providing underlay communication to other peers). The im-
plementation includes the definition of numerous message formats for gossip
and data messages which are passed between a single peer’s services and
also between peers.

Plugins in GNUnet provide addresses and connection related informa-
tion to the transport service for each peer that the plugin is connected to.
This allows the transport service to choose the best plugin and address per
peer, which means multiple addresses can exist for a peer via the same plu-
gin as well. This reduces the requirements of the transport plugins; the
transport service does the difficult work of selecting the address and plugin
for a connection to a peer, and the plugin simply has to send the infor-
mation. However, the distance vector transport uses connections to other
peers, so it requires communication with the GNUnet core service (which
manages encrypted connections to other peers, and handles de-multiplexing
of messages).

98 5. Fish-eye Bounded Distance Vector Protocol

The distance vector service in itself is simple, as its only job is to maintain
a table of reachable peers, their associated distances (currently only based
on number of hops) and via which directly connected peer the message
should be sent. The other job of the service is to encapsulate messages for
distant peers in a special distance vector message format and send that to
the directly connected peer which the distant peer is reachable from. The
distance vector service handles distance vector gossip messages, distance
vector data messages, connect and disconnect messages from the core service
and provides an API for sending and receiving messages which is used by
the distance vector plugin.

One problem with distance vector protocols is preventing looping of mes-
sages. Clearly, if a peer c can be reached from a via peer b, then a valid
path from a to c could be a → b → a → b → c. This path has a loop, and
is therefore not the most efficient (or helpful) route to choose. To prevent
such loops in our distance vector implementation, we use the split horizon
method [20] which guards against advertising routes that can create short
loops. Also, the count to infinity problem which can also occur is mitigated
by our fish-eye bound which reduces the maximum path length allowed in
FBDV.

5.3 Distance Vector Service

The distance vector service handles notifications of connect and disconnect
events from the peer’s core service. Upon notification of a new peer con-
nection, the service creates and sends appropriate distance vector gossip
messages. Upon receipt of a distance vector gossip message, the recipient
performs checks and subsequently adds or updates the peer entry in the
distance vector routing table. When a peer disconnects, the distance vec-
tor service propagates disconnect messages to each directly connected peer.
These peers remove any entries which are associated with the disconnected
peer, and further propagate the disconnect messages if they have further
gossiped information about the peer.

5.4 Message Example

The multi-process architecture means sending messages via distance vector
requires multiple steps, shown in Figure 5.2. This figure shows these step
for sending a message from a peer A to a peer C via peer B. First, an
application at peer A notifies the core service that it has a message to send
to peer C. Core (A) encrypts the message for C, passing the result to
transport (A). Transport (A) calls the distance vector plugin, which in turn
triggers a message send request in the distance vector service. The distance
vector service encapsulates the data message and passes it to core (A), which
encrypts the message for B and hands it to transport (A).

5.5. Neighborhood Size Estimate 99

CORE A

TRANSPORT A

DV PLUGIN A

TCP A

DV SERVICE A

msg1

msg

enc c
2

msg

enc c
3

msg

enc c
4

msg

enc c
dv data (b)

5

msg

enc c
dv data (b)

enc b

6

msg

enc c
dv data (b)

enc b

7

msg

enc c
dv data (c)

13

CORE B

TRANSPORT B

TCP B

DV PLUGIN B

DV SERVICE B

msg

enc c
dv data (b)

enc b

8

msg

enc c
dv data (b)

enc b

9

msg

enc c
dv data (b)

enc b

10

msg

enc c
dv data (b)

enc b

11

msg

enc c
dv data (b)

12

msg

enc c
dv data (c)

enc c

14

msg

enc c
dv data (c)

enc c

15

CORE C

TRANSPORT C

TCP C

DV PLUGIN C

DV SERVICE C

msg

enc c
dv data (c)

enc c

16

msg

enc c
dv data (c)

enc c

17

msg

enc c
dv data (c)

enc c

18

msg

enc c
dv data (c)

enc c

19

msg

enc c
dv data (c)

20

msg

enc c
21

msg

enc c
22

msg

enc c
23

msg24

Fig. 5.2: Example showing details of the steps when sending a message
from peer a to peer c via peer b.

In this particular example1, transport (A) sends the doubly encrypted
message to transport (B) via TCP. Peer B passes the message around, re-
moving a single layer of encryption to reveal the distance vector data mes-
sage specifying the message should be sent to C. Eventually a new distance
vector data message is created and transport (B) sends the message to trans-
port (C) via TCP. Once decrypted, the distance vector service (C) verifies
that the original sender is valid and passes it to the distance vector plugin
(C). The distance vector plugin mangles the message so that it appears to
have arrived from peer A. The plugin gives this message to the transport
service, which passes it to the core service of peer C, which finally decrypts
the original message and passes it to whichever application(s) handle the
message type.

5.5 Neighborhood Size Estimate

The purpose of our fish-eye bounded distance vector protocol is providing a
greater number of peers to applications higher levels. The user-configurable
component of this protocol is the fish-eye bound, or the number of hops dis-
tant the peer will consider to be its local neighborhood. This is an important
parameter as the amount of storage overhead may grow exponentially when
increasing the neighborhood bound. Specifically, if we assume a uniform
topology where each peer has an average number α connections, Lemma 5.1
shows the maximum number of peers with varying fish-eye bounds.

Remark 5.1. Given a topology where peers have on average α direct connec-
tions and a fish-eye bound of β, the expected maximum fish-eye neighborhood

1 Any transport available connecting the two peers could be used

100 5. Fish-eye Bounded Distance Vector Protocol

size, ignoring collisions, is:

ϑα,β =

β∑
h=0

αh (5.1)

Given that the size of the fish-eye neighborhood can grow quite fast, we
allow a user-configured limit on the size of the distance vector routing table.
Once this specified limit is reached, new connections are only added if they
are less costly than some already known reachable peer and a core level
connection to that peer has not been established via the more costly link.
If these conditions are met, the more expensive link entry is removed and
the cheaper one added. Still, usage of the distance vector protocol should
be carefully considered based on the expected topology that will be used.
If used in a well connected topology, the distance vector transport will only
use resources without providing any actual benefit.

 1

 10

 100

 1000

 0 1 2 3 4 5

#
 P

e
e
rs

 i
n
 R

o
u
ti
n
g
 T

a
b
le

Hops Distant

3 log n connections
.15 log n Avg Conns (observed)
.15 log n Avg Conns (predicted)

(a) .15 log (n) average connections

 1

 10

 100

 1000

 0 1 2 3 4 5

#
 P

e
e
rs

 i
n
 R

o
u
ti
n
g
 T

a
b
le

Hops Distant

3 log n connections
.5 log n Avg Conns (observed)
.5 log n Avg Conns (predicted)

(b) 1
2 log (n) average connections

 1

 10

 100

 1000

 0 1 2 3 4 5

#
 P

e
e
rs

 i
n
 R

o
u
ti
n
g
 T

a
b
le

Hops Distant

3 log n connections
log n Avg Conns (observed)
log n Avg Conns (predicted)

(c) log (n) average connections

 1

 10

 100

 1000

 0 1 2 3 4 5

#
 P

e
e
rs

 i
n
 R

o
u
ti
n
g
 T

a
b
le

Hops Distant

3 log n connections
2 log n Avg Conns (observed)
2 log n Avg Conns (predicted)

(d) 2 log (n) average connections

Fig. 5.3: Plot of the estimated size of the distance vector neighborhood
when increasing the number of hops. Estimated vs. actual
for a 5, 000 peer Small-World topology with varying per-peer
connections.

Figure 5.3 relates the estimated number of peers in a distance vector
routing table to the actual number of peers for varying neighborhood sizes

5.6. Distance Vector for Onion Routing 101

in 5, 000 peer Small-World topologies with varying average per-peer connec-
tions. The “observed” data comes from emulations running 5, 000 peers.
This shows the impact of collisions (finding the same peer in two differ-
ent neighborhood steps) on the estimate that we have given in Lemma 5.1.
Lemma 5.1 overestimates the peers reachable within a certain number of
steps, as it ignores collisions. However, the figures show that even with
collisions, we achieve significantly more than 3 · log n peers within a small
number of hops. We use 3 · log n total connections as a target for FBDV as
a simple point of reference between the different topologies. The main point
is that within a small number of hops distant, FBDV provides This provides
a sufficient number of peers for our DHT routing algorithm described in
Chapter 7, which is ultimately the goal for the FBDV protocol.

5.6 Distance Vector for Onion Routing

The plugin and process isolation structure of GNUnet makes the distance
vector implementation relatively complex, adding some steps that are not
strictly necessary to perform neighbor-of-neighbor based routing. However,
one nice side effect of this complexity is that distance vector messages are
essentially onion routed between peers. Onion routing [71] is a method
for achieving anonymous communication between two endpoints. This is
achieved by multiply encrypting messages at the sender and forwarding the
message through a number of peers in series to the receiver. Using traditional
onion routing, the receiver can not easily discern the identity of the sender.
In common anonymity providing systems [45, 117, 129, 190] the part of the
sender and receiver identity that is hidden are the respective IP addresses.
Typically, the fact that the sender and receiver are communicating is also
hidden from adversarial third parties; those participating in the network or
eavesdroppers. This property of anonymity is achieved through the multiple
encryption techniques and the length of the anonymizing chain (also known
as a “tunnel” or “circuit” depending on the system).

With onion routing, a message sender chooses a certain number of peers
through which to relay the message. The sender then encrypts the message
repeatedly, starting with the encryption key of the last peer in the chain
and ending with the first peer. The message is then sent to the first peer
which removes one layer of encryption and sends the message to the next
peer in the chain until the message reaches the final peer, where the last
layer of encryption is removed and the message is revealed. Encrypting the
message in this way hides the content from each of the intermediate peers,
and provided that each of the peers knows only the previous and next hop
and the circuit is of suitable length (see [71] for details) it becomes difficult
for adversaries to determine the sender and receiver with any degree of
certainty. Figure 5.4 shows the layered encryption process in typical onion
routing between a sender a and recipient d.

102 5. Fish-eye Bounded Distance Vector Protocol

a b c d
msg

enc d
enc c
enc b

msg

enc d
enc c

msg

enc d

msg

msg

Fig. 5.4: Figure shows the high level view of a distance vector message
being sent from peer a to peer d via peers b and c. Crucially for
onion routing, the original message “msg” is encrypted thrice
at peer a, and a single layer of encryption is peeled off at peers
b, c and d, revealing the message only to the intended recipient.

Using the distance vector transport recursively, the exact same type of
layered encryption is achieved, meaning that onion routing is performed
implicitly. Figure 5.2 demonstrates how this works for a two hop distant
peer using the distance vector transport, which is the most trivial example
of onion routing. However, the only protection is from an eavesdropper, who
would have to monitor both the a → b and b → c connections to discover
that a was communicating with c. This becomes increasingly difficult for
an eavesdropper as more peers are added between the sender and receiver.
Figure 5.5 shows how a message would be constructed to be sent from a
peer a to peer d provided that there are two hops b and c between them.
The key to this technique is that the distance vector transport can be used
recursively; meaning that a distance vector connected peer can provide other
distance vector connected peers. This requires the message to go through
the multiple phases of encryption which define onion routing.

5.7 FBDV Caveats: Onion Routing Without Anonymity

The primary purpose of the distance vector transport is to provide additional
connectivity to peers, thus it is important to outline the differences between
the de-facto onion routing we use and traditional onion routing or other
mixing techniques. Tor [45] or I2P [190], for instance, use client selected
peers for building anonymizing tunnels. Other designs, including Salsa [129],
AP3 [117] and Cashmere [188] allow random tunnel participants to be chosen
at each step. An important security goal of all of these designs is that peers
involved in the tunnel are unable to discover the identity of both the initiator
and recipient of the message. In our design there is currently no attempt
to hide this information from participants in the tunnel. This means that
a malicious participant in the local neighborhood which is used for routing

5.7. FBDV Caveats: Onion Routing Without Anonymity 103

CORE A

TRANSPORT A

DV PLUGIN A

TCP A

DV SERVICE A

msg

enc c
dv data (c)

msg
enc d

enc b
dv data (b)

enc c
dv data (c)

msg
enc d

msg
enc d

enc b
dv data (b)

enc c
dv data (c)

msg
enc d

enc c
dv data (c)

msg
enc dmsg

enc d

msg
enc d

enc c
dv data (c)

msg
enc d

dv data (b)
enc c

dv data (c)

msg
enc d

dv data (c)

msg
enc d

enc b
dv data (b)

enc c
dv data (c)

msg
enc d

1

2

3

4

5

6

78

9

10

11

Fig. 5.5: This example shows the detailed steps that are performed at
peer a when encrypting a message for peer d which will be
onion encrypted and routed via peers b and c.

104 5. Fish-eye Bounded Distance Vector Protocol

c b 2

a
peer via cost

d

b

3

d

c

3

c 2

b
peer via cost

d b c 2

peer via cost
d

a

c

3

a

b

3

ba 2

c
peer via cost

a b c d

Fig. 5.6: Shown here are the routing tables for the distance vector ser-
vice at the respective peers in this simple, straight line topol-
ogy. The routing table for peer a contains two entries for peer
d, one which will result in an onion encrypted connection and
one which will not.

messages may know when two peers are communicating, though the contents
of that communication remain secret. Thus the principal protection gained
from onion routing with the distance vector transport is against outside
eavesdroppers attempting to discover when two peers are communicating.

A second and equally important security aspect of other onion routing
and mix network designs is that the peers chosen to participate in tunnels
are chosen at random from the set of all peers in the network. This en-
sures that a small proportion of colluding malicious participants can not
discover communication between peers trivially. Again, our design makes
this requirement impossible. Essentially a peer is stuck with those neigh-
bors within the fish-eye bounded range, be they well-behaved or malicious.
A peer with even a single malicious neighbor providing connections to oth-
erwise unaccessible peers will be likely to use the malicious peer. If the
malicious peer is selected to be used, it could learn about communication
patterns, drop messages intended for other peers, etc. This means that
FBDV cannot even provide anonymity, and should not be assumed to do so.

Finally, while onion routing using the distance vector transport is cur-
rently possible, the default transport selection in GNUnet chooses transport
plugins and addresses based on least cost and least latency. Take, for ex-
ample, the topology in Figure 5.6. In it there are two entries in the routing
table of peer a to contact peer d. Both traverse peers b and c, and both have
an associated cost of 3. Both are equally likely to be chosen, but the first en-
try does not use recursive distance vector routing, and is therefore not onion
encrypted. The second will use onion routing, but the transport selection
mechanism in GNUnet has no way of knowing this (or preferring it). Even
worse yet for security, if another peer e comes into the network providing a a
connection to d for cost 2 (as shown in Figure 5.7) that connection will likely

5.8. Conclusion 105

be chosen as the “best” link to use.2 In its current state, the distance vector
implementation cannot be used for anonymous routing, but it does meet our
goal of providing additional connectivity among non-malicious peers.

c b 2

a
peer via cost

d

b

3

d

c

3

d e 2

c e 3

a

d c 2

b
peer via cost

d

c

3

e
a

3

e a 2

e d 3

b

a b 2

c
peer via cost

e

d

3

e
a

2

e d 2

e b 3

c

b c 2

d
peer via cost

a

c

3

a

b

3

a e 2

b a 3

d

e

c d 2

e
peer via cost

c

a

3

b
a

2

b d 3

c b 3

Fig. 5.7: Here we show the (partial) routing tables for the topology
shown in Figure 5.6; with a single additional peer which is di-
rectly connected to a and d. Distance vector connections added
due to the topology change are shown in bold (red). The onion
routed paths between peers are likely to be passed over in light
of their higher cost.

5.8 Conclusion

We wanted a simple way to provide more connections to peers in restricted-
route networks such as ad-hoc and wireless mesh networks. Combining tra-
ditional distance vector routing via a gossip protocol along with a fish-eye
bounded local view suits our purposes of providing additional peers with
low overhead. This enables peers utilizing the distance vector protocol to
compute least cost links to nearby peers and provide them as connections
to higher level applications, such as the DHT. This additional connectivity

2 All of this depends on the transport selection algorithm being used; however the
default is to use the shortest, fastest, highest bandwidth links. The result of this is that
“short” distance vector paths will likely be faster as well as having shorter distances.

106 5. Fish-eye Bounded Distance Vector Protocol

provides enough connections in even highly restricted Small-World and ran-
dom networks for our DHT routing algorithm to perform well. As our design
inherently provides onion routed connections in some circumstances, future
work may allow high level applications to selectively choose which distance
vector paths to use to achieve anonymity. Some of the security aspects of
our design, specifically disallowing long circular routes, were put in place
due to the large corpus of related work on onion routing and associated
attacks (such as the one we show in Chapter 4).

The previous chapters have described our motivation for creating a new
DHT routing algorithm, analyzed different extant P2P networks and intro-
duced some of the methods employed for increasing connectivity in sparse
networks. Another goal for our design is to create a usable implementa-
tion which can be deployed to a P2P network immediately, as opposed to
a strictly theoretical design. We therefore also needed to provide a way to
test our design, preferably without creating a separate implementation in
a standalone simulator and attempting to merge the results back into the
real-world implementation. Due to these concerns, we have also created an
emulation framework for running many peers in a distributed manner. In
addition to this general purpose emulation framework we also wrote spe-
cific software for testing the DHT, including a profiling driver, a web-based
scheduler and result viewer for experimentation and some custom scripts for
data processing. Therefore, before presenting our algorithm and describing
evaluation results from experimentation, we describe our methodology for
this evaluation and its implementation in the next chapter.

6. LARGE-SCALE DISTRIBUTED EMULATION OF
P2P PROTOCOLS

The previous chapters have outlined the difficulty of creating a secure P2P
routing algorithm for restricted-route networks. The next chapter covers
our routing algorithm design which mitigates many of the problems in this
domain while maintaining our goals. We have implemented this design in
GNUnet, a P2P networking framework. While most new P2P routing al-
gorithms are evaluated using simulation due to concerns of scalability and
performance, simulation fails to capture implementation issues and com-
monly requires designers to create separate implementations for simulation
and real-world deployment. Therefore, in order to test both our implementa-
tion as well as our design, we utilize emulation in our evaluation. To achieve
suitable network sizes, we distribute emulation across multiple hosts. This
chapter describes a distributed emulation framework for GNUnet that we
have implemented so that we can perform large scale evaluations on our
design in the following chapter. This chapter appeared in a different format
at the 4th Workshop on Cyber Security Experimentation and Test [60].

6.1 Introduction

The outcome of a network security experiment can vary significantly depend-
ing on whether the experiment was based on simulation or emulation [29].
While both methods can provide new insights, there is a dearth of scal-
able approaches for assessing large-scale peer-to-peer (P2P) networks using
emulation. While some studies [58] have run attacks against deployed P2P
networks, there is a clear benefit to being able to run large-scale experiments
without potentially negatively impacting actual users.

This chapter presents a design and implementation for large-scale ex-
periments with P2P protocols using distributed emulation. The key insight
is that while simulators can achieve significant scalability by abstraction,
emulators for P2P networks can achieve comparable scalability through par-
allelization and distribution. By distributing computation, a modest com-
puter laboratory can achieve performance gains of an order of magnitude
over a single machine for suitable problems. Similarly, due to the advent
of many-core processors, local computational resources are often only lim-
ited by the amount of parallelism in the problem. While parallelization and
distribution of simulators can be difficult, distribution is inherent in P2P

108 6. Large-Scale Distributed Emulation of P2P Protocols

networking, making it easier to create distributed P2P emulators.

Emulation has many advantages over simulation: the code used for an
experiment can be the same code used for deployment, and programming
an appropriate model with abstractions is unnecessary. The emulator can
be used to easily evaluate the entire system, not just small components; as
a result, the experimental setup can be used to evaluate performance and
security issues as well as serving as an integration testbed. Given problems
on a deployed system, modifying experiments using emulation to reproduce,
measure and evaluate the undesired behavior is generally easier than doing
the same using experiments through simulation. In fact, depending on the
abstractions chosen, the simulation may fail to model the problem observed
in the real-world. This is even more applicable for security assessments
as abstraction eliminates implementation details, and thereby sources of
vulnerabilities.

P2P simulators typically simulate tens of thousands to hundreds of thou-
sands of peers [76,94,120,149], with some distributed simulators reportedly
scaling up to 80 million peers [46]; however, while distributed emulation may
be the natural choice for experiments with distributed systems, it is still not
at all obvious that emulation actually would scale to the desired problem
sizes. Previous work on emulation falls far short of the scale managed by
simulations; the best-performing previous emulation setup that we are aware
of has been reported to scale to only 4,096 peers [165].

This chapter details our design and experiences in providing a scalable
framework for evaluating P2P protocols using emulation. We did experi-
ments running a 80,000 peer Kademlia-style DHT (with link-encrypted P2P
communication) using a small cluster of 32 machines with 7 GB of memory
each; our results indicate that with proper tuning, emulation can be scaled
to much larger sizes than previously achieved without sacrificing the ability
to run realistic experiments.

6.2 Design Goals

The primary requirement for our experimentation framework is that it must
be distributed, taking advantage of the inherent properties of P2P networks
to spread computational load. Additionally, we required the ability to run
many peers on the same host, making use of multiple cores and taking into
account that a single peer would rarely use the entire computational or
storage resources of an individual computer.

The main limitation of our design is that in order to achieve reasonable
performance, we run peers as independent processes and assume no control
over when the operating system gives CPU time to peers. As a result, our
emulator cannot produce timing-accurate results. Emulation of network
delays is not currently supported in our framework.

6.3. Related Work 109

Given that an emulation is executed using a cluster (or single host) with
universal connectivity, an important feature for realistic experiments is the
ability to impose restrictions on which peers should be able to communicate
directly. Existing P2P network simulators often only allow topology config-
uration at very low levels [95] such as configuring AS links or link delays.
None of the DHT-capable simulators [1, 8, 120] that we have encountered
allow user defined underlay topology restrictions, such as those which result
from firewalls, network address translation (NAT) or topologies based on
personal trust relationships, like those extracted from Facebook [182]. In
contrast, our system can be configured to impose constraints on underlay
topologies; we also provide various algorithms to construct common topolo-
gies such as cliques, Small-World networks and Internet-like graphs.

A primary goal of any experiment is to collect relevant data. Our sys-
tem supports adding custom instrumentation to log results to file or to a
database. However, given a sufficiently large number of data points, such
logging activities can become the bottleneck for an experiment. To mitigate
this potential issue, we provide a scalable integrated facility to log, accumu-
late and store simple numeric values collected during an experiment using
a single function call. Collection of these statistics can be performed in a
distributed or centralized manner.

Finally, one common criticism of most tools is that they have a steep
learning curve, which can lead to strange results. The authors of [128]
note that two different simulators running the same experiment on a five
node Chord network produced inexplicably different results. Using emula-
tion shifts this problem from understanding the simulator to understanding
the underlying P2P system. The next section will describe key features of
our P2P framework, arguing why we believe that this will ease usability
problems.

6.3 Related Work

Large-scale testbeds such as DETER [116], GENI [61], SecSI [24], and Emu-
lab [80] provide realistic network conditions and operating systems for secu-
rity testing. Typically this research focuses on application level tests running
full VMs [80] or OSes [29], revealing high-level performance and security [25]
issues. In contrast, our design focuses specifically on P2P implementations,
allowing security design issues to be discovered which may only be present
at large scale. However, our emulation framework could easily be deployed
on such testbeds as well to incorporate the effects of differences in the un-
derlying platforms into the results.

110 6. Large-Scale Distributed Emulation of P2P Protocols

6.3.1 Simulation

The prevailing method for testing and verifying new P2P designs is simula-
tion [8, 46,120,161].

Chunksim [87] and the Query Cycle Simulator [161] are domain-specific
discrete event simulators focusing on BitTorrent and content distribution,
respectively. Both were created with the assumption that real-world exper-
iments require the ability to model at least 20K peers and the presumption
that this size of network could not be emulated or deployed for experiments.
Furthermore, it was thought that malicious peers could not be adequately
studied in deployed networks of this size. Our framework demonstrates that
such limitations no longer hold.

OverSim [8] and PlanetSim [1] are discrete event simulators for overlay
protocols. Both use a layered structure to provide a common API for appli-
cation development. Overlay applications are written in a domain specific
dialect of C++ (OverSim) or Java (PlanetSim); this high level of abstrac-
tion makes simulation implementations quite different from their counter-
part real-world implementations. Building upon OMNet++ [180], OverSim
is able to simulate down to the network level, achieving high realism. Plan-
etSim allows the networking layer to be switched out, allowing the use of a
NetworkSimulator for simulation, and a NetworkWrapper for emulation or
deployment. Simulations of up to 100K peers are reported, but we are not
aware of any detailed studies that were performed at this scale.

Some effort has recently been made to distribute the tasks of existing
simulators [46, 95, 166]. PeerSim and dPeerSim (the distributed version of
PeerSim) are currently the most scalable P2P discrete event simulators with
simulations of tens of millions of peers. While this is significantly larger than
what we can do with emulation, the realism and freedom of implementation
provided by our framework makes it complementary to these large-scale
simulators.

6.3.2 Emulation

Emulation frameworks [81, 149, 165, 181] are less common than simulators.
While emulators are typically better at testing real-world implementations
and capture more realistic data, they do so at the expense of scalability.
None of the existing emulation frameworks have been used for experiments
at the scale presented in this chapter.

Contrary to our focus on high-level operations, ModelNet [181] is a dis-
tributed emulation environment aimed at capturing network delays, cross
traffic and congestion due to underlay network configuration. In ModelNet,
each emulated peer is executed with precise control over its network inter-
actions. The largest ModelNet emulation included 10K Gnutella peers in a
cluster of unspecified size, though full details of this particular experiment

6.4. The GNUnet P2P Framework 111

were not given in the research publication.

6.3.3 Combining Simulation and Emulation

Some projects try to overcome the scalability limitations of emulators and
the undesirable effects of abstraction from simulators by mixing both tech-
niques.

MACEDON [149] is a framework for the design, simulation and emula-
tion of P2P algorithms. MACEDON requires that applications are written
in a specific language; from this specification, code is generated for the
simulator or emulator. MACEDON relies on ModelNet for underlay specifi-
cation, and the largest reported experiment was less than 1K peers in total.
We found no instances of MACEDON-generated code actually being used
as a real-world implementation.

Other mixed simulation/emulation systems include Overlay Weaver [165]
and RealPeer [81]. Overlay Weaver has been scaled up to 4K total peers on
a 200 PC cluster. RealPeer is a framework and methodology for creating
a P2P implementation in phases which include simulation and emulation.
The Java-based implementation could conceivably be used as a real-world
implementation. The authors successfully simulated a 20K node Gnutella
network; however, no results were provided on testing the emulation or real-
world implementation.

6.4 The GNUnet P2P Framework

A distinguishing characteristic of GNUnet is that each individual peer typi-
cally consists of roughly a dozen processes that use interprocess messaging.
GNUnet uses one process for P2P communication, one process for the DHT,
one for DNS resolution, and so on. Each peer’s process group is coordinated
using a master process which is primarily responsible for starting and stop-
ping processes.

Minimization of memory consumption is critical for our system to scale.
GNUnet is implemented in C, avoiding the large memory footprint of sys-
tems written using managed languages. C code is compiled prior to execu-
tion; hence, the operating system can use the same pages in real memory for
the respective read-only code and data segments of different processes. Fur-
thermore, memory consumption for the heap is reduced by avoiding garbage
collection overheads.

This architecture has several key advantages. First, it isolates faults
within components, making it easier to diagnose problems. Second, each
peer can make use of many cores. Given that we run thousands of peers per
host resulting in tens of thousands of processes, this architecture is suited to
modern-day many-core processors [157]. Finally, a major advantage of the
multi-process architecture is that new components can, in theory, be written

112 6. Large-Scale Distributed Emulation of P2P Protocols

Tab. 6.1: List of GNU/Linux system settings that typically need to be
reviewed for large-scale experiments.

/proc/sys/fs/file-max System open files

/proc/sys/vm/swappiness Swap preference

/etc/security/limits.conf Per-user file limits

/proc/sys/kernel/pid max System processes

/etc/ssh/sshd.conf SSH daemon limits

/proc/sys/net/core/rmem max UDP Buffer size

in other languages. While certain other languages may incur significant
performance penalties for large-scale experiments, this facility may still be
beneficial from a usability perspective.

When running thousands of peers on a single host (or millions of peers
in a cluster), one key issue is that network and operating system limits for
the number of processes, open sockets, and especially open TCP ports are
easily exceeded. Table 6.1 lists some of the operating system options on
GNU/Linux that typically need to be adjusted for large-scale experiments.
It should be noted that GNUnet allows peers to communicate not only via
TCP but also using UDP or even UNIX domain sockets, both of which can
help skirt around operating system limitations. It is also possible to restrict
connections between peers to only use particular transports, which is useful
when emulating particular constraints on P2P communication.

Finally, we should mention that GNUnet provides some basic level of
security for all applications using it. Each peer is identified via a public-
private key pair (using 2048-bit RSA). Connections between peers are link-
encrypted and authenticated using AES-256 and SHA-512. On the link-
layer, network addresses are signed by participants, which ensures that peers
do not send (encrypted) traffic to addresses other than those controlled by
the intended destination. The network-layer also communicates and — as
much as technically feasible — enforces bandwidth limitations as set by the
user, and assigns bandwidth based on preferences as determined by the P2P
applications using GNUnet.

6.5 The Emulation Library

We control large-scale emulation experiments using an experiment-specific
driver that sets up the testbed using our emulation library. This library is
accessed via a layered API. The low-level API provides functions to start
and stop individual peers, to explicitly connect pairs of peers, and to change
the configuration of running peers. For P2P security evaluations, the ability
to dynamically reconfigure peers at runtime can be a valuable tool: in some

6.5. The Emulation Library 113

of our experiments, we use it to configure a subset of the peers to become
adversaries and start executing different attack vectors. The high-level API
allows groups of peers to be started across multiple hosts, automatic gener-
ation of a range of network topologies and induction of network-wide churn
at configurable rates. The API also provides means for accessing the state of
each individual peer, including access to the exact current network topology
and statistics logged by peers.

The high-level API is given a configuration file as a template for gen-
erating the initial configuration for each peer. The library itself primarily
adjusts options such as port numbers that must be unique per peer. ssh is
then used to copy configuration files to execution hosts and to start peers on
those systems. The library assumes that login without password on hosts
is possible via ssh (for example, using ssh-agent) and that the necessary
binaries are installed in the PATH on the execution hosts.

6.5.1 Executing Experiments

Execution of an experiment using the library via the high-level API typically
proceeds in six phases. During the first phase, a hostkey is generated for
each peer; at this time, the testing driver is optionally notified of the identity
(the hash of the public key) of each peer. This allows the controlling process
to keep track of peer identities for later peer identification and lookup in the
peer group. In the second phase, the desired network topology is computed
and configuration files that specify the desired topological constraints are
created. These constraints specify which connections are allowed at both
the underlay and overlay level, but not which connections will actually be
used. Peers are started in the third phase, and connected using the so-
called initial network topology in the fourth phase. After all of these initial
topology connections have been established, in the fifth phase, the driver
performs actions specific to the experiment, during which time the network
topology may evolve, configurations for individual peers can be modified,
churn can be induced, and benchmarks may be executed. In the final phase,
the emulation library is used to shut down all of the peers. Peers are shut
down using (fresh) ssh connections to the execution hosts.

6.5.2 Peer Life Cycle

Whenever a peer startup request is received, a context for the new peer is
created and the startup routine enters a finite state machine which handles
the actual startup process. The minimum requirements for starting a single
peer are a configuration handle (which has been initialized from a configu-
ration file prior to being called) and a callback function to call once the peer
has been started. Additionally the name of a host on which to run the peer,
a callback function to call once the peer’s public/private key pair has been

114 6. Large-Scale Distributed Emulation of P2P Protocols

Testing
Driver

Copy Config

host
key

peer start

call
back

callback

Create Hostkey

Start Peer

Stop Peer

Create Config

restart peer

peer
shutdown callback

stop peer

start
peer

Fig. 6.1: Interactions that take place when a peer is started by a test
driver.

generated, and other configuration options can be specified.

Figure 6.1 details the states and transitions that exist for a peer. First, a
new configuration file (required for each started peer) is created and written
to a temporary file on disk. This file is then copied to the proper (local or
remote) directory. Next, the public/private key pair is generated and the
testing driver is optionally notified. Then the peer is finally started, and
once fully running, the testing driver is notified. Control remains with the
testing driver until the peer is restarted or shut down.

6.5.3 Peer Group Life Cycle

A “peer group” in our testing framework provides a handle to a group of
peers, and maintains per peer information internally on behalf of the testing
driver process. The first step in a setting up a peer group is calling the
GNUNET TESTING daemons start function. This function requires a base
configuration, the number of peers to be started, and callbacks for various
notifications about the peer group startup process. Optionally a list of
hosts (in hostname or IP address format) can be given such that the peers
are evenly distributed over the hosts.

The peer group creation begins by creating one configuration file per peer
locally, changing port numbers, paths and bind addresses as appropriate for

6.5. The Emulation Library 115

each peer. Next, each configuration file is copied to the appropriate location
for the host it will be run on. At this point, the framework enters a startup
task which schedules the allowed number of peers to begin starting at each
host. The normal peer life cycle applies here, as the single peer startup
call is used to start each of the peers. However, peer group testing may be
broken up into six distinct phases; hostkey generation, topology generation,
actual peer startup, topology connection, test execution and peer shutdown.

The peer group startup is split into phases so that the testing driver can
have as much (or as little) control over the peers as desired. The first phase
is hostkey generation, at which point the testing driver is optionally notified
of the peer identity of each peer. This allows the controlling process to keep
track of peer identities for later peer identification and lookup in the peer
group. Once the hostkeys have been generated the testing framework has
enough information to create an underlay topology on the network. As de-
scribed further in Section 6.5.4, GNUnet uses friend files and transport level
blacklists to restrict underlay topologies. If these are used, they need to be
set up prior to peer startup to ensure the restrictions are properly enforced.
At this point, the testing driver may specify the desired topology options,
the topology is internally generated and the necessary files are copied to the
hosts which will run the peers. After topology generation, the framework
enters the peer startup phase, where peer startup is performed incrementally
as limited by local and remote host constraints. As each peer is started, the
testing driver is optionally informed of each configuration; otherwise a sin-
gle notification is called once all peers have been started. Depending on the
peer configuration, peers may be started without any connections to other
peers. In this case, the testing driver then enters the topology connection
phase, where explicit connections between peers specified by the topology
are created. A user specified maximum number of outstanding connections
are scheduled per host, and as each connection is made the testing driver
is (again, optionally) notified. The driver may or may not need to know
the details of the created topology, depending on what the test is used for.
After all topology connections have been established, control is returned to
the testing driver for the test execution phase. When the testing driver
has finished execution, the testing framework enters the final peer shutdown
phase. Peers are incrementally shutdown in the same fashion as they were
started, throttling the process in accordance with user specified limits.

6.5.4 Topology

One of the major goals for our testing framework was to be able to connect
peers in a diverse set of specific topologies. We also wanted to distinguish
easily between the underlay topology, which transport level connections are
allowed, and the overlay topology, which peer level connections are allowed.
White-listed peers (those explicitly allowed to connect) and blacklisted peers

116 6. Large-Scale Distributed Emulation of P2P Protocols

(those explicitly disallowed) are also both supported. Finally, it is not un-
common for applications to include the bootstrapping of the network (i.e.
connecting peers) as part of the protocol. We accomplish all these goals by
allowing the user to specify up to three different topologies in the topology
creation phase.

The first topology that can be specified when starting peers in a peer
group is called the “allowed topology”. This topology is used as the base
topology for connecting peers if no other options or topologies are used. If
overlay white-listing is enabled, friend files are created per peer listing those
that are allowed to connect. This will restrict overlay connections to only
those peers, regardless of what are later attempted.

The second topology that can be specified is the “blacklist topology”.
This topology is used to disallow underlay connections for specific transport
plugins. The transports to blacklist are given as a space delimited list when
creating the topology. Peer and transport plugin combinations that match
against the blacklist are disallowed, even if the same peer is white-listed at
the overlay level.

The final topology that can be specified is the “initial topology”. This
topology is used mainly for two reasons; the first is that while a certain
topology is allowed, not all the connections should be made initially. This
covers, for instance, testing peer discovery mechanisms, without otherwise
restricting the topology. The second reason is that using the initial topology
when there is no other mechanism for peer discovery is an easy way to restrict
peer connections (without resorting to blacklisting).

Our framework supports specification of each of the topologies listed in
Table 6.2. Our intent is to provide well-known topology generators for exper-
iments involving both highly structured and random topologies. Note that
some of the supported topology generation algorithms require specification
of arguments to control their construction. For example, randomized graph
construction requires an argument indicating the probability for establishing
a link. All of the options and their arguments are listed in Table 6.3.

The “file” topology is the most expressive option supported. This topol-
ogy requires an argument indicating the path to a topology specified in the
METIS [89] file format. We allow topologies to be specified in these files
both for easy import from other topology generators and for consistency
in testing. The emulation library provides utility functions to export the
topology of an active peer group to file. This file can be used to recreate
the exact same topology during subsequent experiments, or repetitions of
the same experiment.

6.6 Lessons Learned

The development process for our system was iterative: as we scaled up the
network size, new bottlenecks would emerge and had to be dealt with before

6.6. Lessons Learned 117

Topology Description Percentage Probability

Clique Connects all peers No No

Line Connect peers in line No No

Ring Line with wraparound No No

2d-Torus 2d-grid with wraparound No No

Erdős-Rényi Random graph construction No Yes

Small-World Ring topology with extra Yes Yes
(ring) long distance connections

Small-World 2d-torus topology with extra Yes Yes
(2d-torus) long distance connections

Scale Free Scale free topology No No

InterNAT Clique with percentage dis-
allowed

Yes No

File Read topology from file No No

Tab. 6.2: Generators for the allowed, blacklist and initial topologies.

Option Description Modifier

Closest Connect closest (XOR Number
distance) peers to connect

Random Subset Random portion of allowed
connections

–

DFS Depth first traversal from Minimum
random starting point connections

per peer

All All possible connections –

Minimum Every peer has at least Number
n connections to connect

Tab. 6.3: Additional options for constraining initial peers in the initial
topology.

we were able to increase the size again. This section summarizes the most
salient lessons learned about emulating large-scale P2P networks.

6.6.1 Cryptography

Cryptographic operations, in general, can be expensive, and given that many
modern P2P networks use asymmetric key pairs for host identification and
other pieces of core functionality, repeated calls to cryptographic functions
(e.g. key generation) can have significant overhead.

Our experience during development was that the creation of strong pri-
vate keys, even for just a few dozen peers, virtually always depleted the
entropy pool of the system, causing excessive delays. Our initial response
was to disable entropy gathering; however, creating tens of thousands of
2048-bit RSA keys for each experiment still took a significant amount of
time, even using a cluster.

118 6. Large-Scale Distributed Emulation of P2P Protocols

We solved this problem by pre-computing the public-private key pairs
for all peers and reusing them between experiments. It should be noted
that despite the use of rather expensive cryptographic primitives, we did
not have to simplify or eliminate other cryptographic operations.

For emulating P2P systems that require cryptography, there are two
lessons to be learned here. First, strong key-generation operations (which
generally have little impact for end-users in terms of system performance)
need to be simplified even for small-scale emulation experiments. Second,
assuming the protocols are reasonably well-designed, other typical crypto-
graphic operations do not need to be simplified even for large-scale emulation
experiments.

6.6.2 Execution time

One important discovery we made was that when running tests at a large
scale, tasks that need to run at a fixed frequency are problematic, especially
if their number increases with an experimental variable.

When crossing the 5,000 peer threshold, our experiments were stuck at a
total of 200K connections or less; any increase caused the connection process
(and our test host) to grind to a halt. The reason, we discovered, was that
the CPU became pegged processing latency estimation tasks. These tasks
were initially set to run at a seemingly harmless frequency of once per minute
per connection. With around 40 connections per peer and 5,000 peers, these
tasks became backed up, effectively taking over the system. In this case, our
simple solution was to allow users to decrease the frequency of the latency
measurements when testing, which is harmless as our emulation setup does
not model network latencies (and, thus, these measurements would not be
accurate anyway).

Because the overall issue is that in a general-purpose framework, virtu-
ally any hard coded value will eventually cause problems, the solution is to
either make the code adaptive — for example, our system uses exponential
back-offs in many places instead of fixed retry frequencies — or at least
configurable by users (preferably with clearly marked default configuration
values).

6.6.3 Latency

One important general lesson we learned in this endeavor is that while par-
allelism is important for avoiding idle waiting and efficient utilization of
available resources, it must always be bounded and balanced in order to
avoid overly negative impacts on latency. More specifically, we discovered
that once we moved to distributed operations, the latency of starting peers
over the network quickly became a major bottleneck, as creating an ssh

connection and waiting for complete startup of a single peer took up to a

6.6. Lessons Learned 119

second — even without key generation.

To solve this issue, we first reduced the startup delay by launching only
the master process (Section 6.4), and not waiting until the peer fully initial-
ized. Interactions with individual peers were deferred until after all peers
had been launched. Still, having to interact with each execution host for
each peer created unacceptable delays of many network round-trip times.
Ultimately, the latency issue for starting peers was resolved by creating a
helper script that would start all the necessary peers on a particular host;
using this script, we only require one ssh interaction per host instead of one
per peer.

Additionally, because the creation of an initial set of connections between
peers requires the driver to communicate the desired initial connections to
those peers, another general latency issue we discovered was attempting to
establish too many simultaneous connections at once. In the case of initial
connection setup by the driver, we cannot fully parallelize this step, as the
driver would run out of file handles. Furthermore, in general, trying to es-
tablish too many connections at a single host in parallel can peg the CPU
on that host while other hosts remain idle. To solve this, our driver cur-
rently imposes configurable limits on the number of concurrent connection
attempts per peer and per host; this ensures that all hosts are utilized until
all connections are established.

By bounding and balancing our use of parallelism and by reducing the
overall number of round-trip times during network operations (in our case,
done by introducing the helper script), it is possible to effectively control
many of the latency issues introduced by distribution.

6.6.4 Sockets

Attempts to maintain network transparency also created issues. As we
scaled our implementation, we repeatedly ran into socket limitations. First,
we ran out of TCP ports because each peer used a TCP port for every
service. After switching to UNIX domain sockets for each peer’s internal
interprocess communication, we were still exceeding operating system limits
when creating hundreds of thousands of TCP connections between peers on
the same host. We had initially expected that UDP would be a good al-
ternative, but quickly discovered that UDP becomes highly unreliable even
over loopback once the kernel’s UDP buffer becomes too small to handle all
queued messages.

As a result, our large-scale experiments are typically configured to use
UNIX domain sockets for all inter-peer communication on the same host and
UDP or TCP between peers. Furthermore, TCP-based control connections
between the driver and peers are established on-demand.

The lesson we learned here is that while network transparency is nice
(and in fact sometimes required for interactions with the driver), using UNIX

120 6. Large-Scale Distributed Emulation of P2P Protocols

domain sockets instead of TCP/UDP wherever possible is important for
scalability. Being able to choose the communication domain is important,
and the most scalable end-result is typically a mixture of UNIX, UDP and
TCP.

6.6.5 Memory

When running tens of thousands of peers, every single additional private
page is costly; as such, a repeatedly recurring bottleneck was memory con-
sumption. While many specific changes to data structures were made to
reduce memory consumption, the single biggest improvement was obtained
by changing the size of our communication buffers from a static 64k bytes to
a minimum initial size of 4 bytes, which is then re-allocated to a larger num-
ber as necessary. Most messages which are passed between services or peers
are much smaller than 64k, so this change resulted in significant memory
reductions for most services.

Per design, each of our peers is comprised of a number of services im-
plemented as independent processes. Depending on the nature of the ex-
periment, some of these service processes can be shared between peers. For
example, sharing the DNS resolution service is typically unproblematic as
it has no state. We typically share one instance of certain services among
every 100 peers. This reduces the overall memory footprint without turning
these shared processes into bottlenecks.

The general conclusion here is that being able to share memory between
peers is critical for large-scale emulation, and that any non-shared memory
(including heap, stack and pages for global variables) must be closely in-
spected. We have been able to push the amount of memory shared between
peers to about 80%, which represents an improvement in scalability by a
factor of five.

6.7 Results

We have extensively tested our emulation framework on various architec-
tures under myriad configurations. In this section we present some basic
performance data for the framework and a small selection of the results
obtained from our experiments.

Table 6.4 shows the results of our framework in terms of scalability (mea-
sured in the number of peers emulated) and topology setup times for various
architectures and system configurations. In terms of time, the most costly
part of the emulation set up is typically the peer connection phase, as it re-
quires cryptographic key exchange and often network communication. The
speed at which peers can be connected to each other is therefore an impor-
tant metric.

6.8. DHT Profiler Details 121

Architecture # Hosts Cores Memory Max Peers Conns Time to
(Total) (Total) (Total) per/s start peer

ARMv7 Cortex-A8 1 1 512 MB 100 ∼ 1 ∼ 206 ms
Xeon W3505 1 2 12 GB 2,025 ∼ 60 ∼ 12 ms
Xeon W3520 1 8 12 GB 2,025 ∼ 188 ∼ 5 ms

AMD Opteron 8222 1 16 64 GB 10,000 ∼ 327 ∼ 27 ms
AMD Opteron 850 31 124 217 GB 80,000 ∼ 559 ∼ 1 ms

Tab. 6.4: Relevant performance details of our framework on various ar-
chitectures.

Service Non-shared Heap Shared
supervisor 228 KB 32 KB 2,364 KB
transport 359 KB 99 KB 2,888 KB

core 300 KB 84 KB 2,428 KB
dht 536 KB 240 KB 3,684 KB

total 1,424 KB 456 KB 11,364 KB

Tab. 6.5: Breakdown of memory usage for the relevant services extant
in our framework. Each process uses an additional 84 KB
for the stack. P2P connections require about 6 KB memory
with the transport service, 7 KB with the core service and
an additional 1 KB if the DHT is using the connection. Our
code was compiled on a 64-bit Linux system using GNU GCC
version 4.3.2 optimized for size (“gcc -Os”).

The data shows that our framework is quite scalable, running up to 100
peers on an (embedded) ARMv7 device and 80,000 on a small cluster. As
one would expect, the number of peers we can emulate correlates closely with
the total amount of system memory and the connection speed relates to the
processor speed. We also see that peer startup time is reduced as more cores
are added, with the notable exception of the 16-core host, with a comparably
long peer startup process. We believe this is due to IO limitations; starting
each peer requires peer-specific file accesses to the configuration and private
key file.

The most important factor in terms of scalability of our framework is
the memory footprint of the processes that make up each individual peer.
Table 6.5 shows how memory is used by the various processes that each of
our peers typically uses.

6.8 DHT Profiler Details

The DHT profiler utilizes the GNUnet testing framework for running per-
formance and profiling tests on R5N , the GNUnet specific DHT implemen-
tation detailed in Chapter 7. It is made up of a number of individual com-
ponents, each listed below. The main goal of the profiler is to allow users
to test a DHT implementation by easily setting up a series of experiments
that cover a range of scenarios. These trials are automatically executed,

122 6. Large-Scale Distributed Emulation of P2P Protocols

the results processed and finally displayed to the user. We have tried to
incorporate many standard metrics while leaving the original data intact for
other processing to be performed. The main components that make up the
DHT profiler are:

• Web Trial Scheduling - Used for choosing parameters for trials to be
run, front-end to database

• Trial Execution Daemon - Reads from the database of trials to run,
creates temporary configurations and runs tests

• Profiling Driver - GNUnet binary that creates a topology, then issues
rounds of DHT PUT requests and GET requests

• Trial Processing Scripts - Executed once daemon finishes trial, inserts
result to database

• Web Result Processing/Viewing/Comparison - Front end for viewing
results

• Database Back-end - Stores all data describing trials and their results

• Database Interaction (Data output) - Instrumentation within GNUnet
to output data to database

6.8.1 Web Trial Scheduling

In order to make scheduling trials and evaluation, as well as debugging, as
easy as possible we have created a dynamic web interface. This interface
has two main components, the web based trial scheduler (and background
daemon), and the trial processing/information display. These two tools
make it much simpler to perform evaluations on different possible set ups.

Figure 6.2 shows the web page used for viewing and scheduling upcoming
trials. This interface is minimalistic, the page is populated directly from a
database table updated whenever information for a future desired trial is
entered. The trial daemon uses this database table to run trials using the
GNUnet profiling driver.

Fig. 6.2: The web page used for scheduling trials to be run.

6.8. DHT Profiler Details 123

6.8.2 Trial Execution Daemon

The trial execution daemon is a tool run on hosts that are executing trials
via the DHT profiler. This daemon is a Perl program that reads from
the scheduled trial database table. From this the daemon creates a meta-
configuration file, and executes the DHT profiler with this file. After the
trial is completed, the daemon collects results, updates the database, deletes
intermediate files and directories and continues with the next trial.

For smaller trials the profiling driver and each of the GNUnet peers can
directly communicate with the database that stores all of the data that is
produced by running the trial (see Section 6.8.7). When this is not feasible,
or has an effect on the performance of peers, data is dumped to files. In
this configuration, the trial execution daemon must export this data to the
database server. This involves reordering data as well as reformatting it to
reduce database communication overhead.

6.8.3 Profiling Driver

The DHT profiling driver provides the core functionality for DHT testing.
It is executed with the path to a configuration file which acts as the base
file for all started peers as well as containing the meta data to actually run
the tests as specified in the trial scheduling interface.

First, the configuration options specified in Table 6.6 are read from the
configuration into memory. The driver then starts the required number
of peers using the testing framework. Once all peers are running and a
topology has been created, the driver then either waits the requisite “settle
time” to allow the network to further bootstrap itself, or begins initiating
FIND PEER requests for the DHT peers.

Once the settle time has expired, the bootstrapping phase of testing the
DHT is finished, and the actual data gathering begins. We have chosen to
split up this testing into a series of rounds; in each round some combination
of PUT and GET messages are issued and the results are tallied.

6.8.4 Additional Trial Processing

Depending on the logging level specified when the trial was run, additional
processing on the output data is required. This secondary data can be
generated on the fly when using the web interface to view results, but gen-
erating this data can cause unseemly delays when navigating the interface.
Therefore, we created a script which does most of the CPU intensive data
crunching and writes the results to secondary database tables.

The base logging level records only the total number of PUT and GET
requests that are issued and the resulting number of successful GET requests
in each round. This is inexpensive; adding no overhead to peers. At the sec-
ond logging level, the initiating and terminating peer(s) are logged for every

124 6. Large-Scale Distributed Emulation of P2P Protocols

Option Description
Allowed Topology Peers may connect in this topology
Initial Topology Explicitly create connections in this topology

Blacklist Topology Disallow connections in this topology
Topology Percentage Modifier for certain topologies
Topology Probability Modifier for random topologies

Connect Modifier Modifier for initial topology
Puts Number of PUT operations (per round)
Gets Number of GET operations (per round)

Put Replication r value to set for PUT operations
Get Replication r value to set for GET operations

Kademlia α Parallel PUTs/GETs (Kademlia routing only)
Stop at Closest Cease routing once nearest peer found

Stop when Found Cease routing once data found (GET only)
Nodes Number of peers to emulate

Rounds Number of rounds of PUTs/GETs to perform
Concurrency Number of PUTs/GETs allowed at a time
Settle Time Seconds to allow for FIND PEER messages

GET Timeout Seconds to wait for a GET response
Malicious Getters Number of peers flooding GET requests

Malicious GET frequency How often to flood GET requests
Malicious Putters Number of peers flooding PUT requests

Malicious GET frequency How often to flood PUT requests
Malicious Droppers Number of peers dropping all requests

Malicious After Settle Allow topology stabilization for malicious peers
SQL Dump Dump detailed, minimal or no data to SQL server

DHT Find Peer Allow each peer to automatically send FIND PEER messages
Max Hops End requests after set number of hops

Converge Option Choice of routing algorithm randomization
Converge Modifier c parameter for routing algorithm
DHT Replication Peers manage replication internally

Replication Frequency How often peers replicate stored items
Replicate Same Start PUT requests at same peer in each round
Get from Same Start GET requests at same peer in each round
Round Delay Delay some number of seconds between each round
Sybil Nodes Choose closest peers for malicious

Strict Kademlia Use recursive Kademlia routing
Churn per Rounds Number of peers to churn on/off per round

Run At Which testing driver peer to run on
Trial Group Name of group to assign this test to

Target Connections Number of connections to allow in the network
Host File File name to read list of hosts from

Trial Comment Comment for this trial
Bucket Size Size of routing table buckets

Topology File File to read topology information from

Tab. 6.6: Options that are available for configuring a trial to run.

request. This includes FIND PEER requests and GET reply messages in
addition to PUT and GET requests. This added information provides suc-
cess rates for PUT requests and PUT and GET replication. The number of
hops that were traversed to reach the destination peer (but not the interme-
diate path) can also be determined. At this level the peer identities present
in the network and the routing tables of each peer are logged at selected
intervals. Thus, the network can be recreated from virtually any point in

6.8. DHT Profiler Details 125

time throughout the duration of the trial. Also, plots of topology generation
can be made, and other calculations such as the number of nearest peers in
the network to a particular key, average peer connectivity, etc.

The highest level of logging records each hop of each request as it tra-
verses the network. Also logged are which peers are intended to be routed
to at each step; enabling detection of packet or core level message failures.
Recording the full routes of PUT , GET and GET reply requests enables
visualization of these routes. Furthermore, this information provides the
total number of hops that are traversed in the course of a request, instead
of just the hops to the peer(s) where the request terminated.

6.8.5 Web Result Processing/Viewing/Comparison

Figure 6.3 shows the web page for navigating through previously executed
trials. From this overview page, trial meta data can be viewed and the
trial can be selected for further inspection. Trial summary information is
displayed; the trial ID field is a link which leads to a full trial detail page.

Fig. 6.3: The web page used for displaying already run trial information.

Figure 6.4 shows this trial detail page. This allows users to quickly view
results of trial the including performance, efficiency, and so forth. A trial
statistics table is shown that lists the number of requests issued and the
success rates for each. A table of malicious message statistics is provided
showing how these messages affect performance. Efficiency statistics includ-
ing the hops required for different message types is also provided. Each
specific trial metric links to additional web pages displaying details about
the metric. From these more specific pages, users can drill down to individ-
ual routing information for each message (depending on the logging level).

For instance, there were 38 failed PUT (Items Inserted) messages in
the trial displayed in Figure 6.4. Clicking “38” presents the page shown in

126 6. Large-Scale Distributed Emulation of P2P Protocols

Fig. 6.4: The web page used for viewing in depth trial information.

Figure 6.5 which displays each of the failed PUT requests. Finally, click-
ing the “Queryuid” of the request provides all of the hop-by-hop routing
information collected.

Figure 6.6 displays the routing information for one particular failed PUT
request. Here, detailed information is given about the path through the net-
work that the request traveled. This information is displayed both as a table
of all the routing information that was logged about the request as well as
graphically for all queries for this particular key. The closest node(s) to the
key in the network at the time are shown as well for additional troubleshoot-
ing. For instance, if the closest node to a key for a PUT request does not
store the data, this could indicate a problem with the code for performing
distance metric computation. Each node is identified by a specific unique
identifier, which is the number in the center of the node before the colon.
GNUnet’s DHT uses a distance metric to determine the distance between a
peer’s identifier and the request key; the result of this metric between the
node and the request key is the number after the colon following the peer’s
unique identifier.

In this case we do not see any red (self looping) edges, which means
the PUT message was discarded by the GNUnet peer, or packet loss was
experienced on the network. This could be the result of too much traffic on
the outgoing or incoming queues or some other network failure. The graph
would display any node which stored the data in blue, so we also see that

6.8. DHT Profiler Details 127

Fig. 6.5: The web page used for viewing specific query information.

this data was never stored in the network.

Figure 6.6 showed only the outgoing part of a request because the initial
PUT request failed. Figure 6.7 shows what is displayed for a successful
GET request. Since the request was successful this means that at some
point a PUT , GET , and GET REPLY were all initiated and succeeded
for the particular key in question. All the pertinent information for all of
these queries is shown in Figure 6.7. Nodes displayed in green indicate those

128 6. Large-Scale Distributed Emulation of P2P Protocols

Fig. 6.6: The full web view for specific route information, showing the
route of a PUT request. Because there are no red (self routed)
edges which would indicate a request termination, and no blue
vertices indicating request success, message loss was experi-
enced on this route.

that initiated the request, and those in blue are nodes at which the request
successfully terminated.

These tools for scheduling and displaying trial and route information
have been invaluable in tuning our routing algorithm, and fixing implemen-
tation bugs. We have also implemented trial aggregation, which enables
categories of trials, and functionality so that multiple trials (or groups of
trials) can be selected and compared side by side. Finally, we also provide
the ability to compute, graph and display standard deviations of appropriate
metrics for trials which are repeated multiple times. While this code isn’t
intended for public consumption it serves as an easy way for us to produce
graphs and data in a clean way on the fly for use in publications.

6.8.6 Database Back-end

We chose to use the MariaDB database [55] as our database back-end be-
cause of its widespread adoption, ease of use and plethora of client libraries
to communicate with the database. We are not storing data requiring com-
plex structures or stored procedures, and have found that with the proper
indexes most operations return fast enough for our uses thus far. How-
ever, there is no requirement of a specific database; to use a different one

6.8. DHT Profiler Details 129

Fig. 6.7: The web page used for viewing specific route information. This
example shows the path of an outgoing GET request accompa-
nied by the route that the reply took from the responding peer
back to the initiator, and the path of the original PUT request
where the data was stored in the network. The red (self routed)
edges on the GET reply route show instances where duplicate
replies were detected, so the forwarding peers on the response
path could safely discard these messages to save bandwidth.

would only require changes to the DHT logging subsystem in GNUnet, and
dropping in a different connector for the web files and processing scripts.

6.8.7 Database Interaction (Data export)

As with the logging options discussed in Section 6.8, we have multiple ways
for the DHT profiler and GNUnet peers to insert data into the database.
Specifically, there are three different plugins for the DHT logging library
which are loaded based on the specified configuration. The first plugin
connects directly to a running database server, the second outputs full SQL
commands to text files and the third outputs raw data directly to file. While
the last plugin results in the fastest database interaction, it also requires
some post processing before the data can be loaded in the database.

The direct connect plugin requires a live database which every peer is
able to connect to. Each peer connects to the database server on startup
and records are inserted immediately whenever the the logging API is called.
This plugin operates in the most straightforward fashion; as an example, on
startup each peer inserts its own peer identifier into the database. The
database returns a unique identifier which is the internal database represen-
tation of that peer. Subsequent insertions into the database need only use
this unique identifier, and not transmit the entire peer identity each time
to identify the peer. Similarly, peers can query the database for informa-
tion about which trial is currently being run, which round in the trial it is
and runtime parameters. For these reasons this plugin would be preferred;

130 6. Large-Scale Distributed Emulation of P2P Protocols

however when running trials with more than around 250 peers the database
server becomes a bottleneck, and messages being sent between peers and
the server slow down the performance of the entire trial.

The second plugin was created to ease the burden of connecting (typically
over a network link) to a database server for each running peer. Instead,
this plugin simply writes out the SQL queries the direct connect plugin
would have sent to the server to a single file per peer which can be copied to
the server and directly imported. While at first this method seemed quite
simple, there are some obvious problems with it. To begin with, we had to
do some post-processing of the files to make sure that order was preserved.
Also, this method was quickly revealed to be painfully slow. At the outset
there were SELECT statements intermixed with INSERT statements which
retrieved unique identifiers for peers and keys. We then modified the order
of insertion so that all peer identifiers were inserted first, then keys, etc. We
then replaced any occurrence of those identifiers with the unique ids from the
database. Locking tables and formulating queries appropriately helped us
improve the timing of this method as well, but as we began emulating more
and more peers in the network the size of the text files, the pre-processing
overhead and the duration of data insertion led us to seek another method.

The third and final plugin we created uses a combination of the second
plugin (for infrequent queries) and simply writes data values (excluding col-
umn information and more verbose SQL syntax) for frequent queries. One
issue with this method is that it relies on a specific file format for Mari-
aDB/MySQL, and is therefore not compatible with other SQL databases
without extra manipulation. For this plugin, queries that are only executed
a few times (once per trial, once per round, etc.) are still written out as
SQL statements with one file per peer. For those queries that are repeated
many times, each query type is written out to a unique file, where the data
is simply written in a space and line delimited format. Upon termination
of the trial, each of the specific query files from each peer are merged into
one file, the normal SQL statements are executed and the aggregated files
are imported using the LOAD DATA syntax available in MariaDB/MySQL.
More pre-processing of these data files is required for this plugin. As with
the previous plugin, the peer identifiers must be inserted first. After this
step, the post processor then builds a mapping in memory of all peer iden-
tifiers the unique identifiers that were just created from insertion into the
database. Next, all of the aggregated query data files must be searched and
each instance of a peer identifier is replaced with the database unique iden-
tifier. The same process is then repeated for all keys used for requests in
trials and the data is subsequently loaded into the database.

Figure 6.8 shows the stark difference between the second and third de-
scribed SQL insertion methods. Originally the first method was adequate,
but as we scaled our testing to greater numbers of peers it became clear that
something better was needed. For much larger trials than those described

6.9. Conclusion 131

in this thesis (i.e. greater than 10k peers), full logging even with the opti-
mized SQL loading plugin likely takes too much disk space to be practical.
Ideally, when running tests with large numbers of peers the minimal logging
(PUT/GET success) should suffice.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 100 150 200 250 300 350 400

S
e
c
o
n
d
s
 f
o
r

S
Q

L
 l
o
a
d

Number of Peers

SQL Text Plugin (300 FP)
SQL Load Plugin (300 FP)
SQL Text Plugin (600 FP)

SQL Load Plugin (600 FP)

Fig. 6.8: Comparison of loading times between the raw SQL statement
insertion method (which performs selects) and the plugin which
writes raw data values to a file and the post processor inserts,
bulk selects and LOADs data. These trials were run with vary-
ing numbers of peers and either 300 or 600 seconds during
which peers issued FIND PEER requests (which created more
data for insertion). Importantly, the y axis is plotted on a
log scale, meaning the full text SQL insertion method takes
between 2 and 3 orders of magnitude longer than the prepro-
cessing and loading method.

6.9 Conclusion

In order to evaluate our routing algorithm, including the full implementa-
tion down to the network layer, we have created the emulation framework
described in this chapter. This framework allows the running of variable
numbers of peers in different underlay and overlay topologies up to a large
scale. We have also developed a DHT specific profiling driver to perform
DHT operations on the resultant network. This framework includes the abil-
ity to modify peers during runtime, such as setting certain peers to perform
malicious actions. We learned many things from this implementation, and

132 6. Large-Scale Distributed Emulation of P2P Protocols

have detailed those important experiences as well in Section 6.6.
To support multiple levels of logging details from our specific DHT test-

ing we implemented a number of different methods for data extraction; in-
cluding storage in a database and numerical statistics. Finally, we also
created a web based system for scheduling trials to run and for viewing the
results of those trials.

In the next chapter, we present the design for R5N ; our new secure DHT
routing algorithm. After examining the design in detail and evaluating it
mathematically, we then provide detailed results from our evaluation of R5N
obtained using the framework presented in this chapter.

7. R5N– RANDOMIZED RECURSIVE ROUTING FOR
RESTRICTED ROUTE NETWORKS

This chapter details our implementation of R5N , or “Randomized Recursive
Routing for Restricted Route Networks”. This chapter brings together the
insight gained from research on other P2P networks detailed in Chapters 2
and 4, and utilizing other system components as outlined in Chapters 3
and 5. We show results from a wide range of scenarios, from the best
case underlay topologies required by Kademlia to restricted-route topologies
that R5N was designed for. The presented results also demonstrate the
scalability of the emulation framework we implemented and described in
Chapter 6. The overall results show that R5N performs as expected in most
cases, scales well and handles malicious participants either on par with,
or much better than, a recursive implementation of the original Kademlia
routing algorithm. Portions of the text and data that make up this chapter
will be published at NSS 2011 [56]. Following this chapter, we conclude the
thesis with a summary of the relevance of this work as well as some possible
directions for future work on the design and implementation.

7.1 Introduction

Distributed Hash Tables (DHTs) [143, 153, 173] are a key data structure
for the construction of completely decentralized applications. DHTs are
important because they generally provide a robust and efficient means to
distribute the storage and retrieval of key-value pairs.

In recent years, DHT designs have become increasingly efficient and ro-
bust under churn [102, 130, 147, 175] and Sybil attacks [47, 103, 170, 185].
Other research has addressed implementation concerns, such as optimizing
network performance. In practice, modern DHTs are often not deployed
over an entire P2P network and are instead limited in scope to so-called
super-nodes. The primary reason for this is that virtually all previous DHT
routing algorithms (with the notable exception of Freenet [159]) are based
on the fundamental assumption of universal connectivity between all par-
ticipating nodes.

This assumption means that modern DHTs cannot function properly in
ad-hoc wireless-, sensor-, friend-to-friend- or other networks with limited
connectivity. Following [159], we refer to such networks where peers are
not free to directly connect to arbitrary other peers (and therefore route in

134 7. R5N– Randomized Recursive Routing for Restricted Route Networks

the DHT) as restricted-route networks. We need to distinguish between the
network topology created by the peer-to-peer overlay and the underlying
network infrastructure, so we also use the term restricted-route underlay
topology to refer to such limitations imposed on the overlay routing algo-
rithm.

This chapter motivates and describes our new randomized DHT rout-
ing algorithm, which enables the GNUnet DHT to operate effectively over
restricted-route networks and also increases security and resilience to vari-
ous attacks compared to existing algorithms. R5N only assumes that the
topology is connected and, in particular, does not require or use a coordi-
nate system for organizing peers. A primary goal of R5N is providing an
open network where users can join or leave at any time without approval by
a certificate authority or any other trusted entity.

The high-level R5N design itself is deceptively simple, essentially com-
bining a random walk with recursive Kademlia-style [112] routing. Our
design also includes topology augmentation using the combination of dis-
tance vector and onion routing (described in Chapter 5), a novel replication
strategy and an API to verify content integrity. Using distributed emula-
tion, we demonstrate that this new algorithm has performance comparable
to Kademlia if the underlay is unrestricted, and outperforms Kademlia and
random walks for various restricted-route topologies. We also show that
our algorithm has advantages in terms of availability and fault-tolerance,
especially in the presence of malicious participants. Compared to Kadem-
lia, we generally see a larger number of replicas and higher success rates
for data retrieval. Our algorithm has been created and deployed using the
GNUnet P2P framework, which also includes a free software implementation
of the measurement tools and topology generators used for the experiments
presented in this thesis.

The remainder of this chapter is structured as follows. Section 7.2 de-
fines restricted-route topologies and explains known techniques for overlay
construction and routing in P2P networks. Section 7.3 describes our routing
algorithm in detail as well as important parameters for replication and rout-
ing. Section 7.4 provides a mathematical comparison of random routing,
R5N and the Kademlia routing algorithm. Section 7.5 provides justifica-
tion for our choice of the randomization parameter used in R5N , based on
applications of Markov mixing theory. Section 7.6 outlines our implemen-
tation and presents experimental results from some small scale testing to
verify our implementation and show that it works as expected under various
conditions. Section 7.7 then extends the interesting results discovered from
small scale testing to larger scale tests approaching real world network sizes.

7.2. Related Work 135

7.2 Related Work

A DHT imposes structure upon a network underlay by connecting peers to a
certain subset of all nodes in the network. The size and method of construc-
tion of the routing table is one of the key design choices that distinguish
DHTs. For example, Kademlia [112] has routing tables of size O(log n) and
can route requests to the proper destination with O(log n) steps.

Another key design choice for a DHT is the routing or lookup behavior,
which is categorized either as iterative or recursive [75]. Using iterative
routing, the initiator directly connects to each hop and retrieves information
about the next hop until the initiator has a direct connection to the final
destination. As a result, the initiator of a request has full control over which
node(s) the request is forwarded to at each step — and can possibly tackle
problems (such as node failures or malicious participants) during request
propagation (for example, by choosing alternative paths).

With recursive routing, requests are forwarded through the network from
the first hop onwards according to the routing algorithm and the initiator
is only involved again as the final destination of the response, if there is
any. Recursive routing is generally faster than iterative routing since fewer
connections need to be established and significantly fewer round-trip times
are required. Another key benefit of recursive routing is that the initiator
does not have to be able to connect to each peer that participates in routing.
However, recursive routing is also less fault-tolerant due to the initiator’s
lack of control.

7.2.1 Kademlia

We use a modified version of Kademlia [112] as the basis of our routing al-
gorithm. The Kademlia algorithm has been shown to work well in networks
with common rates of churn [130], and in practice has proven capable of
handling millions of peers [171]. Kademlia uses XOR to determine the dis-
tance between elements in the key space. This means that, given two nodes
a and b in the network, the distance between a and b is given by Da,b = L(a)
XOR L(b) where L(x) is the identifier of peer x. A key advantage of the
XOR metric is that routing is symmetric; links between peers will be of
mutual value and both directions are expected to see equal utilization.

Kademlia’s routing table is structured as an array of k-buckets. Kadem-
lia uses as many k-buckets as there are bits in the address space. Each
k-bucket can hold up to k peers. The i-th k-bucket stores up to k peers
whose identifiers are between distance 2i and 2i+1 from the local peer. Rout-
ing in Kademlia is iterative; at each hop the initiating node picks r closest
peers for the next hop. Those r peers are queried and return a set of peers
closer to the key, and routing continues in this fashion until no closer peers
are found. Finally, Kademlia stores data at the r closest peers to the key.

136 7. R5N– Randomized Recursive Routing for Restricted Route Networks

Kademlia achieves O(log n) routing performance: at each hop the distance
to the destination is at least halved (Figure 7.1a).

0 1

0 1

10 11

0 1

00 01

Connections
Route path

(a) Normal Kademlia

0 1

0 1

10 11

0 1

00 01

Connections

Connection does not exist
Route path

(b) Restricted Kademlia

Fig. 7.1: Illustration of Kademlia routing for key “00”. In (a), routing in
a four-node Kademlia network (r = 1) with a set of connections
that satisfies Kademlia’s requirements. In this topology, all
requests for keys starting with “00” terminate at node “00”.
In (b), the same requests are routed, but a single link required
by Kademlia is unavailable. Here, requests started at peers
“10” and “00” are routed to the correct node (“00”) while
those started at “01” or “11” are incorrectly routed to “01”.

One failing of Kademlia is that it has been shown vulnerable to numerous
attacks, such as poisoning [103] and Sybil [170] attacks. For example, an
adversary may want to deny participants access to a particular key. This
can be achieved by creating r peers with identifiers closer than the closest
current peer to the key; afterwards, all requests will effectively end at an
adversary-controlled peer. Access to the data is then under the control of
the adversary.

7.2.2 Restricted-Route Topologies

We use the term “restricted-route topology” to refer to a connected under-
lay topology which prohibits (restricts) direct connections between certain
nodes. More formally, given a connected graph G = (V,E) where V is the
set of vertices and E the set of edges, the graph represents a restricted-route
topology if |E| < |V |2. Common examples for restricted-route networks are
given in Figure 7.2.

Common DHT routing algorithms show diminished performance or even
arrant failure when operating over a restricted-route underlay. Restricting
DHTs to “super-peers”, those peers that are able to route without such
restrictions, does not work for physical networks or friend-to-friend networks
and may not work well on the Internet in the future as more and more
restrictions are imposed on users, reducing the fraction of peers that could
function as super-peers.

7.2. Related Work 137

(a) Wireless Mesh

Super peer

Natd peer

(b) Super Peer/NATed

Yale MIT UCLA

(c) Social (d) Physical

Fig. 7.2: Examples for sparse, restricted-route networks. (7.2a) Wire-
less networks are often sparse restricted-route networks due to
limited signal strength. (7.2b) Firewall rules, virtual private
networks and private subnets created using network address
translation (NAT) are the reason why most P2P networks on
the Internet today have to deal with a restricted-route topol-
ogy. (7.2c) Friend-to-Friend P2P networks, constructed from
social networks in order to enhance security [185], are also in-
herently restricted-route topologies. (7.2d) The physical un-
derpinnings of the Internet also form a restricted-route network
(image from chrisharrison.net).

7.2.3 T-DHT

T-DHT [98] is a DHT routing algorithm designed specifically for ad-hoc
wireless networks, with a focus on wireless sensor networks for their evalua-
tion. In T-DHT, peers in the network use a topology discovery mechanism
to determine how distant they are in the network from so-called “reference
nodes”. Based on the number of overlay hops from the reference nodes each
peer is assigned a coordinate in a global coordinate system. From this con-
struction, nodes which are “close” based on the number of hops between
them are also “close” in the virtual coordinate system. This allows efficient
routing by greedily forwarding requests toward the virtual coordinate.

While T-DHT provides efficient routing in ad-hoc wireless networks, it
has the major failing of requiring a global coordinate system that all peers
in the network agree on. This type of global information scheme requires
global knowledge of peers about the underlying topology of the network,

138 7. R5N– Randomized Recursive Routing for Restricted Route Networks

including the total number of nodes in the network. Also, peers joining
the network must be given a location in the global coordinate space based
on information from other peers in the network, which may or may not be
trustworthy. Therefore, peers do not make routing decisions based solely on
local knowledge, but must in a sense trust the other peers in the network.

7.2.4 Freenet

Freenet [159]1 is the only efficient DHT design that we are aware of which
works well in restricted-route networks without coordinates. The Freenet
routing algorithm was created for so called “darknets” which are created by
building a topology out of a real world social graph. These social graphs
have been shown to be Small-World graphs [38,185], where short paths exist
between peers even though the topologies are sparse.

Freenet uses location swapping between peers in order to structure the
overlay topology, and is able to route in O(log n) steps. The main problem
with Freenet’s DHT is the inherent vulnerability of the critical location swap-
ping operation. This operation allows an adversary with only a few peers
located anywhere in the network to cause massive peer identifier clustering,
leading to possible data loss and destroying the load balancing properties of
the DHT. Furthermore, natural churn can cause similar problems even in the
absence of malicious peers. We are not aware of any good solution to these
problems for an open network, making Freenet’s location swapping approach
unusable for the creation of a secure DHT for restricted-route underlays.

Additionally, while the original intention of Freenet was to rely on trusted
connections between peers, building a network in this way proved ineffective
in the real world. This is because small P2P networks, such as Freenet,
typically have a diverse set of users from around the world. However, these
users are unlikely to know each other in the real world, so the Freenet
darknet could not be bootstrapped without allowing connections from un-
trusted peers. The result of this is that Freenet operates for most users in
an “opennet” mode; where the supposed trusted connections are made with
anonymous peers via a discovery mechanism. Thus, the design of Freenet is
vulnerable to malicious peers and churn, but even achieving a Small-World
topology in the real world is problematic. The issues we encountered and
attacks performed on Freenet were presented in detail in Chapter 2.

7.2.5 Randomized Designs

One interesting subcategory of restricted-route networks are sparsely con-
nected networks, where |E| ∼ |V | · log |V |. These can often be modeled
as random graphs, and it has been shown that flooding [106] or random
walks [5] are the method of choice for searching such random graphs with

1 This is not the original Freenet design from 1999 but their approach from 2006.

7.2. Related Work 139

no structure; though these unstructured techniques are costly (O(log n
√
n))

compared to modern structured routing algorithms [64].
Lv et. al provide a definitive overview of random walk methods for

searching unstructured P2P networks in [106]. They show, using simulation
and proofs, that random walks are as good as flooding for search in such
networks, and require significantly fewer hops. However, their method re-
quires

√
n average replicas in the network and significantly more hops than

our randomized search. Also, the topologies used for their work were very
sparsely connected (a total of four topologies of approximately 10k nodes,
all of which had average node degree less than five). Our research covers
a wider and more realistic range of topologies, and our approach achieves
similar success rates with fewer total hops.

A closely related randomized design for unstructured networks is [64],
which presents a recursive random walk routing algorithm aimed at obtain-
ing a random sample of the network with each request. Assuming there
are enough replicas present in the network, the birthday paradox guaran-
tees that requests will succeed with high probability. The main differences
between [64] and [106] lie in replication and next-hop strategies. Whereas
the latter relies on completely randomized next-hop selection, the former
chooses peers based on the number of edges of the possible next-hop neigh-
bors. While this strategy makes the search optimally random, it relies on
non-local information to make routing decisions, and may be susceptible
to attack. The other difference between these two algorithms is that [64]
adjusts replication based on the estimated number of copies currently in
the network, where [106] always replicates at any peer encountered along
the query path. The result of this is that [64] does a better job finding
less popular items in the network. Again, [64] evaluated only three random
topologies, and while comparable to the heuristic approach taken by [106],
still requires many more hops to find data than R5N .

While both of the previous approaches are similar to R5N in the first
stage of routing, they are meant for completely unstructured networks and
do not take into account the restricted-route topologies addressed by R5N .
Finally, both of the research papers on the previous routing algorithms de-
signs go into detail about replication and handling peers leaving the network
due to normal churn scenarios. They do not address problems due to ma-
licious participants in the network, and while some of these (such as Sybil
attacks) are mitigated to some degree by unstructured topologies, other at-
tacks may still be possible.

Bubblestorm [178] provides a probabilistic search in unstructured ran-
dom networks. The approach taken by Bubblestorm is to replicate queries
and data within a certain “bubble”; as long as the bubbles of the querying
peers and the peers with the result intersect the search will succeed. This
is similar to the approach taken by R5N , but with a reliance on completely
random topologies. Bubblestorm requires precise knowledge of each peer

140 7. R5N– Randomized Recursive Routing for Restricted Route Networks

in the overall topology and network size. Bubblestorm employs a “weight”
which is similar to our replication factor r and avoids forwarding requests to
peers encountered previously.2 Bubblestorm is intended to deal with large
scale network failure, simulating up to 90 percent total system failure with
minimal recovery time. This is achieved by combining message flooding with
random walks. Thus, their approach is not concerned with efficient routing.

Spinneret [150] discusses a method for building a structured overlay out
of an unstructured topology with some relaxed constraints on that structure.
Specifically, a Chord like ring topology is created so peers have connections
at given distances from themselves on the ring, but those peers are chosen
from a range instead of those at a specific distance. They then use both
random walks and greedy routing (possibly simultaneously) so that queries
can succeed even in topologies with high churn or poor connectivity. The
idea of combining both types of search is similar to R5N although universal
connectivity is still required by Spinneret. Spinneret requires two distinct
routing algorithms,has no protection against malicious peers, and leaves the
problem of replication up to application using the DHT.

NoN (Neighbor of Neighbor) routing was introduced in [108], and shows
that in Small-World and other randomized networks used by DHTs the aver-
age number of hops can be reduced from O(log n) to O(logn

log logn). This is ac-
complished by routing at each hop not to the immediate nearest peer (greedy
routing) but by maintaining knowledge of the immediate peers neighbor’s
neighbors. Each query is then routed to the immediate neighbor which
has the closest neighbor to a query. Maintaining the list of each neighbor’s
neighbors greatly increases the size of the routing table (or requires querying
each neighbor for each hop); this result is interesting because R5N achieves
similar functionality with the distance vector transport plugin.

Various so-called “randomized” DHT designs have recently been pro-
posed [18, 36, 107, 189] to deal with problems associated with the determin-
istic nature of traditional DHTs. For instance, Symphony [107, 189] orders
nodes in a ring and randomly chooses peers via random peer sampling (RPS)
to keep in the routing table based on distance (similar to Chord). This
enables routing with fewer long distance links than previous designs and
increased flexibility in terms of specific connections, resulting in reduced
overheads. Similarly, D2HT [18] assumes that a Small-World topology can
be created in the overlay using neighbor gossip to discover and select nearby
and long range links. While these and other designs reduce the complexity of
maintenance and preserve efficiency, they still rely on unrestricted underlay
topologies.

Danezis et. al [36] presented a semi-randomized version of the Chord

2 We achieve this in R5N using a Bloom filter; Bubblestorm manages this by remem-
bering queries locally (to prevent forwarding to the same peer twice), and relies on the
randomness of the topology to prevent “large” loops.

7.3. Design of R5N 141

DHT. Their design, which was created to foil Sybil attacks on the DHT,
altered Chord to use multiple possible strategies when selecting the next
hop for a query. While the default strategy is to always greedily forward the
query to the next closest node (closeness strategy), the authors implemented
others including diversity (spread queries equally amongst peers) and zigzag
(combine closeness and diversity). The result was that randomization of
query paths helped resist Sybil attacks.

In contrast to R5N , [36] requires iterative routing and full routing table
transfer betweens peers at every hop. This makes the routing overheads in
their design significantly higher than most previous DHT designs [112, 143,
173] as well as R5N . While our approach provides similar protection, we fo-
cus on a more diverse range of malicious participants and, most importantly,
on restricted-route topologies which necessitate recursive routing. Another
key difference is that [36] alternates between strategies at every hop, whereas
ours is more “focused” towards the end of the route (making the possibility
of finding a nearest peer more likely).

These randomized designs do help to solve specific real world problems
and improve resilience to high rates of churn and malicious peers. However,
to the best of our knowledge, none of these designs actually cope well with
restricted-route underlay topologies, further motivating the randomized de-
sign such as R5N .

7.3 Design of R5N

The basic idea of R5N is to take advantage of the limited connectivity of
restricted-route networks by using the large number of peers that are closer
to a key than any of their neighbors for replication. A PUT operation is
used to store data at a random subset of these peers, and GET requests
then attempt to reach one of the replicas. PUT requests are repeated at
a certain frequency to refresh data, combat churn and increase replication.
Since R5N performs non-deterministic routing, repeated PUT requests are
likely to result in data being stored at different peers. Furthermore, since
the refresh period is significantly shorter than the timeout of content at
the replica nodes, the chance of success for subsequent GET operations is
increased.

Despite this replication, a GET request may still fail to find the target
value. In this case, R5N expects peers performing GET requests to retry
a few times. Since GET requests are also non-deterministic, repeating the
operation has a high chance of reaching different peers and hence improves
the chance of finding the data. While the design guarantees that the chance
of failing to find existing data declines over time, the specifics depend on the
replication parameter r, the network topology and the number and behavior
of adversaries in the network.

Since both GET and PUT requests take different paths each time, an

142 7. R5N– Randomized Recursive Routing for Restricted Route Networks

adversary has little chance to successfully place his nodes in the network
to block particular key-value pairs. Depending on how the restricted-route
underlay is constructed, an isolation attack on nodes may still succeed.

The remainder of this section will detail the various components required
for the R5N routing algorithm. Specifically, we will discuss routing table
construction, the use of bounded onion-routing to augment the underlay,
routing, replication and application-level requirements (specifically content
validation).

7.3.1 The Routing Table

Routing tables in R5N are closely modeled after Kademlia routing tables,
and are constructed and maintained in a similar manner. The distance
function is similar Kademlia’s XOR metric:

Definition 7.1 (Proximity to Identifier). Given two identifiers l,m, the
proximity D(l,m) between l and m is x := D(l,m) if and only if:∨

b∈[0,x)

lb = mb and lx 6= mx. (7.1)

This simply defines the distance between any two identifiers to be the
number of consecutive matching high-order (leftmost) bits. Clearly, the
inverse is also true, so D(l,m) = D(m, l).

The routing table is made up of k-buckets with one bucket for each bit in
the identifier space (our GNUnet implementation uses 512-bit identifiers).
Each of these buckets can hold k entries for peers with matching prefix
length equal to the index of the entry in the routing table.

Definition 7.2 (Routing Table). Let Rp(n) be the n-th bucket of the routing
table of peer p. If two peers with identifiers i and j are connected, then
j ∈ Ri(X(i, j)) and i ∈ Rj(X(j, i)) (unless the respective bucket has more
than k entries, in which case the oldest k connections are used).

When a peer joins the network, it sends a FIND PEER request out to
some known peer(s) already in the network. The request is routed through
the network and peers along the path may connect to the new peer (depend-
ing on the peers currently in their routing tables). When the request reaches
a nearest peer, it responds to the new peer with its full routing table. The
new peer will continue to send additional FIND PEER messages until few
new peers are found and then only perform FIND PEER operations at a
lower frequency for maintenance.3 As in Kademlia [112], this approach re-
sults in O(log n) connections to neighbors (when in an unrestricted underlay
topology) given n total peers in the network.

3 Due to message size concerns, our implementation does not piggyback peer informa-
tion on normal DHT route requests (as done by Kademlia).

7.3. Design of R5N 143

7.3.2 Fisheye Distance Vector Underlay Augmentation

The above description of routing table construction ignores the problem that
peers will often not be able to communicate directly. In some topologies,
this may simply result in a slightly reduced number of peers in the routing
table. While this is enough to require randomized routing as described in
the next section, a slight reduction in the number of peers in the routing
table is not a problem for successful routing in general.

However, for sparse topologies, especially those with fewer thanO(log2 n)
neighbors per node, the resulting routing table would be mostly empty (in
relation to the size of the network). The resulting limited view of the network
by the peer would make it difficult to make good routing decisions. R5N
addresses this problem by using a distance-vector layer below the DHT,
described previously in Chapter 5. For Small-World underlays (restricted-
route networks with a network diameter of O(log n)), this layer provides
the DHT with the ability to communicate with O(log2 n) peers, even if the
restricted-route underlay does not allow that many direct connections.

The distance vector layer uses a bounded variant of distance vector rout-
ing [136] to discover shortest paths to peers up to D = 3 hops away.4 It
can then be used to build tunnels, using layered encryption akin to onion-
routing [176], to communicate non-anonymously with any of these peers.

The use of onion-routing makes it difficult for malicious neighbors to
monitor or restrict connections to particular nodes. For Small-World net-
works with an average degree of O(log n), the choice of D = 3 will result in a
large enough number of neighbors to sufficiently populate the R5N routing
tables of most peers. For more details on the specifics of the distance vector
protocol that we have developed, see Chapter 5.

7.3.3 Routing

Routing in R5N is performed in two distinct phases. In the first phase, a
request for a key is routed for some number of hops in a random fashion
(of course, next hop choices are limited to those connections in the routing
table). In the second phase, routing is deterministic using the peers from
the routing table that are closest to the given target. Each request includes
the number of hops h that the request has traversed so far and each peer is
supposed to increment the counter by one at each hop. If the hop counter
exceeds a threshold of T ≈ log n where n is the size of the network, the peer
uses deterministic routing. The intuition behind this is that we first make
the starting point in the network independent from the initiator and then
find a nearest peer.

4 The resulting topology is still a restricted-route topology in most cases. Making D
large enough to eliminate problems of traditional DHTs with restricted-routes would cause
performance and possibly security [58] problems.

144 7. R5N– Randomized Recursive Routing for Restricted Route Networks

We considered strategies that used a phase with a degree of bias in
the neighbor selection instead of the binary choice between random and
deterministic. For the underlay topologies we investigated, such strategies
showed little advantage in terms of performance and have the disadvantage
of being harder to analyze, understand and implement.

In addition to the hop counter, each request also contains a unique iden-
tifier and a Bloom filter which are used to prevent looping and to limit
forwarding of the same request to the same peer repeatedly. The Bloom
filter is updated with the list of peers selected for forwarding for the request
at each hop, and those peers that match the bloom filter are excluded from
the selection process henceforth.

7.3.4 Estimating Network Size

R5N ’s two-phase routing requires a rough estimate of the size of the network
in order to determine how many hops of random routing should be used
before switching to deterministic routing. However, estimating the network
size of P2P network is a notoriously difficult problem. If the network allows
direct connections between most neighbors, the size of the network can be
estimated directly from the routing table. If T is the average index of the
first empty bucket in the routing table, then the size of the network is
approximately 2T and the the expected path length for Kademlia is also
T . This and other similar simple methods do not work for restricted-route
topologies. Other heuristic methods exist for estimating the size of a P2P
network [114], and we intend to explore these methods in future work to
discover which performs best for Small-World topologies.

For our presented results, we know the size of the network and therefore
manually set the T parameter accurately. In a real world deployment, values
of T between 3 and 6 cover network sizes between approximately 1,000
and 1,000,000 peers. Thus, even hard coding a value in this small range
should work for most real world networks, with the obvious caveat that an
overestimate will be slightly more costly and an underestimate may cause
requests to be insufficiently randomized (and have higher failure rates).

7.3.5 Processing Requests and Replies

Each peer that receives a routing request performs the same basic sequence
of operations. First, the peer determines whether it is closer to the key of
the request than any of the peers in its routing table.

Definition 7.3 (Nearest Peer). A peer i is considered nearest to random
identifier l if for all j ∈ Ri, X(j, l) ≤ X(i, l).

In other words, a peer is considered a nearest peer if the bit distance
between its peer identifier i and the key k is greater or equal to the bit

7.3. Design of R5N 145

distance between any of the connections of i and k. For a random network,
we can easily calculate the expected number of nearest peers.

Remark 7.4 (Number of Nearest Peers). For a random network with n
peers and α random connections per peer, the expected number of nearest
peers in the network to any random key is n

α+1 .

This calculation is correct for completely random topologies (e.g. Erdős-
Rényi and Small-World) without structure, but the numbers are skewed
by routing table restrictions.This is because sending FIND PEER requests
adds peers to the routing tables preferentially based on location. Therefore,
Table 7.1 lists the number of nearest peers for some of the different actual
topologies we used.

If the current peer is a nearest peer (and h ≥ T), it is possible that
the request is not forwarded at all, depending on the type of request (for
instance, PUT requests are not forwarded past a nearest peer, but GET
requests that might have multiple results may still be forwarded).

Peers will cease to forward a message if the hop count exceeds an upper
bound of 2 ·T . Peers also stop forwarding requests for a neighbor if the GET
queue for that neighbor is full. Each time a GET request is processed for a
neighbor, it is added to the GET queue associated with that neighbor. A
timeout is used to remove entries from the queue. This limits the number of
outstanding GET requests that will be handled for a particular peer. If the
request is forwarded to other peers in the network, the number of forward
replicas is calculated according to the replication level, network size estimate
and number of hops traversed as described in Section 7.3.6.

For handling replies, a bounded number of active request keys and the
respective identity of the preceding peer is maintained. Responses are for-
warded along the request path in reverse until they reach the initiating peer
or are discarded by a peer that lacks path information, for example due
to memory limitations. It should be noted that most other DHTs do not
require this additional state since, in traditional DHTs, the normal routing
mechanism can also be used to route replies. For R5N , this is not feasible
due to path randomization. This randomization causes the success rate for
replies reaching the intended initiator to be rather low. In contrast, random-
ization for the lookup is acceptable (as well as vital to our design!) since
many peers are expected to store the data.

7.3.6 Replication

In R5N , replication is used not only to protect against node failure, but
also to improve the chances of a lookup operation finding the desired data
in the absence of failures. For R5N , the highest GET success rate would
be achieved if there are n

c+1 replicas in the network (Lemma 7.4). We use

146 7. R5N– Randomized Recursive Routing for Restricted Route Networks

Allowed Topology Avg. Connections Number Nearest n
c+1

in Routing Table
2d-torus 4 580.09 ± 8.71 405
Clique 10.16 359.28 ± 26.92 184.10
Clique 12.32 276.64 ± 25.11 155.77
Clique 22.55 131.09 ± 17.39 92.04
Clique 26.49 110.82 ± 13.40 76.44
Clique 30.2 90.17 ± 11.73 67.05
Clique 32.62 85.94 ± 11.93 61.36
Clique 46.55 19.69 ± 1.62 42.59
Clique 50.01 2.57 ± 0.85 39.71
Clique 60.85 2.27 ± 1.77 32.74

Small-World 8.00 336.37 ± 12.71 225
Small-World 12.00 228.74 ± 10.12 168.75
Small-World 17.99 155.67 ± 7.31 106.57
Small-World 22.00 123.85 ± 9.66 88.04
Small-World 25.98 107.75 ± 6.12 75.06
Small-World 28.00 99.98 ± 6.35 69.83
Small-World 31.97 89.21 ± 5.49 61.42
Small-World 35.98 77.68 ± 5.64 54.76
Small-World 41.97 68.53 ± 4.86 47.13

InterNAT 9.63 715.60 ± 41.05 190.50
InterNAT 18.24 453.70 ± 31.40 105.25
InterNAT 22.09 371.07 ± 32.33 87.70
InterNAT 26.15 256.24 ± 27.12 74.59
InterNAT 29.66 200.38 ± 25.08 66.05
InterNAT 37.34 94.06 ± 13.24 52.82

Erdős-Rényi 7.85 319.49 ± 14.33 228.81
Erdős-Rényi 11.66 238.87 ± 11.09 160.71
Erdős-Rényi 13.57 203.64 ± 10.64 138.98
Erdős-Rényi 19.06 148.86 ± 7.91 100.95
Erdős-Rényi 27.86 99.38 ± 5.90 70.17
Erdős-Rényi 36.40 79.14 ± 6.12 54.14
Erdős-Rényi 44.42 65.19 ± 6.42 44.58
Erdős-Rényi 52.05 52.24 ± 5.61 38.17
Erdős-Rényi 59.43 48.88 ± 5.11 33.51
Erdős-Rényi 66.05 42.63 ± 4.01 30.20
Erdős-Rényi 72.93 39.48 ± 4.57 27.39

Tab. 7.1: Observed number of nearest peers for different topologies, all
with n = 2025 peers.

7.3. Design of R5N 147

r ∼
√

n
c+1 ; this choice represents a trade-off between the cost for PUT

requests and the performance for GET requests.

If the initiator were to transmit r PUT requests to obtain r replicas,
there would be a good chance of collision in the resulting paths and this
might impose a strong burden on the direct neighbors of the initiator, es-
pecially since in the underlay the initiator may not even have r neighbors.
Instead, R5N attempts to have (on average) 1+ (r−1)h

T PUT requests active
in the network at hop h ≤ T .

Lemma 7.5. Let h be the number of hops in the network that the request
has already traversed. If the network is large enough that r random paths
of length T are unlikely to merge and if h < T , than the average number of
peers to which a peer forwards a request to should be

Υr,h := 1 +
(r − 1)

T + (r − 1)h
(7.2)

in order to achieve the desired replication level r at T hops.

Proof of Lemma 7.5 by induction. To show: If each peer forwards to Υr,h

peers at each hop from h = 0 to h = T − 1, at hop T , there will be at least
r parallel paths.
We start by showing that at any hop h there are T+(n+1)·(r−1)

T paths.
Forwarding to Υr,h peers at each hop, the total number of paths at hop h
can be found by the recursive formula τh, defined as follows:

τ0 = 1 +

(
r − 1

T

)
τ1 = τ0 + τ0 ·

(
r − 1

T + 1 · (r − 1)

)
τh = τh−1 + τh−1 ·

(
r − 1

T + h · (r − 1)

)
We will next show that the recurrence relation can be simplified to:

τh =
T + (h+ 1) · (r − 1)

T
.

Now, we show the inductive base case τ0:

τ0 = 1 +

(
r − 1

T

)
=
T + (r − 1)

T

=
T + (0 + 1) · (r − 1)

T
so τ0, the base case for the inductive step, holds.

Next, assume τk is true, then:

τk =
T + (k + 1) · (r − 1)

T
.

148 7. R5N– Randomized Recursive Routing for Restricted Route Networks

Now,

τk+1 = τk + τk ·
(

r − 1

T + (k + 1) · (r − 1)

)
Substituting τk for T+(k+1)·(r−1)

T

τk+1 =

(
T + (k + 1) · (r − 1)

T

)
+

((
T + (k + 1) · (r − 1)

T

)
·
(

r − 1

T + (k + 1) · (r − 1)

))
=

(
T + (k + 1) · (r − 1)

T

)
+

(
r − 1

T

)
=
T + (k + 1) · (r − 1) + (r − 1)

T

=
T + (((k + 1) + 1) · (r − 1))

T
Thus, τk implies τk+1 which proves by induction that

τh =
T + (h+ 1) · (r − 1)

T
Our hop count h starts at 0, and T ∈ N, so the hop counter has reached the
total length T when h = T − 1.

Let T = h+ 1, then:

=
T + (h+ 1) · (r − 1)

T
=
T + T · (r − 1)

T
= 1 + r − 1 = r

Clearly, Υr,h will generally not be a natural number. R5N uses a biased
random selection, forwarding to either bΥr,hc or dΥr,he peers to reach on
average Υr,h peers for the next hop.

7.3.7 Content Validation

A key concern for any DHT is the integrity of the content stored in the sys-
tem. R5N provides an application with hooks for integrity checks to detect
malformed key-value pairs. Such pairs are then not forwarded or stored by
well-behaved peers, which reduces storage and bandwidth requirements in
the presence of faulty or malicious participants.

Another possible issue is allowing multiple values to be stored under
the same key. Requests in R5N include a Bloom filter [21] which matches
replies already known to the requester. While Bloom filters offer a compact
way to filter replies, they can also produce false positives. R5N mitigates
this problem by having the requester provide an additional mutation value

7.3. Design of R5N 149

which modifies the hash function used for testing the Bloom filter. By re-
issuing the request with a different mutation value, these false-positives can
be eliminated with high probability.

Finally, R5N also allows application-level hooks to specify that a partic-
ular GET request type only has a single possible value as a reply and hence
forwarding is never required once an answer has been found. Applications
can further use these hooks to verify self certifying data, such as Freenet
CHK’s [158]. These measures can allow those peers storing or forwarding
data to verify that only valid data is being inserted.

We believe that providing such hooks to control content integrity and
to allow early filtering of duplicate replies is crucial in order to provide
an implementation of a general-purpose, secure DHT. Without such mea-
sures, adversaries can more easily pollute the DHT, consuming resources
and harming availability. However, there are applications that do not re-
quire the overhead of these filtering mechanisms, which is why we allow the
application to choose whether or not to use them.

7.3.8 Adversary Model

We consider a number of types of malicious adversaries with diverse goals
in our design. We assume that an attacker has similar resources to other
participants in the network, and may eavesdrop, alter and send and receive
messages as a normal peer would. This adversary may also create multiple
peers running simultaneously with free choice of peer identity for identifica-
tion and lookup in the DHT. We also assume that adversaries may collude in
order to achieve a specific goal. Finally, we assume that encrypted messages
intercepted at the network level are unable to be decrypted by anyone other
than the intended recipient.

7.3.8.1 Eavesdroppers

There are two kinds of adversaries that may eavesdrop on messages passed
through the network. We assume that the goal of an eavesdropper is ulti-
mately to discover what participants in the network are “up to”. The first
type of eavesdropper is able to intercept network level communication. This
eavesdropper does not participate in the network, but is able to intercept
date “on the wire”. The second kind of eavesdropper actively participates
in the network, and can thereby log any messages that are sent to or routed
through the adversary. The first type of adversary is easily subverted using
encryption; all peers in R5N perform a public key exchange and establish
a symmetric session key upon connecting to each other. Assuming this en-
cryption cannot be broken, a network level adversary is unable to glean any
useful information about peer activities.

The second type of adversary has the chance to learn more about the

150 7. R5N– Randomized Recursive Routing for Restricted Route Networks

activities of those peers that it is connected to. Any messages routed to
the adversary can be logged and possibly attributed to a specific peer in
the network.5 DHT messages are identified by a 512 bit hash code which is
(generally) the one way hash of the data being inserted into the network.
This hash is difficult or impossible to reverse, so simply observing a GET
request gives the adversary little information. However, a GET response
contains the data that was initially searched for; so the adversary could
identify the relationship between a peer and data that is searched for or
downloaded. R5N does not impose restrictions on what key/data values are
used, so it is possible to store data in the clear in the DHT. Our answer
to this possible security issue is that any data which is sensitive should be
encrypted before being inserted into the DHT, but this is a problem for
higher level applications.

7.3.8.2 DoS Attacks

Our system should have protections against asymmetric denial of service
(DoS) attacks where malicious peers are able to utilize more resources in
bandwidth or storage than they provide. Our routing algorithm does not
incorporate any kind of reputation system; nor does it use a tit-for-tat policy
when routing requests. However, R5N has two protections against malicious
peers that attempt to flood the network with requests in order to use up
other peers resources. First, the number of hops that a request travels is
bounded by T , meaning requests do not travel around the network indefi-
nitely. Second, malicious peers which send many GET requests are limited
in the amount of storage which is utilized for awaiting responses at each
peer. Once the pending GET queue is full for a particular peer, all new
GET requests will be dropped until the queue empties based on a timeout.
This limits the maximum flooded requests that any single peer can force an-
other to handle, making it more difficult for an attacker to DoS the network
by flooding inexpensive GET requests.

7.3.8.3 Flooding/Poisoning Attacks

As described previously, flooding the network with GET requests is some-
what mitigated by the per-peer queue for incoming requests. However, ma-
licious adversaries may also flood the network with PUT requests in an
attempt to exhaust the storage capacity of a peer or to conduct a poisoning
attack. A poisoning attack [179] is a type of resource attack where an adver-
sary attempts to replace legitimate data in the network with fraudulent or
malformed data. This blocks other peers from accessing the original content
when the fraudulent data is returned. R5N allows multiple data items to be

5 While indirection may prevent easy identification of message origin, a determined
adversary could discover it.

7.3. Design of R5N 151

inserted under the same key, so it is not easy for a malicious peer to poison
a specific key. Even if many copies of fraudulent data are inserted under
the same key as the original content, the correct data will still be accessible
(though the receiver may have to sift through the improper responses first).
The Bloom filter, described in Section 7.3.7, also provides peers the ability
to filter previously seen fraudulent data. In the same manner, poisoning
attacks can be prevented by utilizing self certifying data.

R5N uses a user configured fixed size cache for storing DHT data, and
thus is vulnerable to storage exhaustion attacks. While this type of attack
is possible, it would generally be very expensive for an attacker and only
provide a limited chance of success. Suppose a malicious peer wanted to
block access to some data stored under a specific key by exhausting the
storage on each peer that would be responsible for that key. The data cache
that R5N uses removes data with the soonest expiration when full when a
PUT request is received for data with a longer expiration time. Also, the
maximum size of any data stored in the data cache is 64 kilobytes, with a
maximum expiration time of 24 hours. Thus, in order to exhaust the storage
at a peer the attacker would have to transmit at least the equivalent number
of 64 kilobyte PUT messages per day as the size of the user configured data
cache. We can calculate the bandwidth required by attacker to fill a data
cache of differing sizes as:

Remark 7.6. Given a data cache size d (kilobytes), maximum content ex-
piration x (hours), the attacker bandwidth required A(d, x) is:

A(d, x) =
8 · d

3600 · x
(7.3)

Table 7.2 shows the amount of bandwidth required for various sizes of
data cache. The main point is that an attacker would have to provide a
relatively large amount of bandwidth for an extended period of time in order
to effectively perform this type of attack. The cheapest type of memory is
hard drive space, and by providing more of it to be used for the data cache
this attack can be effectively mitigated. An equally effective way to combat
this attack would be by decreasing the maximum allowed content expiration
time, although this would require normal peers to insert data more often to
keep content up to date. However, due to the high cost and low effectiveness6

it is unlikely that an attacker would choose to perform this type of attack.

7.3.8.4 Dropping/Sybil/Eclipse Attacks

We also consider peers that attempt to disrupt normal network operations
by dropping requests and/or positioning themselves in the network to block

6 Consider that a malicious peer would have to target all nearest peers in a network

152 7. R5N– Randomized Recursive Routing for Restricted Route Networks

Cache Size Attacker Bandwidth Attacker Bandwidth
24 Hour Expiration 12 Hour Expiration

100 MB 9.5 Kbit/s 19.0 Kbit/s

500 MB 47.4 Kbit/s 97.1 Kbit/s

1 GB 97.1 Kbit/s 194.2 Kbit/s

2 GB 194.2 Kbit/s 388.4 Kbit/s

5 GB 485.45 Kbit/s 970.9 Kbit/s

Tab. 7.2: Table showing the trade-off between hard disk space used for
the DHT data cache, maximum allowed expiration time for
inserted data and attacker bandwidth required to poison the
cache.

access to specific data items. Peers may drop requests for a number of rea-
sons, including client misconfiguration, CPU or bandwidth limitations or
malicious behavior. Peers which simply drop messages generally have a lim-
ited impact on overall network operation, as replication of data and requests
to a number of peers means that a high proportion of peers must be dropping
requests for one reason or another before users will suffer significantly.

The Sybil attack [47] is known to be one of the most detrimental attacks
on DHT networks, and Kademlia in particular [170]. A Sybil attack is one
in which an adversary is able to create or represent itself as multiple peers
participating in the network. Simply creating many “sybil peers” is not
in and of itself detrimental to network operations, so the Sybil attack is
typically used as a means to better perform more sophisticated attacks. A
Sybil attack may target a particular key in the DHT, for instance, where all
Sybil nodes claim identifiers closer to the target than any other peers in the
network. Once enough Sybils are created, the adversary can block or curtail
access to the data.

Another type of attack enabled by Sybil peers is known as the Eclipse
attack. In this type of attack, a specific peer or group of peers is targeted
with the goal of excluding their access to the non-malicious portion of the
network. This can be accomplished if the Sybil peers are able to somehow
fill all of the slots in the routing table of a victim peer, excluding legitimate
peers. Once this is accomplished, the victim peer is effectively partitioned
from the rest of the network, and the Sybil peers can redirect requests to
other malicious peers, refuse requests, etc. Some DHT routing tables are
constructed in such a way that Sybil peers can force their way into routing
tables by assigning identifiers in a specific range. Recent DHT designs such
as Kademlia have protections against forceful routing table takeover; for
instance by never replacing an older, live routing table entry with a new one.
However, even this type of protection is not enough in the presence of churn
coupled with a determined Sybil adversary. Due to churn, the legitimate

7.4. Mathematical Evaluation 153

peers in a routing table will eventually go off-line. If the adversary can keep
the Sybil peers up longer than the time it takes for all legitimate peers in
the victim’s routing table to be churned out the routing table can still be
dominated.

R5N is susceptible to the Sybil attack insofar as peers are unrestricted in
the choice of their identifiers. We also employ the same method as Kadem-
lia, where newer peers do not replace older routing table entries once the
appropriate routing bucket is full. So R5N enjoys the same protection at
minimum as that provided by Kademlia. Furthermore, in the sparsely con-
nected restricted-route topologies that R5N is targeted at it is much more
difficult if not impossible for Sybil peers to insert themselves at random
positions in the network. Due to the large number of “nearest” peers in
such topologies, a Sybil adversary would need to create a greater number of
nearest peers and place them in strategic positions (i.e. connected to certain
peers) which is generally not possible in restricted-route topologies.

7.4 Mathematical Evaluation

In this section, we determine the number of hops required for finding a single
nearest peer for random routing, R5N and Kademlia. From this, we show
the number of total hops that are necessary to achieve a desired success rate
for GET requests. We demonstrate that the total number of connections in
the network is the most important factor for determining the performance
of these routing algorithms.

Because we are working with random graph topologies, we use the “ran-
dom walk” method as a baseline routing algorithm. It has been shown [70]
to be the most efficient method for searching unstructured random graphs.
We compare this random routing algorithm to the Kademlia [112] routing
algorithm and to R5N .

7.4.1 Hops to Reach a Nearest Peer

The primary measure of efficiency in DHT routing algorithms is the number
of hops that a request must travel in order to reach its intended destination.
In our DHT, the “intended destination” of a request is any of the “nearest
peers” in the network, where a nearest peer is one which fits the following
definition:

Definition 7.7 (Nearest Peer). A peer i is considered nearest to random
identifier l if: ∨

j∈Ri

D(j, l) ≤ D(i, l). (7.4)

154 7. R5N– Randomized Recursive Routing for Restricted Route Networks

Our distance definition, Definition 7.1 is similar to the XOR metric of
distance between two identifiers, l XOR m. However, our distance metric
implies that the first non-matching high-order bit between two identifiers is
the determining factor; any remaining bits are ignored. The result is that
two peers with identifiers sharing the same number of matching bits with
a key may both consider themselves nearest peers to that key. Figure 7.3
shows an example of a key in a network which has two nearest peers by our
definition, but would only have one according to the “normal” Kademlia
XOR metric. This definition of nearest peers provides an advantage for
our replication mechanism. We rely on having enough nearest peers in the
network so that we can replicate requests at multiple peers, such that two
requests for the same key will overlap with high enough probability to ensure
success. The increase in the number of nearest peers for multiple network
topologies is seen in Table 7.1 as compared with the predicted number of
nearest peers given by Definition 7.7. There is obviously a trade-off implicit
in creating a greater number of nearest peers; too many will require very
high replication levels, causing more traffic in the network. Too few nearest
peers will make attacks by malicious peers and the behavior of benign, failing
peers more detrimental to the network.

110111 110101

101101 010101

001011 111101

Key:
110010

R5N: 3 R5N: 3

R5N: 1 R5N: 0

R5N: 2R5N: 0

XOR: 5 XOR: 7

XOR:39

XOR:15XOR:57

XOR:31

R5N Nearest
(2)

Kademlia
Nearest
(1)

Fig. 7.3: This figure shows an example overlay network, peer identifiers
and the distance between the key and identifiers for each peer.
For the key shown, “110010”, R5N results in two nearest peers
“110111” and “110101”, whereas Kademlia’s XOR metric re-
sults in only “110111” as the nearest peer. Note that the R5N
metric defines the nearest peers as those with the highest dis-
tance value, while Kademlia’s XOR defines the nearest peer as
the one with the least distance value.

7.4. Mathematical Evaluation 155

In this section we show how the average number of hops required to
reach a nearest peer can be derived based on the average number of random
connections per peer in the topology (α) and the total number of peers (n).
In a random graph with no overlay structure imposed, exhaustive search in
the network is typically done by flooding. Flooding ensures that every peer
in the network is reached by a single request (if necessary). However, random
sampling via random walk routing provides better efficiency than flooding
while still achieving a high level of success. Using random sampling (sending
a request out a specific number of random hops in an unstructured random
graph) means that requests can “fail”, and in our scenario this means routing
terminates before a nearest peer is found. Random sampling is repeated
until the request succeeds, possibly reaching all peers in the network. Since
our topologies are semi-structured random graphs, our analysis begins by
determining the number of hops required for finding a nearest peer using
this random walk method of routing. We then show the number of hops
required to find a nearest peer for the Kademlia routing algorithm and
R5N . Finally, we move to an analysis of the total hops required to provide
a desired probability of overlap between two requests for the same identifier,
when those requests can be initiated from any two peers in the network.

7.4.1.1 Random Walk DHT Routing

The random walk routing algorithm [70] routes to a peer selected from the
routing table uniformly at random at each hop. The routing table con-
straints we have imposed make this analysis a bit more complex than taking
the probability of being at a nearest peer at any given hop as

1

α+ 1
(7.5)

(given α completely random connections, each peer should be equally likely
to be nearest to any random identifier). However, routing tables are more
likely to contain peers with bits matching the current peer. This skews the
likelihood of a nearest peer being found at each step, and reduces the number
of hops required to find a nearest peer. For this reason, we account for this
difference by taking into account the possible matching bits at each of the
previous hops.

The number of peers which can be used for routing is typically fewer
than α due to routing table restrictions. The expected number of peers in
the routing table is given by the following theorem:

Theorem 7.8 (Number of peers in routing table, δα,k). Given α average
random underlay connections per peer and a bucket size of k, the expected
number of peers in the routing table is:

δα,k := k · log 1
2

(
k

α

)
+ k (7.6)

156 7. R5N– Randomized Recursive Routing for Restricted Route Networks

In order to prove Theorem 7.8, we first need to define and explain some
of the primitives necessary. We start by showing the probability a certain
number of bits match between any two random identifiers.

Remark 7.9 (ρx). Given two random identifiers l and m, the probability x
consecutive, high-order bits match in the prefixes of l and m is:

ρx :=
1

2

(x+1)

(7.7)

We can find the number of expected peers in any bucket z by the following:

Lemma 7.10 (Expected Peers in Bucket ξz,α,k). Given α average random
connections per peer and a bucket size of k, the expected number of peers in
bucket z is: α · ρz or k, whichever is smaller:

ξz,α,k := min(α · ρz, k) (7.8)

Proof: ξz,α,k, Expected Peers in Bucket. Given α random connections, the
probability of z bits matching between a peer and one of these random
connections is given by Remark 7.9. We can therefore multiply α by ρz to
get the expected number of peers that will go in any bucket z. However, the
maximum number of peers in a bucket is k, so if the result is greater than
k we limit the number of peers to k.

To determine the probability that a certain number of bits match be-
tween a random identifier and a peer, we need to know how many buckets
in the routing table are full.

Lemma 7.11 (Number of full buckets να,k). Given α average random con-
nections per peer and a bucket size of k (α ≥ k > 0), the expected number
of full buckets is:

να,k := log 1
2

(
k

α

)
(7.9)

Proof: Number of full buckets να,k. We need to find the last full bucket
index, which can be found by solving for the bucket index να,k in the routing
table with k entries.

According to Lemma 7.10, the bucket να,k with exactly k entries must be the
last full bucket. Any higher value of να,k will give a bucket with less than
k entries, and any bucket lower than να,k will have more than k candidate
entries:

k = α ·
(

1

2

)να,k

7.4. Mathematical Evaluation 157

Dividing by α gives:

k

α
=

(
1

2

)να,k
, (7.10)

Note that α > 0.

Taking the log of both sides yields:

log

(
k

α

)
= να,k · log

(
1

2

)
So the expected number of full buckets is:

να,k =
log
(
k
α

)
log
(

1
2

) = log 1
2

(
k

α

)
.

We now have the required Lemmas to prove Theorem 7.8.

Proof : Number of peers in routing table, δα,k. We need to find the num-
ber of peers in a routing table, given α random connections and a bucket
size of k.

Lemma 7.11 gives the number of full buckets, which we multiply by the
bucket size k to get the number of peers in full buckets:

k · log 1
2

(
k

α

)
(7.11)

The remaining peers fall into non-full buckets. The first non-full bucket
is assumed to have k

2 peers, the second k
4 peers, and so on. This can be

expressed as:
∞∑
p=1

k

2p
= k (7.12)

Adding this to the number of peers in full buckets gives:

δα,k = k · log 1
2

(
k

α

)
+ k (7.13)

From this point on, we make the simplifying assumption that exactly να,k
buckets are full, and that no connections exist in any higher buckets. This
assumption reduces the accuracy of our formulations, as the number of peers
expected to be in the routing table will be off by on average k connections.
However, it allows us to predict, for instance, the exact number of matching
bits expected at each hop, which would be complicated by accounting for
buckets which may have between 0 and k peers. In any case, this causes
us to (at worst) underestimate the number of hops which only improves

158 7. R5N– Randomized Recursive Routing for Restricted Route Networks

the estimated number of hops for random routing. As our conclusion is
that random walk routing is too expensive, this actually provides a slight
advantage to random walk routing, slightly less than the bounds given by
previous work [104,132].

Now, we can calculate the probability that a peer, with a certain number
of bits matching a request, is routed to.

Lemma 7.12. The expected number of peers in a routing table that match
exactly i bits with a random identifier, assuming j bits match between the
current peer and the random identifier, given α average connections and a
bucket size of k for j < να,k is:

eα,k(i, j) :=


(να,k − i) · k if i = j
k

2i−j
if i > j

k if i < j

(7.14)

Proof: We prove Lemma 7.12 by cases. For the case where i = j, all buck-
ets with index greater than i and index less than να,k will be full and guar-
anteed to match exactly i bits. Thus, the peers in the να,k − i buckets will
match exactly i bits. Since there are k peers in each full bucket, we get
k · (να,k − i) total peers matching i bits.

For the case where i > j, we want to count all peers in the routing table
that match more bits than the current peer. Bucket j is known to be full
(because j < να,k), so we expect (of those peers in bucket j), that k

2 peers

will match j + 1 bits, k
4 will match j + 2 bits, and so on.

For the last case, where i < j, we must count all peers in the routing
table that match fewer bits than the current peer, and since only one full
bucket exists with index i, we know that exactly k peers match.

We need to know the expected number of peers in a routing table for a
peer that match a certain number of bits, b, so that we can calculate how
many bits will match at the next hop, as the number of peers matching
divided by the total number of peers in the routing table.

Lemma 7.13. The probability that b bits match a random identifier at hop
h in a random graph when using constrained routing tables is:

Pα(b, h) :=


ρb if h = 0,
να,k∑
i=0

(
eα,k(i, b)

δα,k
· Pα(i, h− 1)

)
otherwise.

(7.15)

7.4. Mathematical Evaluation 159

Proof: we prove Lemma 7.13 by cases. For the base case, when at hop 0,
we need to find the probability that b bits match between two random iden-
tifiers, in this case between the peer’s identifier and a random key. This
probability is given by Remark 7.9, as ρb.

For the second case, we consider each possible number of bits that may
have matched at the previous hop and the associated probability. The pos-
sible number of bits that matched at the previous hop range from 0 to να,k,
because if more than να,k bits had matched, the previous peer would have
been a nearest peer and not routed the request on. We multiply the prob-
ability of bits matching at the previous peer and the random identifier by
the probability a peer existed in the previous peer’s routing table with that
many bits to get the probability at hop h.

For random routing, each peer is equally likely to be routed to, so the
probability that a peer is present in the routing table and will be routed to
is the number of peers with the proper number of matching bits (eα,k(i, b))
divided by the total number of peers in the routing table (δα,k).

Lemma 7.14. The probability of routing for h hops without previously en-
countering a nearest peer and the peer at hop h being a nearest peer, given
α connections per peer is:

ϕ̀α(h) :=


1−

να,k∑
b=0

Pb,h if h = 0,(
1−

να,k∑
b=0

Pb,h

)
· (1−

h−1∑
i=0

ϕ̀α(i)) if h > 0.

(7.16)

Proof : we prove ϕ̀α(h) by cases. The base case is the probability of being
at a nearest peer at the first hop (h = 0). We calculate this probability as
the sum of the probabilities that b bits match between a random identifier
and the current peer for values of b = 0 to b = να,k. The probability for
each of these values of b, Pb,h, is the probability that a peer exists in the
routing table and will be routed to. This is the probability that a peer is
not a nearest peer. We subtract this value from 1 to get the probability that
the peer at hop h = 0 is a nearest peer.

We do the same summing of probabilities at subsequent hops h > 0, only
we must multiply the result by the remaining probability that hop h was
ever reached. This remaining probability can be found by taking the total
starting probability, 1, and subtracting the sum of the probability of each
peer at each previous hop ϕ̀α being a nearest peer.

Theorem 7.15 (ὶα). The expected number of hops to reach a nearest peer

160 7. R5N– Randomized Recursive Routing for Restricted Route Networks

using random routing given α connections and constrained routing tables is:

ὶα :=

∞∑
h=0

h · ϕ̀α(h) (7.17)

Proof : ὶα. Taking the sum of multiplying the hop count by the probability
of reaching a nearest peer at every hop (from zero to infinity) gives us the
expected number of hops required to reach a single nearest peer.

Theorem 7.15 allows us to calculate the number of hops required to find a
single nearest peer using random routing with routing tables constrained as
described in Definition 7.2. It is important to note that Theorem 7.15 gives
a bound for random routing which is linear in relation to α (which is also a
measure of the total number of connections in the network), which is proven
in previous work [104,132] and supported by our findings in Figure 7.4. The
implication of this is that the network size, n, has no impact on the number
of hops that are required to reach a nearest peer. If the underlay topology is
unrestricted, such that α = n, then random routing is O(n), provided that
each peer can only be encountered once on the random walk. Most research
on random routing [104, 110, 132] therefore gives a bound of greater than
O(n) in the worst case, assuming that there is only a single nearest peer (or
“replica”) in the network. Clearly in this case it is possible that all peers
will be traversed (some multiple times) before reaching the single nearest
peer.

The mathematical model we have thus derived for random walk routing
in networks with Kademlia routing tables is complex, but we believe that it
is necessary. A simpler method for calculating the number of hops is based
on Equation (7.5). In fact, this was the initial model we used, but found
that it did not meet up with results from routing in practice. This neces-
sitated the more complex Theorem 7.15, which takes into account routing
table constraints on α possible connections. Figures 7.4a and 7.4b plot the
expected number of hops for Equation 7.5, Theorem 7.15, and the average
number of hops from an emulated test network with α = n connections
(an unrestricted clique underlay topology resulting in routing tables size
O(log n)). It is clear from this data that using Equation (7.5) for random
routing overestimates the number of hops required for finding nearest peers,
as explained by our routing table restrictions. Figure 7.4 plots the number
of usable routing table entries per peer on the x-axis (approximately logn),
and the average hops required to reach a nearest peer on the y-axis. When
plotted without scaling in Figure 7.4a, the lines seem to grow exponentially
with the peers in the routing table; that is because the network size grows
exponentially as the number of routing table entries increase.

7.4. Mathematical Evaluation 161

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40

A
v
g
.

H
op

s
to

a
N

ea
re

st
P

ee
r

Number of Peers in Routing Table

Equation (7.5)
Emulation

Theorem 7.15

(a) Default plot scale

1

10

100

1000

0 5 10 15 20 25 30 35 40

A
v
g
.

H
op

s
to

a
N

ea
re

st
P

ee
r

Number of Peers in Routing Table

Equation (7.5)
Emulation

Theorem 7.15

(b) Log scale

Fig. 7.4: Comparison of random routing from Equation (7.5) (clique
topology with n = α2 peers), constrained random routing (The-
orem 7.15) and the observed results from emulation. Our model
(Theorem 7.15) is more accurate than Equation (7.5).

162 7. R5N– Randomized Recursive Routing for Restricted Route Networks

In conclusion, imposing routing table constraints on random walk routing
reduces the average number of hops required to find a nearest peer. The
average number of hops required to find a nearest peer grows linearly with
the number of nearest peers in the network. The number of nearest peers in
the network is a direct result of the average number of random connections
(α). This is similar to the result found in previous analyses of random walks
on graphs [104]. Next, we analyze the Kademlia routing algorithm to show
expected number of hops for Kademlia routing.

7.4.1.2 Kademlia Routing

We now model the Kademlia routing algorithm to find the expected number
of hops to find a single nearest peer. Kademlia differs from random routing in
that at any given hop, either a nearest peer will be found, or the request will
be forwarded to a routing table entry with one or more additional matching
bits. Having a peer with a least one additional matching bit is guaranteed by
Definition 7.7 provided the current peer is not a nearest peer. This allows us
to deduce that at hop h, at least h bits (possibly more) are known to match
between the current peer’s identifier i, and the identifier being searched for,
l. This reduces the set of possible decisions that can be made at hop h
(only peers in higher buckets will be considered), which makes it more likely
(compared to random search) at any given next hop that a nearest peer will
be found, thus reducing the number of hops required overall.

This analysis is nothing novel; in fact, the original authors of the Kadem-
lia routing algorithm proved equivalent tight bounds [112] on the perfor-
mance of the Kademlia greedy routing algorithm as those we provide. How-
ever, their bounds were based on an unrestricted clique as the network un-
derlay topology. We provide the analysis in this section to show that we
can bound routing based only on α and Definition 7.7 instead of XOR as
the distance metric. For the case where α = n, our results are the same as
theirs.

Remark 7.16 (ε(z, α)). Given α total random connections at a peer, bucket
z will be empty with probability:

ε(z, α) := (1− ρz)α (7.18)

We perform an analysis of Kademlia routing in the average case. For
this analysis, we want to find the average number of hops we expect before
finding a nearest peer. We know at each hop that at least h bits match
between the current peer and the search key. However, we must account for
the possibility that one or more bits match between the random identifier
and the peer chosen for the next hop from the routing table. We again make

7.4. Mathematical Evaluation 163

the simplifying assumption that the expected number of buckets are full and
beyond that all buckets are empty.

Lemma 7.17 (Expected matching bits). Given a peer i, random identifier
l and |Ri(D(i, l))| = k, the expected greatest number of additional matching
bits between l and some j ∈ Ri(D(i, l)) is log2 k.

Proof of Lemma 7.17. The z term in ρz gives the expected number of bits
which match between two random identifiers. Since we know that there are
k entries in the bucket corresponding to the number of matching bits at the
current peer, we multiply ρz by k to account for each possible entry. By
setting k · ρz equal to 1 (the total probability) and solving for z in ρz, the
result is the number of bits that we expect will match between some peer in
the bucket. Hence:

k · 1

2

z

= 1

We divide both sides by k and take the log giving:

1

2

z

=
1

k
,

Note that k > 0.

⇔ z · log
1

2
= log

1

k

⇔ z =
log 1

k

log 1
2

⇔ z =
− log k

− log 2
= log2 k.

We can thus assume that on average log2 k bits match at each hop up
to the point when a nearest peer is found.

Remark 7.18. Therefore, at hop h the expected number of matching bits
is h · log2 k (because log2 k bits matched at each hop from 0 to h), up to
the point where the corresponding bucket for the number of matching bits is
empty, when routing terminates.

Now that we know the number of bits that should match at each hop, we
can combine that with our routing termination condition (where the bucket
which should be used for routing is empty) to find the number of hops we
expect requests to take in order to find a nearest peer utilizing the Kademlia
routing algorithm.

164 7. R5N– Randomized Recursive Routing for Restricted Route Networks

Lemma 7.19 (Expected number of hops). Given α average random con-
nections per peer and a bucket size of k, the expected number of hops required
to find a nearest peer using Kademlia routing is:

ι̂α =
log 1

2

(
k
α

)
log2 k

(7.19)

Proof: Expected number of hops.

A nearest peer is found when

Ri(d) = ∅

By Theorem 7.8 when:

d ≥ log 1
2

(
k

α

)
: Ri(d) = ∅.

So a nearest peer is found when:

h · log2 k ≥ log 1
2

(
k

α

)
.

Solving for h:

h · log2 k ≥ log 1
2

(
k

α

)
⇔ h ≥

log 1
2

(
k
α

)
log2 k

.

So:

ι̂α =
log 1

2

(
k
α

)
log2 k

This section provided an analysis of the Kademlia routing algorithm
given our “nearest peer” termination condition. We have shown that rout-
ing with Kademlia finds nearest peers in a number of hops logarithmic with
respect to α. This is the same bound as provided by the original Kademlia
analysis [112], except we do not assume that α = n, where n is the number
of total peers in the network. Routing using the Kademlia algorithm there-
fore grows logarithmically with the number of possible connections. This is
clearly more efficient in terms of the number of hops required than random
routing; although we explain in Section 7.4.3 why this is not necessarily
better for restricted-route networks. Before this explanation, we introduce
the analysis of R5N , so that we have three common points of comparison.

7.4. Mathematical Evaluation 165

7.4.1.3 R5N Routing

The routing function of R5N performs random routing for a certain num-
ber of hops and then switches to deterministic (Kademlia) routing after the
set number of hops. The number of random hops is controlled by the con-
vergence modifier c (which should be equal to T = log n). The Kademlia
routing phase should then be quite efficient at finding a nearest peer. These
two phases combine to give us a wider range of nearest peers in the network,
with fewer hops than completely random routing.

In the following analysis, we assume that if the random routing phase
of R5N does not reach a nearest peer, then the starting peer (at hop c) for
Kademlia routing is considered to be a uniformly selected random peer in the
network. We implicitly made this assumption with our Kademlia analysis,
as at the start of routing each peer identifier and search key are assumed
to be random. As we described in Section 7.4.1.1, due to our routing table
construction technique, there is some bias even in the random routing phase.
However, we do reach a peer that is as random as possible, and making the
assumption that we are at a random peer has little effect overall. We show
this empirically in Section 7.6. Finally, in this section we find the number of
hops to reach a nearest peer in the network; any bias in the random routing
phase will actually decrease the total number of hops required, so at worst
we overestimate the hops required.

Lemma 7.20. For R5N , the probability that a nearest peer is found at hop
h, given convergence modifier c is:

ϕ̄α(h) :=

{
ϕα(h) if h < c

ϕ̂α(h− c) otherwise
(7.20)

Proof : Lemma 7.20 can be proven as follows: Lemma 7.20 is the result of
a straightforward combination of the probability that a nearest peer is found
using the random walk routing algorithm, ϕα(h), for the first c hops; then
we use the probability of finding a nearest peer from the Kademlia routing
algorithm, ϕ̂α(h), for the second phase of routing for any hops where h ≥
c.

We formulate the expected number of hops for R5N routing by taking the
expected hops up to c, using the random routing formula from Theorem 7.15,
and then adding the expected number of hops from Kademlia style routing,
multiplied by the remaining probability that a nearest peer is not found
after c hops using randomized routing. This is expressed in the following
Theorem.

166 7. R5N– Randomized Recursive Routing for Restricted Route Networks

Theorem 7.21. For R5N routing, the expected number of hops to find a
nearest peer is:

ῑα :=

c∑
h=0

[h · ϕα(h)] + (1−
c∑
i=0

ϕ̀α(i)) · ι̂α (7.21)

Proof : Lemma 7.21: The first summation calculates the expected hops
that will be traversed using random routing in the first c steps.

The second summation, explained in the proof of Lemma 7.14, gives the
probability that one of the previous hops from h = 0 to h = c was a nearest
peer. We subtract this value from 1 to get the probability that none of the
peers encountered during the randomized routing phase were nearest peers.
We then multiply this probability by the expected number of hops for the
Kademlia routing phase, ι̂α, to get the expected number of hops which will
be routed in the Kademlia phase after the random phase.

These two separate expected hop values are then summed to give the
total expected hops for the combined routing of R5N .

The main function of the R5N routing algorithm that determines effi-
ciency is the Kademlia routing algorithm. As described in Section 7.4.1.2,
the hops required using Kademlia increase logarithmically with α. Because
we add on a constant, c, finding a nearest peer using R5N takes c+O(logα)
steps, regardless of the network size n (though clearly α can be no greater
than n). c is a small constant, logarithmic to the size of the network; typ-
ically O(log n) for our target network topologies. So the number of hops
required for R5N is O(log n) + O(logα). Because n must be greater than
or equal to α, the average number of hops to find a single nearest peer is
O(log n) +O(log n) = O(log n).

The previous three sections have provided an overview of the perfor-
mance of random, Kademlia and R5N routing in terms of the number of
hops required to find a single nearest peer. However, for any network other
than a clique, there will be more than one nearest peer in the network. We
may need to find more than a single nearest peer for each request; specifically
we need to encounter enough peers on PUT requests so that a subsequent
GET requests have a reasonable probability of success. The next section
provides details on the number of peers required to ensure success, and
compares the three routing algorithms based on the total number of hops
required for each request.

7.4.2 Total Hops – Routing with Sufficient Replication

The number of hops required to find a single nearest peer is the typical metric
for determining efficiency in unrestricted structured overlay networks. This

7.4. Mathematical Evaluation 167

is because in such networks, there will only be a single nearest peer in the
network, and storage and lookup can be correctly directed to this single
node for every search. However, as we have shown, restricted-route semi-
structured networks generally have more than one nearest peer for any given
key; all of which are the “correct” peers to handle requests for that key.

In such restricted underlay network topologies, ensuring success requires
replicating requests at multiple peers. One such replication strategy would
be to require PUT requests to replicate data at all nearest peers for a given
key, such that a GET request directed to any of these nearest peers would
succeed. The converse would also work; replicating PUT requests to only a
single nearest peer and GET requests at every nearest peer.

However, our replication strategy only needs to provide probabilistic suc-
cess guarantees because both PUT requests and GET requests are meant
to be repeated (PUT requests for replication/refresh and GET requests
for increasing success rates). Repeating PUT requests and periodically re-
freshing data is also necessary to combat natural churn in the network, so
that data is not lost when the peers storing it go off-line. Thus, we can be
even less stringent in our replication strategy. We can reduce the number
of total hops per request drastically by only requiring roughly a 50 percent
success rate for a GET request. By repeating GET requests, randomized
search can quickly increase the success rate (the probability of not finding
a replica decreases exponentially). According to the birthday paradox, we
can reach this desired success rate by replicating PUT requests at approx-

imately
√

n
α+1 nearest peers. Now that we have a target replication factor

to use for requests, we can move on to examining the total hops required for
each of the three routing algorithms already described.

We make the simplifying assumption that all three routing algorithms
are able to find distinct nearest peers up to the desired replication level.
As we discuss in the next section, this is certainly not always the case;
especially for Kademlia. However, it simplifies the comparison as far as
the total number of hops that would required for each routing algorithm.
Thus, we assume for all three routing algorithms that we need to replicate
PUT requests and GET requests at the same number of peers. Calculating
the total number of hops needed is a straightforward multiplication of the
required replicas with the following.

Remark 7.22. The probability of two independent requests for the same key

overlapping in at least one peer when each request encounters
√

n
α+1 distinct

nearest peers is:

1−


√

n
α+1∏
r=0

n
α+1 −

√
n

α+1 − r
n

α+1

 (7.22)

168 7. R5N– Randomized Recursive Routing for Restricted Route Networks

The birthday paradox provides the following remark:

Remark 7.23 (ς̂n,α Number of replicas). Given n
α+1 nearest peers in the

network, in order to ensure that two requests for the same key overlap on
average 50 percent of the time, the number of replica nearest peers required
is:

ς̂n,α ≥
√

n

α+ 1
(7.23)

7.4.2.1 Random Walk Routing — Total Hops

Remark 7.24 (Total Hops for Random Walk DHT Routing with Replica-
tion). The expected total number of hops required to find ς̂n,α nearest peers
using random routing in a network of n peers with α random connections is:

ι̃α · ς̂n,α (7.24)

The number of hops required to find a nearest peer using random routing
increases linearly as the number of nearest peers in the network decreases.
The network size n and the average number of connections α determine the
number of nearest peers in the network. Thus, the worst case complexity is
O(nα) for a single request to reach a nearest peer, and is therefore O(nα ·

√
n
α)

in order to provide the desired level of replication.

7.4.2.2 Kademlia Routing — Total Hops

Remark 7.25 (Total Hops for Kademlia Routing with Replication). The ex-
pected total number of hops required to find ς̂n,α nearest peers using Kademlia
routing in a network of n peers with α random connections is:

ι̂α · ς̂n,α (7.25)

Our evaluation of Kademlia (Section 7.4.1.2) when used in restricted-
route topologies led us to the determination that Kademlia is bound by
α, routing in O(logα) steps. Thus, the bound for routing to our desired
number of replicas is O(logα ·

√
n
α) for Kademlia.

However, using R-Kademlia, routing is unlikely to be able to reach the
desired number of replicas for many topologies. The first problem with
Kademlia is that each request for a key initiated from the same peer will
always take the same route. As such, whichever replicas are found for the
first request will be found with each subsequent request. Second, in sparse
topologies, two requests initiated from two distant (with regard to underlay
hops) peers may never overlap in any peers. Re-issuing requests can never
solve this problem, and increasing the replication level will only work up to
a point.

7.4. Mathematical Evaluation 169

For Kademlia routing, replication is entirely controlled by the initial
branching factor (the number of parallel requests sent out at hop h = 0).
This allows Kademlia routing to reach more than a single nearest peer.
However, each peer i has only an expected |Ri| ≤ α total connections,
and the initial branching factor cannot be greater than |Ri|. Thus, in the
average case, the initial branching factor cannot be greater than α (and
will usually be less due to routing table construction). It is also possible
that parallel routes may converge to the same paths, and thus to the same
nearest peer, further reducing the number of distinct nearest peers found.
Clearly, Kademlia routing cannot find more than |Ri| nearest peers for any
given request using Kademlia greedy routing. The result of this is that if the
number of nearest peers necessary to ensure requests will overlap is greater
than |Ri|, Kademlia will not be able to ensure success. We elaborate on
this problem, and show empirical results which demonstrate the problem
concretely in Section 7.6.

7.4.2.3 R5N Routing — Total Hops

Remark 7.26 (Total Hops for R5N Routing with Replication). The ex-
pected total number of hops required to find ς̂n,α nearest peers using R5N
routing in a network of n peers with α random initial connections is:

ῑα · ς̂n,α (7.26)

As we found with Kademlia, R5N is also bounded by the average number
of connections per peer, with a bound of O(logα), in the case of finding a
single nearest peer. This gives R5N the same bound on total hops per
request including replication as Kademlia, O(logα ·

√
n
α).

R5N is clearly less costly in terms of finding a single nearest peer and
multiple nearest peers than the random walk method of DHT routing. While
both random routing and R5N are able to reach enough nearest peers in the
network to satisfy replication requirements, R5N ’s efficiency makes it the
likely choice for restricted-route networks with structured routing tables.

While asymptotically equivalent, R5N operates better in sparsely con-
nected restricted-route topologies that Kademlia. This is because R5N does
not suffer from the replication problems inherent in Kademlia. First, R5N
is able to route to different nearest peers on subsequent requests, due to the
randomized phase of routing. Therefore, requests that fail in R5N can be
repeated and will eventually find enough nearest peers to reach the desired
replication level. This solves Kademlia’s problem of repeat requests always
encountering the same nearest peer.

Furthermore, R5N ’s replication strategy relies on requests branching
(see Section 7.3.6) at multiple peers along the request route, not just at the
initiating peer. This allows requests to reach more distinct nearest peers
than the total number of connections in the initiating peer’s routing table.

170 7. R5N– Randomized Recursive Routing for Restricted Route Networks

This allows peers with few connections to reach enough distinct nearest peers
in the network to satisfy replication requirements.

7.4.3 Comparison and Discussion

We have defined the number of replicas which are required to ensure success
of a GET request after a single previous PUT request in Lemma 7.23 in, on
average, 50 percent of cases. Random routing is more expensive than R5N
and Kademlia is unlikely to find enough distinct nearest peers in the network
to provide the appropriate level of replication. An important variable in
R5N routing is c, which we have previously mentioned should be equal to
T = log n. The next section details the reasoning behind this choice for c.

7.5 Markov Mixing Times

Our assumptions about the performance of R5N are based on being equally
likely to reach any of the nearest peers in the network to a given key. In order
to ensure that this holds (or that each nearest peer is as likely as possible,
given a specific network topology) we need to route for enough hops in
the random phase of routing so that the deterministic search “begins” at
a random peer. For this we need to make c large enough that we find a
random-as-possible peer in the network. In order to justify the c chosen we
turn to Markov mixing theory.

A Markov chain or Markov process is any set of transitions on some
state space where each transition depends only the current state. Typically
a Markov chain is denoted by M = (Ω,Ψ(i, j)) where Ω represents a state
space and Ψ(i, j) is the probability to move from i to j.

In terms of random routing on a graph G = (V,E) (where V is the set
of vertices and E the set of edges in G), the simple random walk is defined
as follows [4]:

Remark 7.27 (For any node i ∈ V with di as the degree of i).

Ψ(i, j) =

{
1
di

for (i, j) ∈ E,

0 otherwise.
(7.27)

It has been shown [104] that such a simple random walk for any con-
nected graph G has a stationary distribution, π, such that πΨ = π. Once
the stationary distribution is reached each state has the same probability of
being reached, regardless of how many more steps are taken. The number
of steps that it takes to reach such a stationary distribution is known as the
mixing time of the network. In terms of the simple random walk as described
above this is the number of hops a random walk must take in order to find
any peer with unchanging probability. For any graph G and any starting

7.6. Experimental Results 171

peer, once this number of hops is taken, a “random-as-possible” peer has
been found.

There has been much previous work on the mixing times [4,5,38,100,104,
106,185] of various graphs; so we base our analysis on those previous results.
Since we particularly want our routing algorithm to be comparable to other
DHT routing algorithms in highly structured networks, we concentrate our
analysis on Small-World and Erdős-Rényi random graphs. The observed
mixing time for any so called “fast-mixing graphs” [38] is O(log n) where
n is the size of the network. The Small-World topologies that we use in
our evaluation are known to be such fast-mixing graphs. The mixing time
of random Erdős-Rényi graphs has been shown to be between O(log n) and
O(log2 n) [15,67], depending on average node degree.

These mixing times, from empirical studies and mathematical evaluation,
are the basis for the c parameter we use in Section 7.6. As described in
Section 7.3.4, we plan to eventually use a heuristic network size estimate
to bound c in practice. However, in our testing we know the network size,
and can therefore precisely specify c, making our results more stable than
relying on the network size estimation. The focus of this thesis is on the
performance of R5N , and the network size estimation is tangential to that
evaluation. We use a value of c set to log n for our evaluation. Note that this
is the smallest mixing time for any of our graphs, so in a sense this provides
a worst case scenario for R5N . If the mixing time is actually higher than c,
requests will not be sufficiently randomized before becoming deterministic
and performance will suffer.

7.6 Experimental Results

In this section, the presented experiments were generally done using a net-
work of 2025 peers with a fixed replication level of r = 10 and a fixed network
size estimate parameter T = 4 ensuring that only the shape of the topology
and the node degree are parameters for the evaluation. There are two reasons
for the choice of a network size of 2025. First, approximately 2000 peers are
the largest number we could run on a single workstation7 concurrently being
used for other development tasks without significant performance degrada-
tion. Second, one of our Small-World topologies is based on a 2d-torus which
is best constructed as an m x m grid. In this case, we used m = 45, yielding a
total graph of size 2025. Results from large scale tests are presented in more
detail in Section 7.7. As shown in Figure 7.5, R-Kademlia peaks in our base
topologies with a total number of replicas somewhere around 10 (regardless
of r). It would be unfair (to R-Kademlia) to use a replication target much
higher than 10 as it would bias the results in favor of R5N . We showcase
the ability of R5N to achieve higher replication separately from the trials

7 Albeit a quad core Xeon with 12Gb of RAM.

172 7. R5N– Randomized Recursive Routing for Restricted Route Networks

which concern overall performance. The T parameter of 4 was chosen based
on experimental results using the R-Kademlia algorithm. When we allowed
an unrestricted topology and peers exchanged FIND PEER messages until
routing tables converged; the average number of hops for PUT and GET
requests was a bit under 4. Therefore, we expect such a topology to require
around 4 hops in ideal conditions. Using this ideal value of T = 4 again
gives the advantage to R-Kademlia; R5N may require more than 4 random
hops in order to reach a truly random peer in the network depending on the
topology. Failing to reach a random peer in the initial phase of routing is
detrimental to R5N as it reduces the number of nearest replicas that can
be reached over time. However, failing absolute knowledge of the topology
(which we do not assume peers have), each peer must make an estimate. In
order to reduce CPU utilization (and thus further limit scalability), we did
not use the distance vector transport from Section 7.3.2 to improve connec-
tivity; instead, we report results for a range of node degrees in the underlay
topology. These topologies encompass those achieved using the distance
vector transport on less well-connected topologies.

In this section, we will first report on some relevant specifics of our im-
plementation and the simulation environment, then discuss the R-Kademlia
implementation that we use as a point of reference to the original Kademlia
routing algorithm and finally present the result data.

7.6.1 Implementation Details

We have implemented our DHT routing algorithm on top of GNUnet, GNU’s
framework for secure P2P networking. GNUnet is extended by developing
new service processes that are responsible for particular functions, such as
handling P2P messages of a particular type. A typical GNUnet peer consists
of about a dozen different services that coordinate using IPC.

Due to the use of different processes, GNUnet services are largely isolated
against faulty behavior of other parts of the framework. The R5N DHT
service primarily uses link-encrypted communication between nodes as a
foundation. The P2P framework uses transport plugins to enable low-level
peer-to-peer communications. The framework typically communicates over
the Internet (e.g., TCP and UDP). The onion-routed fisheye distance vector
layer is implemented as another transport plugin. GNUnet uses 512-bit
hash codes and hence peer identities and keys for our implementation are
512-bits.

In order to improve performance in practice, our implementation di-
verges slightly from the idealized description of the replication mechanism
from Section 7.3.6. We continue to forward to Υr,h peers for h ≥ 2 · T
instead of just until h < T . On the other hand, PUT requests are only for-
warded until a nearest peer is found and GET requests are not forwarded if
a definitive result has been found. This heuristic accounts for path collisions

7.6. Experimental Results 173

and inaccuracies in the network size prediction. In our experiments, it still
meets the replication target r by a margin of error of a factor of 2 for large
networks.

As alluded to in Section 7.3.3, there are two types of generic routing
messages used by our implementation; outgoing requests and request re-
sults which are routed back to the initiator. The actual DHT request type
(currently GET, PUT and FIND PEER) is opaque inside of the generic
outgoing request and result messages; as a result, new request types can be
forwarded by peers even if they do not support the underlying request type.

Outgoing requests contain various message options, including the desired
replication level which is capped by a system-wide limit to prevent abuse.
Other message options specify how each peer that receives the request should
process it; for instance, FIND PEER messages can optionally be handled
by each peer along the path as opposed to the default behavior of being
handled only at locally nearest peers. This can help build routing tables
faster for a network that is under little load. Of course, there is no way to
enforce that intermediate peers do the proper handling (nor would we want
them to). For instance, if a PUT request is sent with the flag indicating the
data should be stored at every peer that receives the request; it makes sense
for peers to decide locally whether or not they choose to store the data.

7.6.2 Emulation Framework for Testing and Profiling

We have analyzed the expected performance of R5N using mathematical
analysis, simulation and emulation; but the experimental results presented
in this section use emulation. These are attained using the newly developed
testing and profiling framework described in detail in Chapter 6. Using this
framework, we can emulate tens of thousands of peers running the actual,
unmodified implementation. Many peers are emulated on a single host and
many such hosts can be combined to emulate larger networks. Perform-
ing large scale experiments is quite important for verifying that the routing
algorithm performs as desired with realistic numbers of peers, and for prov-
ing that our emulation framework operates as designed. However, the large
scale and small scale results largely agree; thus we concisely demonstrate our
overall results here, and give an overview of many more tests in Section 7.7.
The testing framework can generate various network underlay topologies,
emulate churn and evaluate the performance of the DHT and other appli-
cations. Complete details of the testing and emulation framework can be
found in Chapter 6.

174 7. R5N– Randomized Recursive Routing for Restricted Route Networks

7.6.3 R-Kademlia

We use a variant of Kademlia, which we call R-Kademlia8, as a point of
reference. The iterative routing in the original Kademlia design performs
so badly in a restricted-route topology that it is not useful for comparison.
While peers cannot connect arbitrarily, it would be possible to use special
RPC messages to instruct distant peers about routing choices. However,
doing so would increase message cost drastically and there is no way to guar-
antee distant peers behave as instructed. Therefore we have implemented
R-Kademlia, a recursive implementation of Kademlia that is otherwise as
faithful to the original design as possible.

The biggest problem with a recursive implementation of Kademlia is
that r concurrent requests are meant to be kept in flight until no closer
peers are found. R-Kademlia initiates r messages at the first peer, but
can only promise that typically r nearest peers will be found, as requests
terminate once a nearest peer is reached. If the topology is a clique, these
r peers will be the globally closest to the key. Of course, as described in
Section 7.3.6, finding a diverse set of nearest peers can be beneficial in sparse
topologies and R-Kademlia benefits from this as well. Peers in R-Kademlia
are responsible for attempting to forward requests only to peers that have
not encountered the request already. This is facilitated by a Bloom filter,
included with each request, which stores the peers previously encountered
on the route (as explained in 7.3.3). Peers also maintain a limited store of
recent requests; thus, if the same request reaches a peer twice, the Bloom
filters are merged. Using these techniques, we mimic the iterative routing
of Kademlia, with the exception that the initiator cannot control next-hop
decisions.

A small difference between Kademlia and R-Kademlia is in the way FIND
PEER requests are sent and handled. In Kademlia every peer that a FIND
PEER request reaches sends its full routing table back to the initiator. With
R-Kademlia, doing so is impractical because it might require a large amount
of (possibly redundant) information to be sent back down long query paths
to the origin. Instead, only locally closest peers send their full routing tables;
other peers on the path attempt a connection to the sender of the request
if the respective bucket in their own routing table is not full.

Also, peers are responsible for deciding when to stop sending FIND
PEER messages (based on diminishing returns). As another optimization,
FIND PEER messages include a Bloom filter containing peer identities that
the initiator is already connected to. This also reduces the amount of rout-
ing information sent from even the closest peer found. The reason we do
not include contact information in all route requests is a matter of efficiency.
The use of multiple transports in GNUnet means that a single peer may have
many different addresses; including this information (which connected peers

8 Not to be confused with [79], a recursive Kademlia implementation for simulation

7.6. Experimental Results 175

already know) would be redundant and impose an unnecessary burden on
peers.

7.6.4 Network Performance

For networks with few connections, the success rate of R5N is significantly
higher than it is for R-Kademlia. The worst case for R5N when compared
to R-Kademlia is hence an unrestricted underlay topology (clique). In this
case, both R-Kademlia and R5N will always find the data at the nearest peer
on the first attempt, but R5N is expected to take longer. Table 7.3 shows
the average number of hops taken for the two algorithms in this worst-case
scenario for R5N .

Size of Average hops per PUT Average hops per GET
network R-Kademlia R5N R-Kademlia R5N

100 2.70 ± 0.06 3.96 ± 0.06 2.54 ± 0.03 4.63 ± 0.17

250 3.06 ± 0.10 4.26 ± 0.10 3.10 ± 0.06 5.96 ± 0.27

500 3.08 ± 0.46 4.38 ± 0.45 3.38 ± 0.06 6.17 ± 1.14

750 3.19 ± 0.74 4.37 ± 0.83 3.50 ± 0.04 6.29 ± 1.04

1000 3.63 ± 0.07 4.47 ± 0.93 3.64 ± 0.04 7.29 ± 0.95

Tab. 7.3: Average hops for R-Kademlia and R5N in clique underlay
topologies of different sizes. As expected, R5N takes about
twice as many hops as R-Kademlia.

7.6.5 Replication

As described in Section 7.6.3, R-Kademlia attempts to achieve a certain
replication level r by sending r parallel requests from the initiating peer.
In contrast, R5N probabilistically chooses multiple peers to forward the
request to at each hop. Neither approach is able to precisely hit the specified
replication target; however, R5N produces the same number of replicas with
significantly fewer messages when compared to R-Kademlia (Figure 7.5) for
unrestricted and Small-World topologies, and about the same number of
total messages for the other two topologies. This is because sending out
many parallel requests from the same initial peer increases the chance that
paths will at times converge, while requests that branch at later hops are
likely to be further apart in the network and carry more information about
which peers have already been routed to and therefore overlap with lower
probability. We limit results to 30 total replicas or less, at higher replication
levels R5N outperforms R-Kademlia in all topologies9.

9 Due to R-Kademlia’s inability to create more replicas than connections.

176 7. R5N– Randomized Recursive Routing for Restricted Route Networks

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

T
o
ta

l
H

o
p
s

Number of Replicas

Hops Per Replica R-Kademlia
Kademlia LLS Regression

Hops Per Replica R5N
R5N LLS Regression

(a) Unrestricted

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

T
o
ta

l
H

o
p
s

Number of Replicas

Hops Per Replica R-Kademlia
Kademlia LLS Regression

Hops Per Replica R5N
R5N LLS Regression

(b) 75% NATed

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25

T
o
ta

l
H

o
p
s

Number of Replicas

Hops Per Replica R-Kademlia
Kademlia LLS Regression

Hops Per Replica R5N
R5N LLS Regression

(c) Small-World

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

T
o
ta

l
H

o
p
s

Number of Replicas

Hops Per Replica R-Kademlia
Kademlia LLS Regression

Hops Per Replica R5N
R5N LLS Regression

(d) Random Graph

Fig. 7.5: Average hops required per replica; varying replication level r.

Figure 7.6 compares the total hops required per replica when PUT re-
quests do not stop based on the condition where h > 2 · T . When viewed
in contrast to Figure 7.5, this motivates our implementation optimization
of ending PUT requests when a nearest peer is encountered. In this fig-
ure, we see R5N is more costly than R-Kademlia for the unrestricted and
Small-World underlay topologies, and about the same cost per-replica for
the InterNAT and Erdős-Rényi topologies. We see the same ability of R5N
to create more replicas than R-Kademlia, again due to R5N branching repli-
cation strategy. However, we are able to achieve similar levels of replication
with our optimization, and achieve better performance than R-Kademlia at
the same time. Another important note is that while stopping PUT requests
when the first nearest peer is encountered is cheaper than forwarding up to
h = 2 · T hops; both methods incur routing costs which increase linearly.
It is important that none of our routing includes costs which increase at a
greater rate.

Figure 7.7 compares the total number of replicas present in the network
after several rounds of PUT operations for the same key-value pair under the
assumption that replicas persist indefinitely at a peer. The figure shows the
number of replicas achieved by both R-Kademlia and R5N for the case where
either always the same peer performs the PUT operation or where the source

7.6. Experimental Results 177

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

T
o
ta

l
H

o
p
s

Number of Replicas

Hops Per Replica Max Hops
R5N Max Hops LLS Regression
Hops Per Replica R5N No Stop

R5N No Stop LLS Regression

(a) Unrestricted

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

T
o
ta

l
H

o
p
s

Number of Replicas

Hops Per Replica Max Hops
R5N Max Hops LLS Regression
Hops Per Replica R5N No Stop

R5N No Stop LLS Regression

(b) 75% NATed

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35

T
o
ta

l
H

o
p
s

Number of Replicas

Hops Per Replica Max Hops
R5N Max Hops LLS Regression
Hops Per Replica R5N No Stop

R5N No Stop LLS Regression

(c) Small-World

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35

T
o
ta

l
H

o
p
s

Number of Replicas

Hops Per Replica Max Hops
R5N Max Hops LLS Regression
Hops Per Replica R5N No Stop

R5N No Stop LLS Regression

(d) Random Graph

Fig. 7.6: Hops required per replica; varying replication level r. These
plots compare our normal forwarding behavior where requests
terminate once they’ve reached h > 2 · T to forwarding where
requests continue until they have reached a nearest peer.

of the PUT operation is chosen at random. If the same peer performs the
PUT operation using R-Kademlia, the PUT paths always converge at the
same nearest peers and hence the number of replicas remains constant. In
contrast, with R5N , the random routing phase achieves significantly higher
levels of replication over time. If PUT requests in R-Kademlia are started
at a random peer, the resulting replication levels are only slightly higher,
suggesting that the random routing phase in R5N achieves its mixing goal
(as described in Section 7.3.3).

178 7. R5N– Randomized Recursive Routing for Restricted Route Networks

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

R
e
p
lic

a
s
 P

re
s
e
n
t
in

 N
e
tw

o
rk

Number of Rounds

R5N Random
R-Kademlia Random

R5N Same
R-Kademlia Same

(a) Unrestricted

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

R
e
p
lic

a
s
 P

re
s
e
n
t
in

 N
e
tw

o
rk

Number of Rounds

R5N Random
R-Kademlia Random

R5N Same
R-Kademlia Same

(b) 75% NATed

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

R
e
p
lic

a
s
 P

re
s
e
n
t
in

 N
e
tw

o
rk

Number of Rounds

R5N Random
R-Kademlia Random

R5N Same
R-Kademlia Same

(c) Small-World

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

R
e
p
lic

a
s
 P

re
s
e
n
t
in

 N
e
tw

o
rk

Number of Rounds

R5N Random
R-Kademlia Random

R5N Same
R-Kademlia Same

(d) Random Graph

Fig. 7.7: Replication over time; same starting peer vs. randomized start-
ing peers.

7.6. Experimental Results 179

7.6.6 Malicious Peers

An additional goal for our routing algorithm is to perform well in the pres-
ence of malicious participants. Different types of attackers and attacks that
could be considered are detailed in Section 7.3.8. We consider two types
of malicious peers in our experimental analysis, the first being peers which
join the network and simply passively drop all requests that are received.
This type of adversary represents the simplest, and least detrimental kind of
attack on any network. Peers may drop requests due to bandwidth restric-
tions, implementation bugs or näıve attacks. Thus this adversary does not
target specific peers or identifiers in the network, and while not the most
realistic type of attacker, it does provide insight into how the respective algo-
rithms cope with possibly benevolent misbehaving peers. For deterministic
algorithms, like R-Kademlia, this kind of attack is already quite detrimen-
tal to overall operation: any request that traverses any of the malicious
peers fails. Redundancy (r-replication) and shorter paths compared to R5N
barely reduce the effectiveness of the attack.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) Unrestricted

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) 75% NATed

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(c) Small-World

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(d) Random Graph

Fig. 7.8: Percentage of malicious peers present at random locations in
a network with 2025 peers vs. percentage of successful GET
requests.

Figure 7.8 shows the impact of this type of adversary on the performance
of the respective routing algorithms, for the case where the adversary does

180 7. R5N– Randomized Recursive Routing for Restricted Route Networks

not attempt to eclipse a particular key but simply controls a random set of
nodes and disrupts as many operations as possible (by dropping all requests).
Figure 7.8 provides success rates for GET operations in a testbed with
various topologies generated to have 30k edges. The lines represent the
average success rate for GET operations initiated at peers selected uniformly
at random in each round. These GET operations follow a number of rounds
of PUT operations which are initiated at the same randomly chosen peer in
each round. Later GET rounds in R5N have higher success rates because
additional rounds of PUT requests increase availability for R5N as more
replicas are inserted (as depicted in Figure 7.7). The benefit of R5N over
R-Kademlia is clearly seen in the randomized underlay topologies; while
the unrestricted topologies are less affected by this type of attack for both
R-Kademlia and R5N .

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) Unrestricted

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) 75% NATed

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(c) Small-World

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(d) Random Graph

Fig. 7.9: Percentage of malicious peers present at sybil locations in a
network with 2025 peers vs. percentage of successful GET
requests.

Finally, we consider an attacker controlling multiple nodes executing an
Eclipse attack, that is, trying to prevent access to a particular key. The
basic behavior of the malicious nodes is the same as in the previous case:
they simply drop all GET and PUT requests. The key difference is that this
time the µ malicious nodes are not placed into the network at random but at

7.6. Experimental Results 181

the µ peers that are also closest to the key. This represents an attacker able
to perform a Sybil attack with free choice of identifier and node placement
in a restricted-route topology — the strongest type of Sybil attacker we can
imagine. This kind of attack is known to have a serious impact on Kademlia-
based DHTs [170]. These Sybil peers do not “collude” in the strictest sense;
as they do not actively coordinate during the attack. However, there is no
benefit to such collusion, as we are modeling an attacker preventing access
to a specific key. Colluding to forward requests to other known Sybil peers
at each hop is not the defined goal of this attack.

R5N does not have any explicit protections against Sybil attacks: the
network is open and allows any peer to join without requiring an existing
social network or certification by an authority. Furthermore, in our imple-
mentation, a peer’s place in the key space is simply derived from the hash
of its public key and hence an adversary can assign itself an identifier close
to the desired key with relatively little effort. While additional protections
against Sybil attacks could be added to the basic design, Figure 7.9 shows
that they may often be unnecessary. As rounds of PUT requests increase the
number of replicas in the network, R5N yields much higher success rates.
As expected, R5N outperforms R-Kademlia; for R-Kademlia, a relatively
small proportion of Sybil peers is able to drastically curtail performance,
and repeating rounds of PUT and GET requests provides no improvement.
Unsurprisingly, the worst results for both routing algorithms are seen in the
unrestricted and InterNAT topologies. In these two topologies, routing ta-
bles are well populated, reducing the total number of nearest peers in the
network and making the Sybils more effective at blocking access to the par-
ticular key being searched for. Also, R5N is especially strong in the case of
a Sybil attack on the Small-World underlay topology, where even the first
round of GET requests succeeds with a much higher rate than R-Kademlia
with only a few Sybil nodes.

We have shown that R5N provides comparable or better replication (de-
pending on topology) with the same or less cost than R-Kademlia. Thanks
to this replication and R5N unique routing strategy, R5N is able to achieve
performance on par with R-Kademlia in well connected topologies and vastly
better performance in restricted-route topologies. Furthermore, the brief ex-
perimental results under both a very weak and very strong attacker scenario
show that R5N is able to cope with malicious participants in the network,
especially in restricted-route networks where R-Kademlia is prone to failure.
The next section provides a selection of other experimental data to further
demonstrate the ability of R5N under the very strong attacker, and at larger
scale than the data we have presented so far.

182 7. R5N– Randomized Recursive Routing for Restricted Route Networks

7.7 Extended Data

This section contains interesting data which we collected during the course
of this research over a time span of approximately 6 months using multiple
desktop workstations, a 16 core server, and a 32 machine cluster. Most of the
results in this section are presented showing networks with various topologies
under the worst-case Sybil attack. We do this for two main reasons; first,
data without malicious participants is basically a single data point10 which
is included on attack graphs as the area with 0 malicious participants. Sec-
ond, the weak malicious “dropper” adversary is rather uninteresting (and an
unlikely attack scenario), a very large proportion of peers must be dropping
requests before the effect can be seen.

Another important aspect of the data we present here is effect of average
node degree on R-Kademlia and R5N routing. Our previous results assumed
networks with a rather low total number of connections, around 30k in
a network of size 2025. For the same small scale network size, we vary
the number of connections to demonstrate how well R5N and R-Kademlia
operate with varying node degrees in the underlay and overlay topologies.
These results are shown in Section 7.7.1.

A very important aspect of DHTs in particular, and P2P networks in
general, is scalability. Thus far we have made the claim that R5N should
be scalable under the assumption that because R5N uses Kademlia-style
routing and routing tables, R5N should scale as well as Kademlia does.
However, it is always important to verify this via experimental results. This
is the topic of Section 7.7.2.

Furthermore, for all of the various topologies (even those where the over-
lay topology is structured via FIND PEER requests), the exact same topol-
ogy is used for all trials that are shown in a figure. This is accomplished via
the topology capture and recreation functionality enabled by our emulation
framework as described in Chapter 6. As such, the results only reflect differ-
ences in the routing algorithms themselves, and not variations of topology
setup. Finally, each data point on each graph is an average of at minimum
five trials, and includes standard deviations whenever relevant.

7.7.1 Small Scale Results

The majority of tests that we ran over the course of our evaluation of R5N
were at the same scale as those results presented previously, 2025 peers in
various topologies. There are many different options we could specify for
these tests, as detailed in Chapter 6, most of which we tested independently
under specific scenarios to arrive at the parameters we then used in our
more extensive testing. For instance, as discussed in Section 7.6, we fixed
the values of c = T = log n and r = 10 in order to enable a fair comparison

10 albeit for both routing algorithms with standard deviations

7.7. Extended Data 183

between R5N and R-Kademlia. The data shown in this section follows this
convention as well, unless otherwise explicitly noted as a variable which is
under examination for the specific section.

7.7.1.1 Unrestricted Topology with Sybil attack – Varying α

In this section, we view the effects of the total number of connections on
routing performance in an unrestricted topology with Sybil attackers. The
topology construction for these trials is rather unique; we allowed an un-
restricted underlay topology, and allowed all peers to send FIND PEER
requests up to the point that the total number of desired connections is
reached. The intuition behind this topology construction is that networks
with high rates of churn or where many new peers enter the network may
be unrestricted at the underlay level, but not well connected because all
peers in the network have not been around long enough for routing tables
to converge. This is actually a likely scenario, given that multiple rounds of
FIND PEER requests are required for convergence even in a static topology.

We would expect that, ignoring the effects of Sybil attackers in the net-
work, as more connections are allowed in the final topology both R-Kademlia
and R5N should show increased success in requests. This is precisely the im-
pact we see in the results shown in Figure 7.10; in Figure 7.10a R-Kademlia
achieves only a 40 percent success rate without attackers, which increases
up to nearly 100 percent in Figures 7.10c and 7.10d. R5N achieves a higher
success rate than R-Kademlia in the least well connected topology shown in
Figure 7.10a, reaching up to 80 percent of request success in the 10th round,
compared to R-Kademlia’s 40 percent. With a higher level of connectivity,
both R-Kademlia and R5N are comparable without the presence of Sybil
peers.

When taking the Sybil attack peers into account, we can see that in all of
these unrestricted topologies performance decreases drastically as more Sybil
peers are added to the network. This is to be expected, as the number of
nearest peers decreases as routing tables become more sufficiently populated.
Encouragingly, R5N does achieve better performance in the 5th and 10th

rounds, even when there are many Sybil attackers present in the network.
The ability of R5N to combat the Sybil attack decreases as the level of
connectivity increases, again because the number of replicas in the network
gets too low for R5N to replicate at a sufficient number of peers.

The result from this data is that R5N may be a suitable choice for
networks with very high rates of churn, or those that are restricted to ap-
proximately log n total connections at any one time. Without malicious
peers, R5N is able to achieve good performance even while a network is
converging via FIND PEER requests to the optimal overlay topology. Also,
networks with Sybil attackers may benefit from using R5N as well, more so
if the network also happens to have high churn rates.

184 7. R5N– Randomized Recursive Routing for Restricted Route Networks

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) 20k edges, log n connections
per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) 30k edges, 1.5 log n connec-
tions per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(c) 45k edges, 2 log n connections
per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(d) 60k edges, 3 log n connections
per peer

Fig. 7.10: Sybil attack in 2025 peer network with unrestricted topology;
varying α. Kademlia and R5N are comparable in the first
round; R5N has higher success rates in later rounds. GET
requests were started at randomly chosen peers in each round,
PUT requests were initiated from the same randomly chosen
peer in each round.

7.7.1.2 InterNAT Topology with Sybil Attack – Varying α

In this section, we analyze the total number of connections in an InterNAT
topology on R5N and R-Kademlia routing. Incorporated into this analysis
are the effects Sybil attackers on those topologies. To create these topologies,
we imposed the NAT restrictions of a certain percentage of peers that were
unrestricted; the remaining peers could only connect in the underlay to those
unrestricted peers. We then had peers send FIND PEER messages until the
topology stabilized (sending more FIND PEER requests no longer increased
the number of connections). When restricting 50 percent or less peers in this
way, the results are virtually identical to those for a completely unrestricted
topology. This is because there are more than enough peers to populate
Kademlia routing tables, the only effect is that buckets for half of the peers
are slightly less full. Therefore, we show results from various levels of NAT

7.7. Extended Data 185

restriction upwards from 50 percent of peers NATed.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) 50% NATed, 75k edges,
3 1
2 log n connections per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) 65% NATed, 60k edges, 3 log n
connections per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(c) 70% NATed, 52k edges,
2 1
2 log n connections per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(d) 75% NATed, 45k edges, 2 log n
connections per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(e) 80% NATed, 36k edges,
1 1
2 log n connections per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(f) 90% NATed, 20k edges, log n
connections per peer

Fig. 7.11: Small scale 2025 peer network, Sybil peers, NAT restricted
topologies, varying percentages of peers NATed. All PUT
requests were initiated at the same randomly chosen peers,
while GET requests are performed at random starting peers
in each round.

Figure 7.11 shows results from six of these NATed topologies, ranging
from 50 to 90 percent of peers NATed. A first interesting result of these

186 7. R5N– Randomized Recursive Routing for Restricted Route Networks

topologies is the number of total connections in the network, which decreases
significantly as more and more peers are restricted. In Figure 7.11f, there
are only 20k total connections in the network. While we give a per-peer
estimate of connections in each of the figures, it should be noted that the
effect of the NAT restrictions means that the distribution of connections
is not spread out equally over the peers. The unrestricted peers generally
have many more connections in their (properly filled) routing tables, and
the NATed peers have few connections.

Without malicious peers, we see that R-Kademlia and R5N perform
comparably in these NAT topologies. R-Kademlia seems to have a slightly
higher success rate than R5N , especially in the first round of R5N GET
requests. Both algorithms fare worse as the percentage of NATed peers
increase, without considering Sybil peers.

The Sybil attack is clearly particularly devastating on this topology, both
because of the high level of connectivity (with the lower NAT percentages)
and because of the lopsided distribution of connections into the routing
tables of unrestricted peers. Even so, R5N still achieves higher rates of
success after 5 and 10 rounds of PUT requests than R-Kademlia. Clearly, for
the networks with more NATed peers the increase in performance of R5N in
subsequent rounds becomes more pronounced; however, the baseline success
rate starts out lower. The conclusion we make here is that for InterNAT
topologies, neither routing algorithm works particularly well for a network
under Sybil attack, but R5N does achieve improvement, especially in highly
restricted topologies.

7.7.1.3 Small-World Topology with Sybil attack – Varying α

This section details the effects of Sybil attacks on Small-World networks
with varying degrees of connectivity in the underlay topology. Specifically, a
parameter which controls the average node degree in the underlay topology
generator is adjusted to create the desired topology. In our results thus
far, Small-World networks have shown the best performance for R5N . Of
course, this is exactly as we had expected; the short paths between peers
enables our random routing phase to find sufficiently randomized peers in the
network. The relatively low average node degree in these networks means
that there are a large number of nearest peers to any random key. This
allows us to achieve our required level of replication, and thus provide better
performance in the network. The question is, at what point (insofar as the
average connectivity in the topology) do the advantages for R5N start to
disappear?

Figure 7.12 shows results from Small-World topologies ranging from aver-
age per-peer connections of log n in Figure 7.12a up to 4 log n in Figure 7.12f.
We believe this covers almost the entire range of likely Small-World net-
works; higher levels of connectivity give clique-like performance in routing.

7.7. Extended Data 187

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) 25k edges, log n connections
per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) 45k edges, 2 log n connections
per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(c) 56k edges, 2.5 log n connec-
tions per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(d) 65k edges, 3 log n connections
per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(e) 73k edges, 3.5 log n connec-
tions per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(f) 85k edges, 4 log n connections
per peer

Fig. 7.12: Sybil attacks in 2025 peer networks, Small-World topologies
with varying α. R5N outperforms Kademlia consistently, re-
gardless of the number of Sybil peers; R5N also has higher
success rates in later rounds. GET requests were started at
randomly chosen peers in each round, PUT requests were ini-
tiated from the same randomly chosen peer in each round.

Ignoring the impact of the Sybil attack for the time being, we can see
that R-Kademlia has poor performance in all but the very dense topologies.

188 7. R5N– Randomized Recursive Routing for Restricted Route Networks

Figure 7.12a shows a success rate of less than 30 percent for R-Kademlia
without malicious peers, whereas R5N has close to a 70 percent success rate
in the first round, and up to 90 percent success in later rounds. R-Kademlia
performance does not reach the level of R5N in these topologies until there
are 85k total connections, as shown in Figure 7.12f.

R5N truly shines when we look at the results of the Sybil attack on the
network in these Small-World topologies. The previously discussed results
for unrestricted (Section 7.7.1.1) and InterNAT (Section 7.7.1.2) showed
only small improvement for R5N over R-Kademlia when under Sybil attack.
Figure 7.12 shows that the improvement is more pronounced for Small-World
topologies. While in the first round, the R5N results are close to that
of R-Kademlia, the 5th and 10th rounds show marked improvement over
R-Kademlia. Perhaps the most drastic example is shown in Figure 7.12a
where R5N in the 10th rounds consistently has 4 times the success rate of R-
Kademlia. Comparing the overall shape of the R5N curves from Figure 7.12
to Figures 7.10 and 7.11 reveals that with R5N the drop-off as more Sybil
peers are added is less pronounced. This indicates that in a Small-World
topology, R5N is a particularly good choice over Kademlia for networks
which may need to withstand Sybil attacks.

7.7.1.4 Erdős-Rényi Topology with Sybil attack – Varying α

In this section, we show the impact of the total number of connections
in an Erdős-Rényi topology on R5N and R-Kademlia routing while also
examining the effects of malicious Sybils. In general, for random topologies
with a greater number of connections we expect that R-Kademlia will achieve
higher success rates than in topologies with fewer connections. Obviously,
Kademlia routing tables will be more full, there will be fewer nearest peers
in the network, and R-Kademlia should be able to find a sufficient number
of nearest peers to ensure success.

Figure 7.13 shows the results from Erdős-Rényi topologies with vary-
ing average connections from log n (Figure 7.13a) to approximately 21

2 log n
(Figure 7.13d). The results for R-Kademlia are as we expected; with only
log n connections per peer, we see in Figure 7.13a that less than 80 percent
of requests are successful for R-Kademlia. As the average number of connec-
tions increases, we see rapid improvement in R-Kademlia success rates up
to nearly 100 percent in Figure 7.13d. Without considering attackers, R5N
follows the same trend, achieving around an 85 percent success rate with
log n average connections and nearly 100 percent with 21

2 log n connections.

The similarity between R5N and R-Kademlia ends upon consideration of
the malicious Sybils in the network. In all of the four Erdős-Rényi topologies
shown in Figure 7.13, regardless of the total number of connections, R5N
outperforms R-Kademlia. R5N also has continued improvement in the 5th

and 10th rounds, while R-Kademlia of course cannot improve in these subse-

7.7. Extended Data 189

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) 20k edges, log n connections
per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) 30k edges, 1 1
2 log n connec-

tions per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(c) 40k edges, 2 log n connections
per peer

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(d) 55k edges, 2 1
2 log n connec-

tions per peer

Fig. 7.13: GET requests were started at randomly chosen peers in each
round, PUT requests were initiated from the same randomly
chosen peer in each round.

quent rounds. We also see what will become a trend in many of our various
topologies; as the number of connections per peer increases, the Sybil at-
tack becomes more and more effective against R5N . This allows less well
connected topologies to provide better performance than better connected
topologies under a Sybil attack with specific number of Sybil peers present.

This concludes what we believe to be the most interesting results from
our small scale testing. For the most part, the outcome of the trials are
what we expected. Specifically, in well connected topologies (greater than
approximately 3 log n connections per peer), R-Kademlia has enough con-
nections to perform efficient routing. However, R-Kademlia is incredibly
vulnerable to Sybil attacks, with the success rates plummeting to nearly 0
with a small number of attacking peers in the network. R5N achieves high
success rates in both well connected and sparse topologies, and gives some
protection against Sybil attacks; certainly better than that provided by R-

190 7. R5N– Randomized Recursive Routing for Restricted Route Networks

Kademlia. R5N performs particularly well in Small-World topologies due
to their unique properties combined with R5N ’s replication strategy and
randomized routing design.

7.7.2 Large Scale Tests

In addition to running small scale tests, which show that R5N performs as
we expected in myriad topologies and attacker scenarios, we would also like
to know that R5N is able to scale as well as Kademlia. This requires testing
R5N in larger networks of peers. However, while our emulation framework
is scalable (as discussed in Chapter 6), larger scale tests invariably take
more time to execute than small scale tests. The bottleneck for emulations
is typically the total number of connections in the network, as connecting
peers into a desired topology is the most time consuming task the framework
must perform. As an example, a 2025 peer emulation including all phases
of DHT testing from peer startup to peer shutdown can run on a single
desktop in about 30 minutes. The same test with 40,000 peers requires use
of the full cluster at our disposal of 32 hosts and takes about 3 hours.

Furthermore, at large scale, it is unrealistic to gather full routing details
including every hop of every message. Therefore, in our large scale tests, we
limit results to the highest level, specifically the number of GET requests
that are ultimately successful. For these reasons, we have limited our large
scale testing to those scenarios which we thought were most interesting, or
where the small scale results were surprising. To test both R5N and R-
Kademlia exhaustively in all scenarios would simply take too much time,
and waste the resources of CPU time and energy on tests with obvious re-
sults. One notably absent topology from all of the large scale tests is the
unrestricted clique topology. There are two reasons for this; first, due to
operating system limitation it is simply impossible to achieve the number
of connections required for even “small” networks of approximately 2,000
peers. Second, we expect that R-Kademlia will always outperform R5N in
these topologies as far as efficiency is concerned. Also, as our GNUnet DHT
implementation requires many nearest peers in order to achieve replication,
topologies with few (1, in the worst case) nearest peers and Sybil attackers
will perform disastrously (as we saw in Section 7.7.1.1). Again, these topolo-
gies are of limited interest to us at this time, as our focus is on restricted
route topologies with many replicas for any given random identifier.

7.7.2.1 5,000 Peers

Our small scale tests were run with 2,025 peers, for the reasons described
earlier in this chapter. Since we expect performance to degrade at a loga-
rithmic pace, we increase the network size exponentially, starting with 5,000.
This is obviously more than twice 2,025, but since 2,025 peers was a rather

7.7. Extended Data 191

peculiar number in the first place, we decided to use a more obvious choice
for larger scale tests. Thus, in this section we show interesting results from
a 5,000 peer network.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) Erdős-Rényi topology; 283k
edges, 4 1

2 log n connections per
peer

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) NAT topology; 130k edges,
2 log n connections per peer

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(c) Small-World topology; 80k
edges, log n connections per
peer

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(d) Small-World topology; 160k
edges, 2 1

2 log n connections
per peer

Fig. 7.14: Results from interesting 5,000 peer tests with malicious drop-
pers. PUT requests were initiated from the same randomly
chosen peer in each round, GET requests were started at ran-
domly chosen peers in each round.

Figure 7.14 shows a selection of results from multiple topologies with
the inclusion of malicious dropper peers. An obvious, and expected, result
is that the inclusion of malicious droppers has little effect on routing in any
of the topologies. This stands to reason due to the large number of nearest
peers in the network, and the small number of “dumb” malicious peers
which only drop requests. This does however bolster the small scale result
that mis-configured peers or those unable to participate in the DHT should
have little impact on the overall success of queries. An unexpected result is
shown in Figure 7.14a, which shows a well connected (4 · log n connections
per peer) random topology. In the small scale tests, such well connected
random topologies showed R-Kademlia outperforming R5N . However, as

192 7. R5N– Randomized Recursive Routing for Restricted Route Networks

we increase the total number of peers in the network, this effect seems to
decrease. This is likely because even with only twice as many peers, the
number of connections possible in the network increases by a factor of 6.
Thus, the required connections to enable R-Kademlia routing are less likely
to be made.

In contrast to this result, with the InterNAT topology at the same scale,
even with fewer total connections (2 · log n per peer) we see the same re-
sult that we saw in small scale tests. In particular, Figure 7.14b shows R-
Kademlia consistently outperforming R5N . This is because while there are
fewer connections allowed, the InterNAT topology still allows peers to choose
which connections to even attempt (via FIND PEER requests). Therefore
the routing tables achieve better diversity than with completely random
connections, as in Figure 7.14a.

The best results for R5N are seen in Figures 7.14c and 7.14d. These
also show the same number of malicious dropping peers, only this time con-
nected in Small-World topologies with varying average total connections
per peer. Figure 7.14c shows a Small-World topology with on average only
log n connections per peer. R-Kademlia is only able to achieve roughly a
20 percent success rate in this sparse topology, R5N achieves approximately
twice this success rate even with only a single round of PUT requests issued.
However, the real benefit of R5N is seen in rounds 5 and 10, where approx-
imately 90 percent of GET requests succeed without malicious peers, and
this only decreases to around 80 percent in the presence of 300 malicious
peers. Figure 7.14d shows a Small-World topology with double the total
connections as Figure 7.14c. For R-Kademlia, this equates to a doubling
of the initial success rate from Figure 7.14d to about 40 percent; R5N sees
less improvement, with between 60 and 80 percent success rates in the first
round. However, in rounds 5 and 10, R5N achieves over 90 percent success
for GET requests, up to 200 malicious droppers in the network. The clear
result of these tests are that R5N clearly outperforms R-Kademlia in a 5,000
peer Small-World network, whether there are peers dropping requests or all
peers are behaving properly. The results for the Erdős-Rényi topology are
different from the small scale tests, but unsurprisingly.

Figure 7.15 shows results of a Sybil attack on the 5,000 peer network. As
would be expected, the more randomized the topology, the better the defense
against the Sybil attack. As explained with Figure 7.14, even though the
Erdős-Rényi topology has a greater number of connections, it is less suited
to Kademlia style routing. Therefore, comparing between Figure 7.15a and
Figure 7.15b, we see that the Erdős-Rényi topology better resists the Sybil
attack. However, in both the Erdős-Rényi and InterNAT topologies, the
Sybil attack remains quite detrimental to overall GET request success rates.

The impact of the Sybil attack on the network topologies shown in Fig-
ures 7.15a and 7.15b is sharply contrasted with the results in Figures 7.15c
and 7.15d. In both of these figures, the performance of the network suffers

7.7. Extended Data 193

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) Erdős-Rényi topology; 283k
edges, 4 1

2 log n connections per
peer)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) NAT topology; 130k edges,
2 log n connections per peer

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(c) Small-World topology; 80k
edges, log n connections per
peer

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(d) Small-World topology; 160k
edges, 2 1

2 log n connections
per peer

Fig. 7.15: Results from interesting 5,000 peer tests with malicious Sybil
peers. PUT requests were initiated from the same randomly
chosen peer in each round, GET requests were started at ran-
domly chosen peers in each round.

significantly less from the addition of Sybil peers. As with the malicious
dropper tests, R5N outperforms R-Kademlia even in the first round. This
improvement is further increased in the 5th and 10th rounds. While the Sybil
attacks remain detrimental to the network regardless of routing algorithm,
it is clear that R5N may be usable even in the presence of a large number
of Sybil attackers. Another aspect of the Small-World topologies that is
revealed by comparing Figures 7.15c and 7.15d is the trade-off between the
initial performance of the network (without malicious peers) and the im-
pact of malicious peers on the network. Specifically, in the better connected
topology seen in Figure 7.15d the initial success rate is higher than in Fig-
ure 7.15c, but success rates decrease faster as Sybil peers are added, with a
success rate roughly half that of Figure 7.15c with 300 malicious Sybil peers
(the maximum shown) in the network. The conclusion from this is that
better performance may be achieved in sparse networks under Sybil attack

194 7. R5N– Randomized Recursive Routing for Restricted Route Networks

than densely connected topologies.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40

T
o
ta

l
H

o
p
s

Number of Replicas

PUT Hops Per Replica (R-Kademlia)
Kademlia LLS Regression

PUT Hops Per Replica (R5N)
R5N LLS Regression

(a) Erdős-Rényi topology; 283k
edges, 4 log n connections per
peer

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

T
o
ta

l
H

o
p
s

Number of Replicas

PUT Hops Per Replica (R-Kademlia)
Kademlia LLS Regression

PUT Hops Per Replica (R5N)
R5N LLS Regression

(b) InterNAT topology; 130k
edges, 2 log n connections per
peer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35

T
o
ta

l
H

o
p
s

Number of Replicas

PUT Hops Per Replica (R-Kademlia)
Kademlia LLS Regression

PUT Hops Per Replica (R5N)
R5N LLS Regression

(c) Small-World topology; 80k
edges, log n connections per
peer

Fig. 7.16: Average hops required per replica; varying replication level r.

Figure 7.16 shows the hops required per replica for 5,000 peer topolo-
gies given in this section, in the same manner as shown in Figure 7.5. The
comparison is again between R5N and R-Kademlia, and plots the average
total hops required for each nearest peer found for PUT requests. The x-
axis plots the total number nearest peers reached on average for a round
of PUT requests. We plot this against the total number of hops required
on average on the y-axis. The results are virtually identical to the smaller
scale tests; both algorithms are very similar in the total hops required per
replica, and both seem to increase linearly. Linearity is important so that
we ensure that achieving the next replica is not more costly than the last.
The same problem with R-Kademlia is present in these larger scale tests as
well, that R-Kademlia is only able to find nearest peers up to a certain point
due to the average number of connections and convergence of multiple paths
to the same nearest peer. Even in the well connected Erdős-Rényi topol-
ogy, R-Kademlia can reach less than 20 nearest peers. In the Small-World

7.7. Extended Data 195

topology, R-Kademlia can only reach around 10 nearest peers. R-Kademlia
performs best in the InterNAT topology (due to it being the most highly
structured overlay topology), reaching up to 20 nearest peers. Conversely,
R5N performs worst in this topology, as we would expect. However, in all
topologies, R5N is able to reach a greater total number of nearest peers,
showing that routing randomization can achieve a higher number of repli-
cas in virtually any restricted-route topology than R-Kademlia is able to.
This higher number of nearest peers can be found without decreasing per-
formance, seen in the similarity of the number of hops required for the two
algorithms.

7.7.2.2 10,000 Peers

We now double the total number of peers in the topologies from 5,000 to
10,000. Due to the time required to run these tests as outlined in the be-
ginning of this section, we limit these results to Small-World topologies.
We believe that the InterNAT topologies can be safely assumed to con-
tinue to outperform R5N due to their closeness to completely unrestricted
topologies. We also believe that higher levels of replication can still be
achieved using R5N even in InterNAT topologies where only a portion of
users are restricted. These increased levels of replication can increase re-
silience to failures and malicious peers in the form of dropping or Sybil
attacks. Nonetheless, constructing InterNAT topologies at larger scales is
increasingly difficult due to the large size of blacklists and whitelists required
to be read into memory at each peer. As such, we continue our results with
tests on randomized Small-World topologies.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) Small-World topology, 180k
edges, log n connections per
peer

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) Small-World topology, 280k
edges, 2 log n connections per
peer

Fig. 7.17: Results from Small-World topologies with malicious Sybil
peers. PUT requests were initiated from the same randomly
chosen peer in each round, GET requests were started at ran-
domly chosen peers in each round.

196 7. R5N– Randomized Recursive Routing for Restricted Route Networks

The plots in Figure 7.17 show a 10,000 peer network with approximately
log n and 2 log n connections per peer. Results are plotted with 0 to 600
Sybil attackers present in the network. The results follow almost exactly
what we would expect after seeing the small scale and 5,000 peer results.
We see that R-Kademlia achieves very low success rates, around 10 percent
in Figure 7.17a and 20 percent in Figure 7.17b. This is roughly half the
rate of success achieved in Figure 7.15, a 5,000 peer network with the same
proportion of connections. Again, R5N achieves nearly twice the success
rate of R-Kademlia, even after only a single round of PUT requests. R5N
continues to improve with more rounds of PUT requests, achieving success
rates around 80 percent in Figure 7.17a and over 90 percent in Figure 7.17b,
when there are no Sybil attackers. Again, the Small-World network with
more connections achieves better initial performance, but is also more sus-
ceptible to the Sybil attack, with Figure 7.17a showing a higher success
rate when more than 2 percent (200) of the peers in the network are Sybil
attackers.

7.7.2.3 20,000 Peers

We again double the number of peers we are emulating for a total of 20,000
peers. As with the 10,000 peer tests, we concentrate on random topologies.
For these tests, we concentrate on well connected random topologies, with
approximately 3 log n connections per peer. As observed in the small scale
tests, with this many connections in the Erdős-Rényi topology R-Kademlia
was able to beat R5N in success rates of GET requests when there were no
malicious peers participating in the network. Therefore it is interesting to
see if this result changes as the scale increases.

Figure 7.18a shows, as was the case with 10,000 peers in the Small-World
topology, R-Kademlia is unable to match R5N performance with or without
malicious peers. In this topology, R5N has about 21

2 times the R-Kademlia
success rate of approximately 21 percent in round 1, and between 4 and 5
times this success after 5 and 10 rounds (close to 100% success). Increasing
the number of Sybil peers reduces the performance for both algorithms. This
figure also shows what happens when we increase the number of Sybil peers
beyond the total number of replicas in the network (to 5,000 malicious Sybil
peers); specifically, all requests fail. This somewhat extreme data point is
meant to reinforce the fact that with enough Sybil peers in a network, no
routing algorithm will be able to cope.

Figure 7.18b shows results from a Sybil attack on the same network
size, this time with peers connected in a Erdős-Rényi topology with roughly
the same number of connections as the Small-World topology depicted in
Figure 7.18a. This data is quite encouraging for R5N ; it seems to indicate
that as the network size increases R5N performs increasingly well in Erdős-
Rényi topologies as compared to R-Kademlia. Comparing this result with

7.7. Extended Data 197

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) Small-World topology, 920k
edges, 3 log n connections per
peer

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) Erdős-Rényi topology; 870k
edges, 3 log n connections per
peer

Fig. 7.18: Sybil attack in 20,000 peer networks for Small-World and
Erdős-Rényi topologies with approximately 3 log n connections
each. In these topologies, R5N outperforms R-Kademlia
across the board. GET requests were started at randomly
chosen peers in each round, PUT requests were initiated from
the same randomly chosen peer in each round.

that seen in the 5,000 peer Erdős-Rényi topology from Figure 7.14a shows
that while R-Kademlia drops to less than half the success rate, R5N remains
at nearly 100 percent success with no malicious Sybil peers. Furthermore,
in later rounds with more Sybil peers, R5N shows great improvement over
R-Kademlia. With 500 Sybil peers in the network, R-Kademlia achieves
less than 1 percent of successful requests, whereas R5N has over 20 percent
successful.

7.7.2.4 More than 20,000 Peers

As discussed in Chapter 6, the largest emulations we have found in pre-
vious work have been around 4,000 peers. We consider our results up to
20,000 peers to be quite an achievement, running almost 5 times the num-
ber of peers that emulations were capable of previously. We believe that
performing well up to 20,000 peers also makes our design usable on real-
world networks, as few secure P2P networks have thus far made it to this
scale. Furthermore, our implementation is immediately ready for real world
deployment. However, we were also curious to see just how many peers we
could run using our emulation framework on the cluster we had at our dis-
posal. This section outlines some of the data we gathered while testing the
bounds of this framework. As in previous sections, time constraints on the
cluster and our focus on Small-World networks restricted our tests to specific
topologies. The topology we chose to focus these tests on is a Small-World
topology with approximately 2.5 log n connections per peer. This comes out

198 7. R5N– Randomized Recursive Routing for Restricted Route Networks

to around 50 connections per peer, depending on the exact topology. We
believe this number of connections to be realistic for P2P users who may
have limited bandwidth or connection restrictions.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(a) Small-World topology, 40,000
peers, Sybils, 2,000,000
edges, 3 log n connections per
peer

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(b) Small-World topology, 60,000
peers, Sybils, 2,600,000
edges, 3 log n connections per
peer

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

G
E

T
 n

u
m

m
e
s
s
a
g
e
s

s
u
c
c
e
e
d
e
d

Percentage Malicious Peers in Network

R5N Round 10
R5N Round 5
R5N Round 1

Kademlia all rounds

(c) Small-World topology, 80000
peers, Sybils, 2,000,000
edges, 2 log n connections per
peer

Fig. 7.19: Plots for data from tests when running more than 20,000
peers. GET requests were started at randomly chosen peers
in each round, PUT requests were initiated from the same
randomly chosen peer in each round.

Figure 7.19 shows tests we performed on network sizes of 40,000 (Fig-
ure 7.19a), 60,000 (Figure 7.19b) and 80,000 (Figure 7.19c). Our intended
number of per peer connections was approximately 21

2 log n, though in the
tests for Figure 7.19c we were only able to achieve roughly 2 log n (due to
system limits).

These figures echo the results of small scale testing; in Small-World
topologies R5N is able to provide a significantly higher success than R-
Kademlia, with or without malicious participants in the network. Indeed,
as the scale increases upwards of 40,000 peers, R-Kademlia becomes almost

7.8. Conclusion 199

completely ineffective. On the other hand, R5N provides reasonable levels of
success, even when under the powerful Sybil attack. As before, Figure 7.19
shows that in the first round R5N has similar (though slightly better) perfor-
mance than R-Kademlia; though this performance is vastly improved after
multiple rounds. Also, whereas in small scale tests the improvement in per-
formance between the 5th and 10th rounds seemed rather small, it is more
pronounced in the larger scale tests. This is logical, as the total number of
replicas for any given key is greater for larger values of n. Thus, R5N is
able to find new replicas in each additional round of PUT requests, thus
increasing the chance of GET requests succeeding.

For the 60,000 peer test in Figure 7.19b Kademlia finds data successfully
less than 10% of the time without any malicious peers, while R5N achieves
above 80% after 10 PUT operations. For the 80,000 peer test in Figure 7.19c
Kademlia finds data successfully less than 5% of the time without any mali-
cious peers, while R5N improves to around 50% after enough PUT requests
are performed. Of course, we expect these numbers to improve even more
with a greater number of total connections for even the 80,000 peer network.
Here we may see the limit to which R5N can achieve high rates of success
in networks with very few connections. However, the performance improve-
ment over R-Kademlia is obvious, and any restricted route networks would
certainly benefit from a 50 percent success rate with as opposed to a less
than 5 percent success rate.

7.8 Conclusion

The presented algorithm needs to first create a sufficient number of repli-
cas. A network with n nodes of degree c is expected to have n

c+1 nearest

peers. According to the birthday paradox,
√

n
c+1 replicas would need to be

created in order for a GET request to succeed with about 50% probability
(at this probability, a small constant number of repetitions can be used to
get acceptable overall success rates). As we have shown experimentally, the
relationship between the number of replicas in the network and the number
of hops required for the respective PUT operations is almost linear (Fig-
ure 7.7).

Since GET requests have complexity O(log n) (Section 7.3.3), routing in
a Small-World network with R5N scales with O(

√
n · log n). Note that this

does not hold in sparse graphs with large diameter or graphs that are not
expander graphs, such as a circle, because the routing table could not be
sufficiently populated even using distance-vector augmentation (Chapter 5)
with a small, constant maximum path length.

While the randomized nature of R5N helps to circumvent Eclipse at-
tacks, a large number of adversarial nodes can still have a significant per-
formance impact. R5N is robust against a range of well-known attacks on

200 7. R5N– Randomized Recursive Routing for Restricted Route Networks

DHTs, including poisoning attacks, Sybil attacks and Eclipse attacks. Its
performance is comparable to that of a recursive implementation of Kadem-
lia even in unrestricted network topologies which Kademlia was designed
for. R5N still performs well in restricted-route topologies, including Small-
World networks. In contrast, Kademlia fails to locate data in Small-World
networks in most cases.

8. CONCLUSION AND FUTURE WORK

Our research on routing in open P2P networks has resulted in a number of
significant contributions. Based on our analysis, the developers of Freenet
made modifications to their routing algorithm to minimize the impact of
our location swapping attack. Additionally, we explained key clustering
in the network due to natural churn processes. This further helped the
Freenet developers understand some unexpected characteristics of the de-
ployed network. Similarly, our analysis of the Tor network revealed both
that a previous de-anonymizing attack was no longer viable, and that a pro-
tocol flaw existed that allowed a asymmetric denial-of-service attack. This
flaw allowed a modified version of the original de-anonymizing attack to
succeed. As a result of this research, we created a patch fixing the protocol
flaw which became part of the Tor implementation.

The emulation framework which we have created disproves the notion
that large scale P2P security evaluations can only be done by running sim-
ulations. This should both help researchers in performing more realistic
evaluations, and reduce the amount of work required due to maintenance of
two separate implementations.

Current DHTs are unable to operate securely in restricted-route net-
works. R5N provides an efficient, secure DHT routing algorithm which
operates in many different underlay topologies. It is our expectation that
R5N will be used as a building block for allowing decentralized services to
operate in these network topologies, where previous solutions do not operate
properly.

The usefulness of randomization for mitigating malicious and mis-configured
peers in a restricted route network justifies the small drop in efficiency.

8.1 Future Work

Replication is undeniably useful in DHTs for providing reliability and fault-
tolerance. Storing data at a single peer in a network is simply unacceptable
when peers may go off-line at any time, and generally can not be trusted.
While our current design does not support replication in unrestricted topolo-
gies, in future work we plan to investigate randomizing keys [140] in addi-
tion or instead of randomizing routing. Randomizing keys causes data to be
stored at multiple nodes, even in fully connected networks. For this reason,
key randomization works best to provide replication and defense against

202 8. Conclusion and Future Work

routing attacks in unrestricted networks.
However, there are two key problems with implementing key randomiza-

tion in R5N . First, key randomization should only be used if the topology
is in fact unrestricted. If key randomization and routing randomization is
used in a restricted-route network, the probability of successfully locating
data could drop significantly. We speculate that there is some combination
of both route and key randomization that works best for certain topologies.

Additional future research directions involve implementing other P2P
algorithms in the GNUnet framework, and performing further comparisons
between R5N and these. A feature of the GNUnet framework is that any
algorithm can be used, possibly even multiple algorithms concurrently. We
believe that our implementation of the GNUnet testing/emulation frame-
work should remain scalable up to millions of peers. However, we have thus
far lacked the hardware resources to attempt to run such tests. Therefore,
further testing our framework on larger clusters remains a goal for future
work. Finally, our implementation is not intended to be used only in the
laboratory, and the next step of action will be to actually deploy the imple-
mentation in the real world, and get feedback from users on usability, bugs,
etc.

BIBLIOGRAPHY

[1] J. P. Ahulló and P. G. López. Planetsim: An extensible simulation tool for
peer-to-peer networks and services. In Proceedings of the 9th International
Conference on Peer-to-Peer Computing, pages 85–86, September 2009.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
Seti@home: An experiment in public-resource computing. Communications
of the ACM, 45(11):56–61, 2002.

[3] J. Appelbaum. Detecting certificate authority compromises and web browser
collusion. https://blog.torproject.org/blog/detecting-certificate-authority-
compromises-and-web-browser-collusion, March 2011. The Tor Blog.

[4] C. Avin and G. Ercal. On the cover time and mixing time of random geo-
metric graphs. Theoretical Computer Science, 380:2–22, July 2007.

[5] Y. Azar, A. Z. Broder, A. R. Karlin, N. Linial, and S. Phillips. Biased random
walks. In Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, STOC ’92, pages 1–9. ACM, 1992.

[6] A. Back, U. Möller, and A. Stiglic. Traffic analysis attacks and trade-offs in
anonymity providing systems. In Proceedings of Information Hiding Work-
shop, pages 245–257. Springer-Verlag, LNCS 2137, April 2001.

[7] E. Bangeman. Study: Bittorrent sees big growth, limewire still #1 p2p
app. http://arstechnica.com/old/content/2008/04/study-bittorren-sees-big-
growth-limewire-still-1-p2p-app.ars, September 2007.

[8] I. Baumgart, B. Heep, and S. Krause. Oversim: A flexible overlay network
simulation framework. In Proceedings of 10th IEEE Global Internet Sympo-
sium, pages 79–84, May 2007.

[9] N. Beijar. Zone Routing Protocol (zrp).
http://www.netlab.hut.fi/opetus/s38030/k02/Papers/08-Nicklas.pdf,
April 2002. Licentiate course on Telecommunications Technology.

[10] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[11] S. Bellovin. Using the domain name system for system break-ins. In Proceed-
ings of the 5th Conference on USENIX UNIX Security Symposium, volume 5,
pages 18–18, Berkeley, CA, USA, June 1995. USENIX Association.

[12] S. M. Bellovin. Security problems in the tcp/ip protocol suite. SIGCOMM
Computer Communication Review, 19:32–48, April 1989.

[13] S. M. Bellovin. Security aspects of napster and gnutella.
http://www.research.att.com/smb/talks/, August 2000. Invited Talk.

[14] S. M. Bellovin. A look back at ”security problems in the tcp/ip protocol
suite”. In Proceedings of the 20th Annual Computer Security Applications
Conference, ACSAC ’04, pages 229–249, Washington, DC, USA, 2004. IEEE
Computer Society.

[15] I. Benjamini, G. Kozma, and N. Wormald. The mixing time
of the giant component of a random graph. October 2006.
http://arxiv.org/abs/math/0610459v1.

204 Bibliography

[16] K. Bennett and C. Grothoff. gap: Practical anonymous networking. In
Proceedings of the 3rd International Workshop on Privacy Enhancing Tech-
nologies, ser-LNCS, pages 141–160. Springer-Verlag, 2003.

[17] K. Bennett, C. Grothoff, T. Horozov, and J. T. Lindgren. An encoding for
censorship-resistant sharing. Technical report, 2003.

[18] M. Bertier, F. Bonnet, A.-M. Kermarrec, V. Leroy, S. Peri, and M. Raynal.
D2ht: The best of both worlds, integrating rps and dht. In Proceedings
of the 2010 European Dependable Computing Conference, EDCC ’10, pages
135–144, Washington, DC, USA, 2010. IEEE Computer Society.

[19] bgpmon. Chinese isp hijacked 10% of the internet.
http://bgpmon.net/blog/?p=282, April 2010. BGPmon.net Blog.

[20] U. Black. IP routing protocols: RIP, OSPF, BGP, PNNI and Cisco Routing
Protocols. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

[21] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13:422–426, July 1970.

[22] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz. Denial of service or de-
nial of security? how attacks on reliability can compromise anonymity. In
Proceedings of the 14th ACM Conference on Computer and Communications
Security, pages 92–102, New York, NY, USA, October 2007. ACM.

[23] D. Bruschi, A. Orgnaghi, and E. Rosti. S-arp: a secure address resolution
protocol. In Proceedings of the 19th Annual Computer Security Applications
Conference, ACSAC ’03, pages 66–74, Washington, DC, USA, December
2003. IEEE Computer Society.

[24] J. Calvet, C. R. Davis, J. M. Fernandez, W. Guizani, M. Kaczmarek, J.-Y.
Marion, and P.-L. St-Onge. Isolated virtualised clusters: Testbeds for high-
risk security experimentation and training. In Proceedings of the 3rd Inter-
national Conference on Cyber Security Experimentation and Test, CSET’10,
pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[25] J. Calvet, C. R. Davis, J. M. Fernandez, J.-Y. Marion, P.-L. St-Onge,
W. Guizani, P.-M. Bureau, and A. Somayaji. The case for in-the-lab botnet
experimentation: Creating and taking down a 3000-node botnet. In Proceed-
ings of the 26th Annual Computer Security Applications Conference, ACSAC
’10, pages 141–150. ACM, 2010.

[26] B. Carpenter. Architectural principles of the internet. RFC 1958, IETF,
http://www.ietf.org/rfc/rfc1958.txt, June 1996. Updated by RFC 3439.

[27] M. Casado and M. J. Freedman. Illuminating the shadows: Opportunistic
network and web measurement. http://illuminati.coralcdn.org/stats/, De-
cember 2006.

[28] D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, February 1981.

[29] R. Chertov, S. Fahmy, and N. B. Shroff. Fidelity of network simulation
and emulation: A case study of tcp-targeted denial of service attacks. ACM
Transactions on Modeling and Computer Simulation, 19(1):4:1–4:29, Decem-
ber 2008.

[30] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Proceedings of the
International Workshop on Designing Privacy Enhancing Technologies: De-
sign Issues in Anonymity and Unobservability, pages 46–66. Springer-Verlag
New York, Inc., 2001.

Bibliography 205

[31] CNN. Pakistan move knocked out youtube.
http://www.cnn.com/2008/WORLD/asiapcf/02/25/pakistan.youtube/index.html,
February 2008.

[32] B. Cohen. Incentives build robustness in bittorrent. Technical report, bit-
torrent.org, June 2003.

[33] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with cfs. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles, SOSP ’01, pages 202–215. ACM, 2001.

[34] W. Dai. Two attacks against freedom. http://www.weidai.com/freedom-
attacks.txt, 2000.

[35] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a type
iii anonymous remailer protocol. In Proceedings of the 2003 IEEE Symposium
on Security and Privacy, pages 2–15, May 2003.

[36] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. Anderson. Sybil-
resistant dht routing. In Proceedings of the 10th European Symposium on Re-
search in Computer Security, ESORICS ’05, pages 305–318. Springer-Verlag,
2005.

[37] e. a. Daniel Stenberg. libcurl. http://curl.haxx.se/libcurl/, 1998–2009. Open
Source C-based multi-platform file transfer library.

[38] M. Dell’Amico and Y. Roudier. A measurement of mixing time in social
networks. In Proceedings of the 5th International Workshop on Security and
Trust Management, STM ’09, September 2009.

[39] Y. Desmedt and K. Kurosawa. How to break a practical mix and design a
new one. In Proceedings of the 19th international Conference on Theory and
Application of Cryptographic Techniques, EUROCRYPT’00, pages 557–572,
Berlin, Heidelberg, 2000. Springer-Verlag.

[40] C. Diaz and A. Serjantov. Generalising mixes. In Proceedings of Privacy
Enhancing Technologies Workshop, PET ’03, pages 18–31. Springer-Verlag,
LNCS 2760, March 2003.

[41] T. Dierks and C. Allen. The tls protocol version 1.0. RFC 2246, IETF,
http://www.ietf.org/rfc/rfc2246.txt, January 1999.

[42] R. Dingledine. Tor proposal 110: Avoiding infinite length cir-
cuits. https://svn.torproject.org/svn/tor/trunk/doc/spec/proposals/110-
avoid-infinite-circuits.txt, March 2007.

[43] R. Dingledine. Tor bridges specification. Technical report, The Tor Project,
https://svn.torproject.org/svn/tor/trunk/doc/spec/bridges-spec.txt, 2008.

[44] R. Dingledine and N. Mathewson. Design of a blocking-
resistant anonymity system. Technical report, The Tor Project,
https://svn.torproject.org/svn/projects/design-paper/blocking.html,
November 2006.

[45] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th USENIX Security Symposium, pages
303–320, August 2004.

[46] T. T. A. Dinh, G. Theodoropoulos, and R. Minson. Evaluating large scale dis-
tributed simulation of p2p networks. In Proceedings of the 12th IEEE/ACM
International Symposium on Distributed Simulation and Real-Time Applica-
tions, pages 51–58. IEEE Computer Society, 2008.

[47] J. R. Douceur. The sybil attack. In Revised Papers from the First In-
ternational Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 251–260,
London, UK, 2002. Springer-Verlag.

206 Bibliography

[48] B. Drain. Eve evolved: Eve online’s server model.
http://www.massively.com/2008/09/28/eve-evolved-eve-onlines-server-
model/, September 2008.

[49] C. DSS. Gnutella protocol specification v0.4.
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf, 2001.

[50] D. Eastlake. Domain name system security extensions. RFC 2535, IETF,
http://www.ietf.org/rfc/rfc2535.txt, March 1999. Obsoleted by RFCs 4033,
4034, 4035, updated by RFCs 2931, 3007, 3008, 3090, 3226, 3445, 3597, 3655,
3658, 3755, 3757, 3845.

[51] P. Eckersley and J. Burns. An observatory for the ssliverse.
https://www.eff.org/files/DefconSSLiverse.pdf, July 2010. Presented at De-
fcon 18.

[52] J. Edwards. Peer-to-Peer Programming on Groove. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2002.

[53] K. Egevang and P. Francis. The ip network address translator (nat). RFC
1631, IETF, http://tools.ietf.org/html/rfc1631, May 1994.

[54] K. Egevang and P. Francis. The IP Network Address Translator (NAT).
RFC 1631 (Informational), http://www.ietf.org/rfc/rfc1631.txt, May 1994.
Obsoleted by RFC 3022.

[55] M. W. et al. Mariadb. http://mariadb.org, May 2011.
[56] N. Evans and C. Grothoff. R5n: Randomized recursive routing for restricted-

route networks. In 5th International Conference on Network and System
Security, Milan, Italy, 2011. IEEE.

[57] N. S. Evans. Routing in the dark: Pitch black. Master’s thesis, University
of Denver, May 2009.

[58] N. S. Evans, R. Dingledine, and C. Grothoff. A practical congestion attack on
tor using long paths. In Proceedings of the 18th USENIX Security Symposium,
pages 33–50. USENIX, 2009.

[59] N. S. Evans, C. GauthierDickey, and C. Grothoff. Routing in the dark: Pitch
black. In Proceedings of the Annul Computer Security Conference, ACSAC
’07, pages 305–314. IEEE Computer Society, 2007.

[60] N. S. Evans and C. Grothoff. Beyond simulation: Large-scale distributed
emulation of p2p protocols. In Proceedings of the 3rd international conference
on Cyber security experimentation and test, CSET’11, 2011.

[61] C. E. A. Falk. An update on the geni project. SIGCOMM Computer Com-
munication Review, 39:28–34, June 2009.

[62] S. Fanning. Napster. http://www.napster.com/, 1999.
[63] R. A. Ferreira, C. Grothoff, and P. Ruth. A transport layer abstraction for

peer-to-peer networks. In Proceedings of the 4th International Workshop on
GRID Computing, pages 398–403. IEEE Computer Society, November 2003.

[64] R. A. Ferreira, M. K. Ramanathan, A. Awan, A. Grama, and S. Jagannathan.
Search with probabilistic guarantees in unstructured peer-to-peer networks.
In Proceedings of the 5th IEEE International Conference on Peer-to-Peer
Computing, pages 165–172, Washington, DC, USA, 2005. IEEE Computer
Society.

[65] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol – http/1.1. RFC 2616, IETF,
http://www.ietf.org/rfc/rfc2616.txt, June 1999.

[66] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Perfor-
mance Computing, 11(2):115–128, 1997.

Bibliography 207

[67] N. Fountoulakis and B. A. Reed. The evolution of the mixing rate of a simple
random walk on the giant component of a random graph. Random Structures
and Algorithms, 33:68–86, August 2008.

[68] M. J. Freedman and R. Morris. Tarzan: a peer-to-peer anonymizing network
layer. In Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security, CCS ’02, pages 193–206, New York, NY, USA, November
2002. ACM.

[69] M. J. Freedman, E. Sit, J. Cates, and R. Morris. Introducing tarzan, a
peer-to-peer anonymizing network layer. In Revised Papers from the 1st
International Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 121–
129, London, UK, 2002. Springer-Verlag.

[70] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer
networks. In Proceedings of the 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 1 of INFOCOM ’04, pages
1–11, March 2004.

[71] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding routing informa-
tion. In Proceedings of Information Hiding: First International Workshop,
pages 137–150. Springer-Verlag, LNCS 1174, May 1996.

[72] M. T. Goodrich, M. J. Nelson, and J. Z. Sun. The rainbow skip graph:
A fault-tolerant constant-degree distributed data structure. In Proceedings
of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm, pages
384–393. ACM Press, 2006.

[73] C. Gülcü and G. Tsudik. Mixing e-mail with babel. In Proceedings of the
Network and Distributed Security Symposium, NDSS ’96, pages 2–16. IEEE,
February 1996.

[74] J. Han and Y. Liu. Rumor riding: Anonymizing unstructured peer-to-peer
systems. In Proceedings of the 2006 IEEE International Conference on Net-
work Protocols, ICNP ’06, pages 22–31, Washington, DC, USA, November
2006. IEEE Computer Society.

[75] J. Hautakorpi and G. Camarillo. Evaluation of dhts from the viewpoint
of interpersonal communications. In Proceedings of the 6th International
Conference on Mobile and Ubiquitous Multimedia, MUM ’07, pages 74–83.
ACM, 2007.

[76] Q. He, M. H. Ammar, G. F. Riley, H. Raj, and R. Fujimoto. Mapping peer
behavior to packet-level details: A framework for packet-level simulation of
peer-to-peer systems. In Proceedings of the 11th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of Computer Telecommu-
nications Systems, pages 71–78, October 2003.

[77] L. T. Heberlein and M. Bishop. Attack class: Address spoofing. In Proceed-
ings of the 19th National Information Systems Security Conference, pages
371–377, 1996.

[78] C. Hedrick. Routing information protocol. RFC 1058 (Historic), IETF,
http://www.ietf.org/rfc/rfc1058.txt, June 1988. Updated by RFCs 1388,
1723.

[79] B. Heep. R/kademlia: Recursive and topology-aware overlay routing. In
Proceedings of the Conference on Telecommunication Networks and Applica-
tions, pages 102–107, November 2010.

[80] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K. Webb,
and J. Lepreau. Large-scale virtualization in the emulab network testbed. In

208 Bibliography

Proceedings of the USENIX 2008 Annual Technical Conference, pages 113–
128, Berkeley, CA, USA, 2008. USENIX Association.

[81] D. Hildebrandt, L. Bischofs, and W. Hasselbring. Realpeer–a framework
for simulation-based development of peer-to-peer systems. In Proceedings
of the Euromicro Conference on Parallel, Distributed, and Network-Based
Processing, pages 490–497, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[82] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How much anonymity does
network latency leak? In Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, pages 82–91, New York, NY, USA, Oc-
tober 2007. ACM.

[83] Y.-C. Hu, A. Perrig, and M. Sirbu. Spv: secure path vector routing for secur-
ing bgp. In Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, SIGCOMM ’04,
pages 179–192. ACM Press, 2004.

[84] C. Hurley, S. Chen, and J. Karim. YouTube: broadcast yourself.
http://www.youtube.com, 2009.

[85] G. Huston. Ipv4 address report. http://www.potaroo.net/tools/ipv4/, March
2010.

[86] P. Iyer and U. Warrier. Internetgatewaydevice:1 device template version
1.01. http://www.upnp.org/specs/gw/UPnP-gw-InternetGatewayDevice-
v1-Device.pdf, November 2001.

[87] J. Kangasharju, U. Schmidt, D. Bradler, and J. Schröder-Bernhardi.
Chunksim: Simulating peer-to-peer content distribution. In Proceedings of
the 2007 Spring Simulaiton Multiconference, volume 1, pages 25–32, San
Diego, CA, USA, 2007. Society for Computer Simulation International.

[88] A. Kapela and A. Pilosov. Stealing the internet - a routed, wide-
area, man in the middle attack. http://defcon.org/images/defcon-16/dc16-
presentations/defcon-16-pilosov-kapela.pdf, 2008. Presented at DEFCON 16.

[89] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. SIAM Journal on Scientific Computing, 20:359–
392, December 1998.

[90] F. Keil, D. Schmidt, and et al. Privoxy - a privacy enhancing web proxy.
http://www.privoxy.org/, August 2002.

[91] D. Kesdogan, J. Egner, and R. Büschkes. Stop-and-go mixes: Providing
probabilistic anonymity in an open system. In Proceedings of the 2nd Inter-
national Workshop on Information Hiding, pages 83–98, London, UK, 1998.
Springer-Verlag, LNCS 1525.

[92] J. M. Kleinberg. Navigation in a small world. Nature, 406:845–845, August
2000.

[93] J. M. Kleinberg. The small-world phenomenon: An algorithm perspective. In
Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
STOC ’00, pages 163–170. ACM Press, 2000.

[94] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J. Vuori. P2prealm
- peer-to-peer network simulator. In Proceedings of the 11th International
Workshop on Computer-Aided Modeling, Analysis and Design of Communi-
cation Links and Networks, pages 93–99, 2006.

[95] M. Kozlovszky, A. Balasko, and A. Varga. Enabling omnet++-based simula-
tions on grid systems. In Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, pages 67:1–67:7, Brussels, Belgium, 2009.

Bibliography 209

Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering (ICST).

[96] S. Krco, D. Cleary, and D. Parker. P2p mobile sensor networks. In Proceed-
ings of the 38th Annual Hawaii International Conference on System Sciences,
HICSS ’05, pages 324c–324c, Washington, DC, USA, 2005. IEEE Computer
Society.

[97] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4:382–401,
1982.

[98] O. Landsiedel, K. A. Lehmann, and K. Wehrle. T-dht: Topology-based dis-
tributed hash tables. In Proceedings of the 5th IEEE International Conference
on Peer-to-Peer Computing, pages 143–144, 2005.

[99] O. Landsiedel, A. Pimenidis, K. Wehrle, H. Niedermayer, and G. Carle. Dy-
namic multipath onion routing in anonymous peer-to-peer overlay networks.
In Proceedings of the Global Telecommunications Conference, IEEE GLOBE-
COM ’07, pages 64–69, November 2007.

[100] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times.
American Mathematical Society, 2006.

[101] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright. Timing attacks
in low-latency mix-based systems. In Proceedings of Financial Cryptography,
pages 251–265. Springer-Verlag, LNCS 3110, February 2004.

[102] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek. Comparing
the performance of distributed hash tables under churn. In Proceedings of
the 3rd International Workshop on Peer-to-Peer Systems, IPTPS ’04, pages
87–99, February 2004.

[103] T. Locher, D. Mysicka, S. Schmid, and R. Wattenhofer. Poisoning the kad
network. In Proceedings of the 11th International Conference on Distributed
Computing and Networking, ICDCN ’10, pages 195–206, January 2010.

[104] L. Lov’asz. Random walks on graphs: A survey. Combinatorics, 2(1):1–46,
1993.

[105] L. Ltd. Interactive, live tv. http://www.livestation.com, 2008.
[106] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in

unstructured peer-to-peer networks. In Proceedings of the 16th international
Conference on Supercomputing, ICS ’02, pages 84–95. ACM, 2002.

[107] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing
in a small world. In Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems, volume 4 of USITS’03, pages 10–10, Berkeley,
CA, USA, 2003. USENIX Association.

[108] G. S. Manku, M. Naor, and U. Wieder. Know thy neighbor’s neighbor: the
power of lookahead in randomized p2p networks. In Proceedings of the 36th
ACM Symposium on Theory of Computing, pages 54–63, 2004.

[109] M. Marlinspike. Ssl and the future of authenticity.
http://blog.thoughtcrime.org/ssl-and-the-future-of-authenticity, April
2011. Thoughtcrime Labs blog.

[110] O. C. Martin and P. Šulc. Return probabilities and hitting times of random
walks on sparse erdös-rényi graphs. Phys. Rev. E, 81(3):031111, Mar 2010.

[111] I. Martinez-Yelmo, R. Cuevas, C. Guerrero, and A. Mauthe. Routing perfor-
mance in a hierarchical dht-based overlay network. In Proceedings of the 16th
Euromicro Conference on Parallel, Distributed and Network-Based Process-
ing, PDP ’08, pages 508–515, Washington, DC, USA, 2008. IEEE Computer
Society.

210 Bibliography

[112] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information
system based on the xor metric. In Revised Papers from the 1st International
Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London, UK,
2002. Springer-Verlag.

[113] J. Mclachlan and N. Hopper. Don’t clog the queue! circuit clogging and
mitigation in p2p anonymity schemes. In Financial Cryptography and Data
Security, pages 31–46, Berlin, Heidelberg, 2008. Springer-Verlag.

[114] E. L. Merrer, A. M. Kermarrec, and L. Massoulie. Peer-to-peer size estima-
tion in large and dynamic networks: A comparative study. In Proceedngs of
the 15th IEEE International Symposium on High Performance Distributed
Computing, pages 7–17, 2006.

[115] S. Milgram. The small-world problem. Psychology Today, 2:60–67, 1967.
[116] J. Mirkovic, T. V. Benzel, T. Faber, R. Braden, J. Wroclawski, and

S. Schwab. The deter project: Advancing the science of cyber security
experimentation and test. In Proceedings of the 2010 IEEE International
Conference on Technologies for Homeland Security, pages 1–7, November
2010.

[117] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S. Wallach.
Ap3: Cooperative, decentralized anonymous communication. In Proceedings
of the 11th ACM SIGOPS European Workshop, SIGOPS-EW ’04, page 30.
ACM, September 2004.

[118] P. Mockapetris. Domain names - implementation and specification. RFC 1035
(Standard), IETF, http://www.ietf.org/rfc/rfc1035.txt, November 1987. Up-
dated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181,
2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343.

[119] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman. Mixmaster protocol —
version 2. IETF Internet Draft, http://tools.ietf.org/html/draft-sassaman-
mixmaster-03, December 2004.

[120] A. Montresor and M. Jelasity. Peersim: A scalable p2p simulator. In Proceed-
ings of the 9th International Conference on Peer-to-Peer Computing, pages
99–100, September 2009.

[121] J. Moy and et. al. The ospf specification. RFC 1131, IETF,
http://tools.ietf.org/html/rfc1131, October 1989. Obsoleted by RFC-1247.

[122] A. Muller, N. Evans, C. Grothoff, and S. Kamkar. Autonomous nat traversal.
In Proceedings of the 10th IEEE International Conference on Peer-to-Peer
Computing, IEEE P2P ’10, pages 61–64, Delft, The Netherlands, August
2010. IEEE.

[123] A. Muller, A. Klenk, and G. Carle. Behavior and classification of nat devices
and implications for nat-traversal. Network, IEEE, 22:14–19, September
2008.

[124] A. Müller, A. Klenk, and G. Carle. On the applicability of knowledge based
nat-traversal for home networks. In Proceedings of the 7th International IFIP-
TC6 Networking Conference on AdHoc and Sensor Networks, Wireless Net-
works, Next Generation Internet, NETWORKING’08, pages 264–275, Berlin,
Heidelberg, May 2008. Springer-Verlag.

[125] S. J. Murdoch. Covert Channel Vulnerabilities in Anonymity Systems. PhD
thesis, December 2007.

[126] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of tor. In Proceed-
ings of the 2005 IEEE Symposium on Security and Privacy, pages 183–195,
Washington, DC, USA, May 2005. IEEE Computer Society.

Bibliography 211

[127] M. Nafaa and N. Agoulmine. Analysing joost peer-to-peer iptv protocol. In
Proceedings of the 11th IFIP/IEEE International Symposium on Integrated
Network Management, IM’09, pages 291–294, Piscataway, NJ, USA, 2009.
IEEE Press.

[128] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and
D. Chalmers. The state of peer-to-peer simulators and simulations. SIG-
COMM Computer Communication Review, 37:95–98, March 2007.

[129] A. Nambiar and M. Wright. Salsa: A structured approach to large-scale
anonymity. In Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS ’06, pages 17–26, New York, NY, USA, Oc-
tober 2006. ACM.

[130] Z. Ou, E. Harjula, O. Kassinen, and M. Ylianttila. Performance evalua-
tion of a kademlia-based communication-oriented p2p system under churn.
Computer Networks, 54:689–705, April 2010.

[131] L. Øverlier and P. Syverson. Locating hidden servers. In Proceedings of
the 2006 IEEE Symposium on Security and Privacy, SP ’06, pages 100–114,
Washington, DC, USA, May 2006. IEEE Computer Society.

[132] J. Palacios. Bounds on expected hitting times for a random walk on a con-
nected graph. Linear Algebra and its Applications, 141:241 – 252, 1990.

[133] V. Pappas, E. Athanasopoulos, S. Ioannidis, and E. P. Markatos. Compromis-
ing anonymity using packet spinning. In Proceedings of the 11th Information
Security Conference, ISC ’08, pages 161–174, Berlin, Heidelberg, September
2008. Springer-Verlag.

[134] V. Pappas, D. Massey, A. Terzis, and L. Zhang. A comparative study of
the dns design with dht-based alternatives. In Proceedings of the 25th IEEE
International Conference on Computer Communications, pages 1–13, April
2006.

[135] P. Parkes. Skype downtime today.
http://blogs.skype.com/en/2010/12/skype downtime today.html, December
2010. Skype - The Big Blog.

[136] G. Pei, M. Gerla, and T. wei Chen. Fisheye state routing in mobile ad hoc
networks. In Proceedings of the ICDCS Workshop on Wireless Networks and
Mobile Computing, volume 1, pages 71–74, June 2000.

[137] M. Perry and S. Squires. Torbutton. https://www.torproject.org/torbutton/,
2009.

[138] A. Pfitzmann, B. Pfitzmann, and M. Waidner. Isdn-mixes: Untraceable
communication with very small bandwidth overhead. In Proceedings of the
GI/ITG Conference on Communication in Distributed Systems, pages 451–
463, February 1991.

[139] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies
of replicated objects in a distributed environment. In Proceedings of the 9th
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’97, pages 311–320. ACM, 1997.

[140] B. Polot. Adapting blackhat approaches to enhance the resillience of whitehat
application scenarios. Master’s thesis, 2010.

[141] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In Pro-
ceedings of the Workshop on Algorithms and Data Structures, WADS ’89,
pages 437–449, London, UK, 1989. Springer-Verlag.

[142] G. N. Purdy. Linux iptables Pocket Reference. O’Reilly Media, August 2004.

212 Bibliography

[143] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scal-
able content-addressable network. In Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munications, volume 31 of SIGCOMM ’01, pages 161–172. ACM, August
2001.

[144] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms for dhts: Some
open questions. In Revised Papers from the 1st International Workshop on
Peer-to-Peer Systems, IPTPS ’01, pages 45–52, London, UK, 2002. Springer-
Verlag.

[145] Y. Rehkhter and T. Li. A border gateway protocol 4 (bgp-4). RFC 1771,
IETF, http://www.ietf.org/rfc/rfc1771.txt, 1995.

[146] M. Rennhard and B. Plattner. Introducing morphmix: Peer-to-peer based
anonymous internet usage with collusion detection. In Proceedings of the
2002 ACM Workshop on Privacy in the Electronic Society, WPES ’02, pages
91–102, New York, NY, USA, November 2002. ACM.

[147] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a dht.
In Proceedings of the Annual Conference on USENIX Annual Technical Con-
ference, ATEC ’04, pages 127–140, Berkeley, CA, USA, June 2004. USENIX
Association.

[148] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker,
I. Stoica, and H. Yu. Opendht: A public dht service and its uses. SIGCOMM
Computer Communication Review, 35:73–84, 2005.

[149] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat. Macedon:
Methodology for automatically creating, evaluating, and designing overlay
networks. In Proceedings of the 1st conference on Symposium on Networked
Systems Design and Implementation, volume 1, pages 267–280, Berkeley, CA,
USA, 2004. USENIX Association.

[150] J. Rose, C. Hall, and A. Carzaniga. Spinneret: A log random substrate for
p2p networks. In Proceedings of the International Parallel and Distributed
Processing Symposium, pages 1–8, March 2007.

[151] J. Rosenberg and R. M. et. al. Session traversal utilities for nat (stun). RFC
5389, IETF, http://tools.ietf.org/html/rfc5389, October 2008.

[152] J. Rosenberg, R. Mahy, and P. Matthews. Traversal using relays around nat
(turn): Relay extensions to session traversal utilities for nat (stun). RFC
5766 (Review Copy), IETF, http://tools.ietf.org/html/rfc5766, April 2010.

[153] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems. In Proceedings of
the IFIP/ACM International Conference on Distributed Systems Platforms,
Middleware ’01, pages 329–350, London, UK, 2001. Springer-Verlag.

[154] A. I. T. Rowstron and P. Druschel. Storage management and caching in
past, a large-scale, persistent peer-to-peer storage utility. In Proceedings of
the 18th ACM Symposium on Operating Systems Principles, SOSP ’01, pages
188–201. ACM, October 2001.

[155] V. Sacramento. Vulnerability in the sending requests control of bind ver-
sions 4 and 8 allows dns spoofing. http://www.rnp.br/cais/alertas/2002/cais-
ALR-19112002a.html, November 2002.

[156] P. Saint-Andre. Streaming xml with jabber/xmpp. IEEE Internet Comput-
ing, 9(5):82–89, 2005.

Bibliography 213

[157] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote,
S. Vangal, G. Ruhl, and N. Borkar. A 2 tb/s 6 x 4 mesh network for a single-
chip cloud computer with dvfs in 45 nm cmos. IEEE Journal of Solid-State
Circuits, 46(4):757–766, April 2011.

[158] O. Sandberg. Searching in a Small World. PhD thesis, 2005.

[159] O. Sandberg. Distributed routing in small-world networks. In Algorithm
Engineering and Experiments, pages 179–188. SIAM, 2006.

[160] D. Sax. Dns spoofing malicious cache poisoning.
https://www.giac.org/paper/gsec/189/dns-spoofing-malicious-cache-
poisoning/100664, 2000. SANS Institute.

[161] M. Schlosser, T. Condie, and S. Kamvar. Simulating a file-sharing p2p net-
work. Technical Report 2003-28, Stanford InfoLab, 2003.

[162] H. Schulze and K. Mochalski. Internet study 2007.
http://www.ipoque.com/resources/internet-studies/internet-study-2007,
2007. ipoque.

[163] A. Serjantov, R. Dingledine, and P. Syverson. From a trickle to a flood:
Active attacks on several mix types. In Revised Papers from the 5th Inter-
national Workshop on Information Hiding, pages 36–52, London, UK, 2002.
Springer-Verlag, LNCS 2578.

[164] V. Shmatikov and M.-H. Wang. Timing analysis in low-latency mix networks:
Attacks and defenses. In Proceedings of the 11th European Symposium on
Research in Computer Security, ESORICS ’06, pages 236–252, September
2006.

[165] K. Shudo, Y. Tanaka, and S. Sekiguchi. Overlay weaver: An overlay con-
struction toolkit. Computer Communications, 31(2):402–412, 2008. Special
Issue: Foundation of Peer-to-Peer Computing.

[166] S. Sioutas, G. Papaloukopoulos, E. Sakkopoulos, K. Tsichlas, and
Y. Manolopoulos. A novel distributed p2p simulator architecture: D-p2p-sim.
In Proceedings of the 18th ACM Conference on Information and Knowledge
Management, pages 2069–2070. ACM, 2009.

[167] E. Sit and R. Morris. Security considerations for peer-to-peer distributed
hash tables. In Revised Papers from the 1st International Workshop on Peer-
to-Peer Systems, IPTPS ’01, pages 261–269, London, UK, 2002. Springer-
Verlag.

[168] P. Srisuresh and K. Egevang. Traditional IP Network Ad-
dress Translator (Traditional NAT). RFC 3022 (Informational),
http://www.ietf.org/rfc/rfc3022.txt, Jan. 2001.

[169] P. Srisuresh, B. Ford, and D. Kegel. State of peer-to-peer (p2p) com-
munication across network address translators (nats). RFC 5128, IETF,
http://tools.ietf.org/html/rfc5128, March 2008.

[170] M. Steiner, T. En-Najjary, and E. W. Biersack. Exploiting kad: Possible
uses and misuses. SIGCOMM Computer Communication Review, 37(5):65–
70, October 2007.

[171] M. Steiner, T. En-Najjary, and E. W. Biersack. A global view of kad. In Pro-
ceedings of the 7th ACM SIGCOMM Conference on Internet Measurement,
pages 117–122. ACM, 2007.

[172] J. Stewart. Dns cache poisoning - the next generation.
http://www.secureworks.com/research/articles/cachepoisoning, 2002.
Dell Secureworks Research Labs.

214 Bibliography

[173] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceed-
ings of the 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM ’01, pages 149–
160. ACM, 2001.

[174] L. Student Member-Ramaswamy, B. Student Member-Gedik, and
L. Member-Liu. A distributed approach to node clustering in decentral-
ized peer-to-peer networks. IEEE Transactions on Parallel and Distributed
Systems, 16(9):814–829, 2005.

[175] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-peer networks.
In Proceedings of the 6th ACM SIGCOMM Conference on Internet Measure-
ment, volume 13 of IMC ’06, pages 189–202. ACM Press, 2006.

[176] P. Syverson, D. Goldschlag, and M. Reed. Anonymous connections and onion
routing. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 44–54, Oakland, California, 1997.

[177] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards an analysis
of onion routing security. In Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in Anonymity and Unobservability,
pages 96–114. Springer-Verlag, LNCS 2009, July 2000.

[178] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann. Bub-
blestorm: Resilient, probabilistic and exhaustive. In Proceedngs of the 2007
ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pages 49–60. ACM, 2007.

[179] G. Urdaneta, G. Pierre, and M. V. Steen. A survey of dht security techniques.
ACM Computer Survey, 43:8:1–8:49, February 2011.

[180] A. Varga. The omnet++ discrete event simulation system. In Proceedings
of the European Simulation Multiconference, pages 319–324, June 2001.

[181] K. V. Vishwanath, D. Gupta, A. Vahdat, and K. Yocum. Modelnet: Towards
a datacenter emulation environment. In Proceedings of the 9th IEEE Inter-
national Conference on Peer-to-Peer Computing, pages 81–82, September
2009.

[182] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution
of user interaction in facebook. In Proceedings of the 2nd ACM SIGCOMM
Workshop on Social Networks, pages 37–42. ACM, August 2009.

[183] D. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442, June 1998.

[184] R. Wiangsripanawan, W. Susilo, and R. Safavi-Naini. Design principles for
low latency anonymous network systems secure against timing attacks. In
Proceedings of the 5th Australasian Symposium on ACSW Frontiers, ACSW
’07, pages 183–191, Darlinghurst, Australia, Australia, 2007. Australian
Computer Society, Inc.

[185] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybilguard: De-
fending against sybil attacks via social networks. In Proceedings of the 2006
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’06, pages 267–278, New York ,NY,
USA, 2006. ACM Press.

[186] N. Zennström and J. Friis. Skype. http://www.skype.com, 2003.

[187] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz. Tapestry: A global-scale overlay for rapid service deployment.

Bibliography 215

IEEE Journal on Selected Areas in Communications, 22(1):41–53, January
2004. Special Issue on Service Overlay Networks, to appear.

[188] L. Zhuang, F. Zhou, U. C. Berkeley, B. Y. Zhao, and A. Rowstron. Cash-
mere: Resilient anonymous routing. In Proceedings of the 2nd Symposium
on Networked Systems Design and Implementation. ACM, May 2005.

[189] H. Zhuge, X. Chen, X. Sun, and E. Yao. Hring: A structured p2p overlay
based on harmonic series. IEEE Transactions on Parallel and Distributed
Systems, 19:145–158, February 2008.

[190] zzz, postman, and et. al. I2p. http://www.i2p2.de, 2003–2011.

ISBN 3-937201-26-2

ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)

	Vorne�
	Innenleben.pdf
	1. Introduction
	1.1 Network Environment
	1.1.1 Network Address Translation (NAT)
	1.1.2 Domain Name System (DNS)
	1.1.3 Public Key Infrastructure
	1.1.4 Trust Agility
	1.1.5 Summary

	1.2 Peer-to-Peer (P2P) Networks
	1.2.1 Centralized P2P
	1.2.2 Pure P2P
	1.2.3 Super-peer P2P

	1.3 Design Goals
	1.4 Methodology
	1.5 Summary and Overview

	2. Routing in the Dark: Pitch Black
	2.1 Introduction
	2.2 Related Work
	2.2.1 Distributed hash tables
	2.2.2 Small-World networks

	2.3 Freenet's ``darknet'' routing algorithm
	2.3.1 Network creation
	2.3.2 Operational overview
	2.3.3 Location swapping
	2.3.4 Content Storage
	2.3.5 Example

	2.4 Security Analysis
	2.4.1 Active Attack
	2.4.2 Natural Churn

	2.5 Experimental Results
	2.5.1 Distribution of Node Locations
	2.5.2 Routing Path Length
	2.5.3 Availability of Content
	2.5.4 Other Topologies

	2.6 Simulation of Churn
	2.7 Discussion
	2.8 Conclusion

	3. Autonomous NAT Traversal
	3.1 Introduction
	3.2 Technical Approach
	3.2.1 NAT-to-NAT Communication
	3.2.2 Using UDP packets instead of ICMP ECHO REQUESTs

	3.3 Implementations
	3.3.1 Implementation in NAT-Tester Framework
	3.3.2 Implementation in pwnat tool
	3.3.3 Implementation in the GNUnet Framework

	3.4 Experimental Results
	3.5 Discussion
	3.6 Conclusion

	4. A Practical Congestion Attack on Tor Using Long Paths
	4.1 Introduction
	4.2 Related Work
	4.2.1 Tor
	4.2.2 Attacks on Tor and other Mixes

	4.3 Our Attack
	4.3.1 JavaScript Injection
	4.3.2 Impact of Congestion on Arrival Times
	4.3.3 Statistical Evaluation
	4.3.4 Congestion Attack
	4.3.5 Optimizations

	4.4 Experimental Results
	4.5 Proposed Solutions
	4.6 Low-cost Traffic Analysis Failure Against Modern Tor
	4.7 Conclusion

	5. Fish-eye Bounded Distance Vector Protocol
	5.1 Fish-eye and Zone Routing Protocols
	5.2 Implementation
	5.3 Distance Vector Service
	5.4 Message Example
	5.5 Neighborhood Size Estimate
	5.6 Distance Vector for Onion Routing
	5.7 FBDV Caveats: Onion Routing Without Anonymity
	5.8 Conclusion

	6. Large-Scale Distributed Emulation of P2P Protocols
	6.1 Introduction
	6.2 Design Goals
	6.3 Related Work
	6.3.1 Simulation
	6.3.2 Emulation
	6.3.3 Combining Simulation and Emulation

	6.4 The GNUnet P2P Framework
	6.5 The Emulation Library
	6.5.1 Executing Experiments
	6.5.2 Peer Life Cycle
	6.5.3 Peer Group Life Cycle
	6.5.4 Topology

	6.6 Lessons Learned
	6.6.1 Cryptography
	6.6.2 Execution time
	6.6.3 Latency
	6.6.4 Sockets
	6.6.5 Memory

	6.7 Results
	6.8 DHT Profiler Details
	6.8.1 Web Trial Scheduling
	6.8.2 Trial Execution Daemon
	6.8.3 Profiling Driver
	6.8.4 Additional Trial Processing
	6.8.5 Web Result Processing/Viewing/Comparison
	6.8.6 Database Back-end
	6.8.7 Database Interaction (Data export)

	6.9 Conclusion

	7. — Randomized Recursive Routing for Restricted Route Networks
	7.1 Introduction
	7.2 Related Work
	7.2.1 Kademlia
	7.2.2 Restricted-Route Topologies
	7.2.3 T-DHT
	7.2.4 Freenet
	7.2.5 Randomized Designs

	7.3 Design of R5N
	7.3.1 The Routing Table
	7.3.2 Fisheye Distance Vector Underlay Augmentation
	7.3.3 Routing
	7.3.4 Estimating Network Size
	7.3.5 Processing Requests and Replies
	7.3.6 Replication
	7.3.7 Content Validation
	7.3.8 Adversary Model

	7.4 Mathematical Evaluation
	7.4.1 Hops to Reach a Nearest Peer
	7.4.2 Total Hops – Routing with Sufficient Replication
	7.4.3 Comparison and Discussion

	7.5 Markov Mixing Times
	7.6 Experimental Results
	7.6.1 Implementation Details
	7.6.2 Emulation Framework for Testing and Profiling
	7.6.3 R Kademlia
	7.6.4 Network Performance
	7.6.5 Replication
	7.6.6 Malicious Peers

	7.7 Extended Data
	7.7.1 Small Scale Results
	7.7.2 Large Scale Tests

	7.8 Conclusion

	8. Conclusion and Future Work
	8.1 Future Work

	Bibliography

	diss-cover-hinten#.pdf
	Hinten�

