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ABSTRACT
This paper provides a short introduction to the Lagrangian
duality in convex optimization. At first the topic is moti-
vated by outlining the importance of convex optimization.
After that mathematical optimization classes such as con-
vex, linear and non-convex optimization, are defined. Later
the Lagrangian duality is introduced. Weak and strong du-
ality are explained and optimality conditions, such as the
complementary slackness and Karush-Kuhn-Tucker condi-
tions are presented. Finally, three di↵erent examples illus-
trate the power of the Lagrangian duality. They are solved
by using the optimality conditions previously introduced.

The main basis of this paper is the excellent book about
convex optimization [5] of Stephen Boyd and Lieven Van-
denberghe.

Keywords
mathematical optimization problem, convex optimization,
linear optimization, Lagrangian duality, Lagrange function,
dual problem, primal problem, strong duality, weak duality,
Slater’s condition, complementary slackness, Karush-Kuhn-
Tucker conditions, constrained least squares problem, water
filling algorithm

1. MOTIVATION
Convex optimization1 is very important in practice. Ap-
plications are numerous. Important areas are for example
automatic control systems, estimation and signal process-
ing, communications and networks, electronic circuit design,
data analysis and modelling, statistics and finance (see [5],
p. xi). Furthermore linear optimization, which is a subclass
of convex optimization, bases mainly on the theory of convex
optimization.

One advantage of these convex optimization problems is that
there exists methods to solve them very reliably and e�-
ciently, whereas there are no such methods for the general
non-linear problem so far. One example is the interior-point
method, which can be used to solve general convex opti-
mization problems. However, its reliability and e�ciency
are still an active topic of research, but it is likely that these
di�culties will be overcome within a few years. (See [5],
p.8).

Another even more important advantage is the associated
1The definition of convex optimization problems and con-
vexity itself can be found in Section 2.3

dual problem. Each convex optimization problem can be
transformed to a dual problem, which provides another per-
spective and mathematical point of application. With the
dual problem it is often possible to determine the solution
of the primal problem analytically or alternatively to de-
termine e�ciently a lower bound for the solution (even of
non-convex problems). Furthermore the dual theory is a
source of interesting interpretations, which can be the basis
of e�cient and distributed solution methods.

Therefore, when tackling optimization problems, it is ad-
visable to be able to use the powerful tool of Lagrangian
duality. This paper o↵ers an introduction to this topic by
outlining the basics and illustrating these by three examples.

The following section presents an overview over the di↵er-
ent optimization classes and explains the di↵erence of con-
vex and linear optimization. After that, Lagrangian du-
ality is introduced and intuitively derived. Furthermore,
weak and strong duality are explained and Slater’s condi-
tion, which guarantees strong duality for convex optimiza-
tion, is described. The Section 4 introduces optimality con-
ditions, concretely the complementary slackness condition
and the Karush-Kuhn-Tucker conditions. They will be used
to demonstrate the power of duality to solve convex opti-
mization problems by the dual in Section 5. In particular,
duality is used to solve a constrained least squares problem
and to derive the water-filling method. At the end, a con-
clusion is drawn and further literature hints are presented.

2. OPTIMIZATION PROBLEMS
There are di↵erent kinds of mathematical optimization prob-
lems, for example non-convex, convex and linear as well
as constrained and unconstrained optimization problems.
These classes do not only di↵er in their definition, but also
in their solvability. The more specific requirements for an
optimization class are, the easier it is usually to solve.

2.1 The general optimization problem
The standard form of a mathematical optimization problem
or just optimization problem consists of an optimization vari-
able x = (x1, ..., xn

) and an objective function f0 : Rn

7! R.
Furthermore there are inequality constraint functions f

i

:
Rn

7! R and equality constraint functions h

i

: Rn

7! R,
which constrain the solution.

doi: 10.2313/NET-2011-07-2_20Seminar FI & IITM SS 2011,  
Network Architectures and Services, July 2011

153



Figure 1: The non-convex Rosenbrock function

f(x, y) = (1� x)2 + 100(y � x

2)2.

The standard form of the problem is:

minimize f0(x)
subject to f

i

(x)  0, i = 1, ...,m
h

i

(x) = 0, i = 1, ..., p

The problem is to find x such that the objective function
f0 is minimized while satisfying the inequality and equality
constraints. If the problem has no constraints, it is called
unconstrained.

The set which the objective and constraint functions are
defined for is called the domain and is defined as:

D =
m\

i=0

domf

i

\

p\

i=0

domh

i

A point x 2 D is feasible if it satisfies the constraints. The
problem itself is feasible if there exists at least one feasible
point. All feasible points form the feasible set or constraint
set.

A vector x

? = (x1, ..., xn

) which is feasible and minimizes
the objective function is called optimal or solution. Its cor-
responding value is called optimal value p

? and is defined
as:

inf{f0(x)|fi(x)  0, i = 1, ...,m ^ h

j

(x) = 0, j = 1, ..., p}

By definition p

? can be ±1. p

? is +1 if the problem is
infeasible and �1 if the problem is unbounded below, that
means that there are feasible points x

k

with f0(xk

) ! �1

for k ! 1.

The other problem classes are subclasses of the general opti-
mization problem. The main di↵erence is the class of the ob-
jective and constraint functions. Figure 1 shows the Rosen-
brock function.2 It is a non-convex function, which is used as
performance test for optimization algorithms for non-convex
problems.

2The plot bases on a script from [1]

2.2 The linear optimization problem
The problem is called a linear program, if the objective func-
tion f0 and the inequality and equality constraints f1, ..., fm,
h1, ..., hp

are linear, that means that they fullfill the follow-
ing equation for all x, y 2 Rn and ↵,� 2 R:

f

i

(↵x+ �y) = ↵f

i

(x) + �f

i

(y)

One example for a two dimensional linear function is shown
in Figure 2.

Figure 2: A linear function f(x, y) = 3x+ 2.5y.

A linear program can also be written as:

minimize c

T

x+ d

subject to Gx � q

Ax = b

The matrices G 2 Rm⇥n and A 2 Rp⇥n specify the linear
inequality and equality constraints and the vectors c and
d 2 Rn parameterize the objective function. The vector d

can be left out, as it does not influence the feasible set and
the solution x

? (see [5], p. 146). Therefore the vector d is
ignored in other definitions.

As the negation of a linear function �f(x) is also linear, a
linear maximization problem can be easily transformed to a
linear minimization problem. For example, if the objective
function c

T

x + d should be maximized, one can solve the
problem by minimizing the objective function �c

T

x � d.
That is the reason why linear maximization problems are
also linear programs.

If at least one constraint or the objective function is not
linear, then the problem is called a non-linear program.

2.3 The convex optimization problem
The requirement for convex optimization problems is that
the equality constraints are still linear but the inequality
constraints and the objective function have to be convex,
that means they must fulfill the following inequality for all
x, y 2 Rn and ↵,� 2 R, with ↵+ � = 0,↵,� � 0:

f

i

(↵x+ �y)  ↵f

i

(x) + �f

i

(y)

As one can see, this requirement is less restrictive as the
previous requirement for linear programs, where equality is
required. Consequently the linear programs can be seen as
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a subclass of the convex optimization problems and the the-
ory of convex optimization can be also applied to linear pro-
grams.

Figure 3 illustrates a convex function. The intuitive charac-
teristics of such functions is that if one connects two points,
the inner line segment always lies above the graph.

Figure 3: The convex function f(x, y) = x

4 + y

2
.

3. THE LAGRANGE DUAL PROBLEM
Optimization problems can be transformed to their dual
problems, called Lagrange dual problems, which help to
solve the main problem. First, with the dual problem one
can determine lower bounds for the optimal value of the
original problem. Second, under certain conditions, the so-
lutions of both problems are equal. In this case the dual
problem often o↵ers an easier and analytical way to the so-
lution.

3.1 Lagrangian function
Let us take the general optimization problem of the standard
form, of which we do not know anything about the convexity
or linearity of the constraint or objective functions:

minimize f0(x)
subject to f

i

(x)  b

i

, i = 1, ...,m
h

i

(x) = 0, i = 1, ..., p

We define the Lagrangian L : Rn

⇥ Rm

⇥ Rp

7! R of the
problem as sum of the objective function and a weighted
sum of the constraint functions:

L(x,�, ⌫) = f0(x) +
mX

i=1

�

i

f

i

(x) +
pX

i=1

⌫

i

h

i

(x)

The domain of the dual problem is equal to the domain of
the primal problem times the domain of the parameters:

domL = D⇥ Rm

0,+ ⇥ Rp

�

i

is called the Lagrange multiplier of the i-th inequality
constraint f

i

(x)  0 and accordingly ⌫

i

is called the La-
grange multiplier of the i-th equality constraint h

i

(x) = 0.
The vectors � and ⌫ are referred to as the dual variables or
Lagrange multiplier vectors.

In addition to that, the Lagrange dual function (or just dual

function) g : Rm

⇥ Rp

7! R0,+ is the infimum of the La-
grangian over x (for all � 2 Rm,⌫ 2 Rp)

g(�, ⌫) = inf
x2D

L(x,�, ⌫)

If there is no lower bound of the Lagrangian, its dual func-
tion takes on the value �1. The main advantage of the
Lagrangian dual function is, that it is concave even if the
problem is not convex. The reason for this is that the dual
function is the pointwise infimum of a family of linear func-
tions of (�, ⌫) (see [5], p. 216).

The basic idea behind Lagrangian duality is to take the con-
straints and put them into the objective function. The most
intuitive way would be to rewrite the problem as the follow-
ing unconstrained problem:

minimize l(x) = f0(x) +
mX

i=1

I�(fi(x)) +
pX

i=1

I0(hi

(x))

Here I� and I0 (R 7! R) are the indicator functions of non-
positive reals and 0 respectively:

I�(u) =

⇢
0 u  0
1 u > 0

I0(u) =

⇢
0 u = 0
1 u 6= 0

These indicator functions express our displeasure with pre-
viously infeasible points. If a point was previously infeasible,
that means at least one constraint was violated, then at least
one indicator function takes the value 1 and prohibits that
point from being a solution. However, this method is really
brutal and causes discontinuity at the edges of the feasible
set. This discontinuity is not desired as we want to use an-
alytical techniques to solve the problem. So it is advisable
to find another solution which o↵ers a smoother transition.

In Lagrangian duality, these indicator functions are replaced
by linear functions which approximate the hard indicator
functions. Concretely, I�(u) is replaced by �

i

u (�
i

� 0)
and I0(u) is replaced by ⌫

i

u (here the domain of ⌫
i

is not re-
stricted). When the inequality constraint f

i

(x) is 0 then our
displeasure is 0. However, when the inequality constraint is
greater than zero, our displeasure is finite, but depends on
“how” much the constraint is violated (remind �

i

� 0). On
the other side, our pleasure grows when the constraint is
“more” fulfilled, i.e. it has more margin.

Clearly this approximation is rather poor, but it is ensured
that the linear functions underestimate the indicator func-
tions since �

i

u  I�(u) and ⌫

i

u  I0(u) for all u 2 R. As
a result, the dual function is always a lower bound for the
optimal value of the original function, i.e. for any � ⌫ 0 and
any ⌫ holds:

g(�, ⌫)  p

?

This can be easily proven. Let x̃ be a feasible point, then
f

i

(x̃)  0 and h

i

(x̃) = 0. Consequently:

mX

i=1

�

i

f

i

(x̃) +
pX

i=1

⌫

i

h

i

(x̃)  0

As a result the inequality follows:

g(�, ⌫) = inf
x2D

L(x,�, ⌫)  L(x̃,�, ⌫)  f0(x̃)
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Figure 4: Illustration of the lower bound (from [5],

p. 217)

Figure 4 illustrates this. The solid curve represents the ob-
jective function f0 and the dashed curve shows the constraint
function f1. The feasible set is characterized by f1(x)  0
and here it is the interval [�0.46, 0.46], which is indicated by
the two dotted vertical lines. The circle shows the optimal
point (x?

, p

?) = (�0.46, 1, 54) and the dotted curves show
L(x,�) for � = 0.1, 0.2, ..., 1.0. As we see, L(x,�)  f0(x)
holds for the feasible set and � � 0. Consequently, each
minimum value of L(x,�) is less or equal to p

?.

However, when g(�, ⌫) = �1 then the inequality is use-
less. The lower bound for p

? only makes sense if � � 0 and
(�, ⌫) 2 dom g, which means g(�, ⌫) > �1 . We call such
a pair (�, ⌫) dual feasible.

The challenge is to find the best lower bound, which leads
to the following optimization problem, called the Lagrangian
dual problem (whereas the original problem is often referred
to as primal problem):

maximize g(�, ⌫)
subject to � ⌫ 0

We define (�?

, ⌫

?), which is one solution to this problem, as
dual optimal or optimal Lagrange multipliers. As the dual
objective function is concave (even if the original problem
is not) and the constraints are convex, one can solve the
problem by minimizing �g(�, ⌫), which is consequently con-
vex. Therefore the dual problem is equivalent to a convex
minimization problem.

3.2 Weak duality
After estimating the optimal value of the dual problem d

?,
we have by definition, the best lower bound for the optimal
value of the primal problem p

?, which can be found using
Lagrange duality:

d

?

 p

?

This inequality also applies if the original problem is not
convex and is called weak duality.

It also holds when p

? and d

? are infinite. If the original prob-
lem is unbounded below, this means p? = �1, then the op-
timal value of the Lagrange dual problem d

? is consequently
also �1 and the dual problem is infeasible. Whereas when
the dual problem is unbounded above, this means d

? = 1,
then p

? = 1 and the primal problem is infeasible.

The di↵erence p

?

� d

? is an important value as it character-
izes the gap between the optimal value of the primal problem
and its best lower bound. Accordingly it is called the dual-
ity gap and as a result of the previous inequality it is always
non-negative.

Although the weak duality does not enable us to find the
exact solution of the primal problem, it is useful in practice.
The main advantage is that the dual problem is a concave
maximization problem and therefore one can e�ciently cal-
culate a lower bound, as it can be easily transformed to a
convex minimization problem. (see [5], p.226).

In [5] this is demonstrated by the two-way partitioning prob-
lem. Given a set of n elements, the task is to find a partition
which minimizes costs. The costs are specified by a matrix
W . If two elements i and j are in one partition, then they
cause the cost w

i,j

and, if they are in di↵erent partitions,
they cause the cost �w

i,j

.

The problem can be described as a non-convex problem:

minimize x

T

Wx

subject to x

2
i

= 1 i = 1, ..., n

The components x

i

of the vector x 2 Rn are restricted to
�1 and +1 by the equality constraint and define whether
the object i is in partition 1 or 2. The matrix W 2 Rn⇥n

specifies the corresponding costs as stated before, and con-
sequently x

T

Wx produces the total costs. This problem is
hard to solve, as the complexity rises exponentially with n.

Fortunately it can be transformed to a dual problem:

maximize �1T ⌫
subject to W + diag(⌫) ⌫ 0

diag creates a n ⇥ n matrix with the components of the
vector on the diagonal. For a more detailed description of
the derivation of the dual problem see [5], p. 219f.

This problem can be solved e�ciently by semidefinite pro-
gramming and delivers a useful lower bound for the hard
primal problem.

3.3 Strong duality
Strong duality is even more useful. By definition, strong
duality means that the duality gap is zero, i.e. that the
optimal value of the dual problem is equal to the optimal
value of the primal problem:

d

? = p

?

Whereas weak duality always holds, strong duality only holds
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under certain conditions. For convex problems, strong du-
ality is mostly achieved. But to be precise, convex problems
must also satisfy other conditions which are called constraint
qualifications.

Slater’s constraint qualification

One very simple and widespread example for a constraint
qualification is Slater’s condition:

9x 2 relintD : 8i = 1, ...,m : f
i

(x) < 0 ^Ax = b

This means, if one can find a point which is strictly feasible
and the problem is convex, then strong duality applies. For
clearness, relintD denotes the relative interior of D, which
means intuitively all interior points of the set and not the
points on the edge.

For convex problems with linear inequality constraints, there
also exists a refined Slater’s condition. Given the first k con-
straint functions are linear, then strong duality also applies
under the following condition:

9x 2 relintD : Ax = b^

8i = 1, ..., k : f
i

(x)  0 ^ 8i = k, ...,m : f
i

(x) < 0

This means, strict inequality is only required for nonlinear
constraint functions. As a result, the refined Slater’s condi-
tion reduces to feasibility if all equality and inequality con-
straints are linear and the domain of the objective function
f0 is open. (See [5], p. 227)

In addition to that, Slater’s condition also implies that not
only strong duality holds for convex problems, but also guar-
antees that the dual optimal value is attained if d? > �1,
i.e. that there exists a dual feasible point (�?

, ⌫

?) with
g(�?

, ⌫

?) = d

? = p

? (See [5], p.227; [4] p.90 “dual attain-
ment theorem”)

In practice, real problems usually fulfill Slater’s condition.
In engineering for example, given an inequality constraint
which limits the force usually satisfies Slater’s condition. If
Slater’s condition would not apply, then this would imply,
for example for the inequality constraint F < 100, that it
is possible to have a force which is 99,9999 Newton, but
it is impossible to have a force that is 100 Newton. This
di↵erentiation usually does not make sense in practice.

For a proof that Slater’s condition implies strong duality see
[5], §5.3.2 p.234↵

4. OPTIMALITY CONDITIONS
One motivation of the Lagrangian duality was that it pro-
vides a theoretical anchor which helps solving the problem.
Above all, optimality conditions are often used to determine
the solution of the primal problem by solving the dual prob-
lem analytically. As an example, the complementary slack-
ness condition is now presented, which will be later used
to solve the constrained least-square problem. Furthermore
the more powerful but also more complex Karush-Kuhn-
Tucker conditions are described3 and will be used to derive
the water-filling method used in information theory or the
convex quadratic minimization problem.

3which also contain the complementary slackness condition

4.1 Complementary slackness
The complementary slackness condition is an optimality con-
dition. That means, an optimal value must satisfy this con-
dition if strong duality holds.

If x? is the primal optimal and (�?

, ⌫

?) the dual optimal,
then we can state:

f0(x
?) = g(�?

, ⌫

?) (1)

= inf
x

 
f0(x) +

mX

i=1

�

?

i

f

i

(x) +
pX

i=1

⌫

?

i

h

i

(x)

!
(2)

 f0(x
?) +

mX

i=1

�

?

i

f

i

(x?) +
pX

i=1

⌫

?

i

h

i

(x?) (3)

 f0(x
?) (4)

The first line results from strong duality. The second line is
the definition of the dual function and the third line holds,
since the infimum of the dual function over x is less or equal
to its value at x = x

?. As x? is feasible, f
i

(x?)  0 holds for
i = 1, ...,m and h

i

(x?) = 0 holds for i = 1, ..., p. In addition
to that, �

i

is always non-negative and consequently the final
inequality follows.

As a result, x? minimizes L(x,�?

, ⌫

?). However it does not
have to be the only minimizer. The Lagrangian L(x,�?

, ⌫

?)
can also have other minimizers (see [5], p. 243).

Second, we can conclude:

mX

i=1

�

i

f

i

(x?) = 0

And since each summand in this sum is non-positive, it fol-
lows:

�

i

f

i

(x?) = 0 8i = 1, ...,m

This condition is called the complementary slackness condi-
tion. It states that if the i-th inequality constraint is not
active, that means f(x) < 0, then �

i

must be 0. On the
other hand, if �

i

> 0 then the i-th inequality constraint
must be active (f

i

(x) = 0).

�

?

i

> 0 ) f

i

(x?) = 0
f

i

(x?) < 0 ) �

?

i

= 0

But, to emphasize it, this requires strong duality.

4.2 Karush-Kuhn-Tucker conditions
The complementary slackness condition is part of the more
comprehensive Karush-Kuhn-Tucker optimality conditions.
They also require strong duality, but also di↵erentiability of
the constraint and objective functions, f0, ..., fm and h1, ..., hp

.
In return, the Karush-Kuhn-Tucker conditions are more pow-
erful compared to the complementary slackness condition.
In addition to that, for convex problems, they are even suf-
ficient and not only necessary.

4.2.1 Non-convex problems

At first we consider nonconvex problems. Let x? and (�?

, ⌫

?)
again be the primal and dual optimal points. In order
that x

? minimizes the Lagrangian L(x,�?

, ⌫

?) its gradient
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rL(x,�?

, ⌫

?) must vanish. This condition is called station-
arity :

rf0(x
?) +

mX

i=1

�

?

i

rf

i

(x?) +
pX

i=1

⌫

?

i

rh

i

(x?) = 0

When summarizing all conditions for the optimal point, we
have collected so far, we get:

Primal feasibility: 8i = 1, ...,m : f

i

(x?)  0 (1)

8i = 1, ..., p : h

i

(x?) = 0 (2)

Dual feasibility: 8i = 1, ...,m : �

?

i

� 0 (3)

Compl. slackness: 8i = 1, ...,m : �

?

i

f

i

(x?) = 0 (4)

Stationarity:

rf0(x
?) +

mX

i=1

�

?

i

rf

i

(x?) +
pX

i=1

⌫

?

i

rh

i

(x?) = 0 (5)

These conditions are called the Karush-Kuhn-Tucker (KKT)
conditions. Given a problem with di↵erentiable constraint
and objective function for which strong duality holds, any
pair of primal and dual optimal points must fulfill these
conditions. However the KKT conditions are not su�cient
for non-convex problems.

4.2.2 Convex problems

For convex problems the KKT-conditions are the same, but
they are now also su�cient. That means, given a pair of a
primal and dual solution (x̃, (�̃, ⌫̃)), we can not only check
whether this pair is not primal and dual optimal, but we can
also check if it is.

Clearly, this means if the inequality constraint and objective
functions f0, ..., fm are convex and the equality constraint
functions h1, ..., hp

are linear, and the KKT conditions are
satisfied by some points x̃ and (�̃, ⌫̃), then these points are
consequently primal and dual optimal points.

Furthermore, if the KKT conditions are satisfied, it implies
that the duality gap is zero. The first two KKT conditions
(1, 2) state that x̃ is primal feasible. The third condition
(3) ensures that the Lagrangian L(x, �̃, ⌫̃) is convex in x, as
it consists of a positive sum of convex functions. And as
a result of the last condition (5) and the convexity of the
Lagrangian, x̃ minimizes L(x, �̃, ⌫̃) over x. Thus:

g(�̃, ⌫̃) = L(x̃, �̃, ⌫̃)

= f0(x̃) +
mX

i=1

�̃

i

f

i

(x̃) +
pX

i=1

⌫̃

i

h

i

(x̃)

= f0(x̃)

The last line results from condition (3) and (4) and thus the
duality gap is zero: p? � d

? = f0(x̃)� g(�̃, ⌫̃) = 0.

Although we don’t need Slater’s condition here to prove that
the duality gap is zero, we need it for the su�ciency of the
optimality criteria. The KKT-conditions depend on the ex-
istence of a pair of primal and dual optimal values. However,
it is possible, that the primal problem has a primal optimum
but the dual problem does not. Consequently, the KKT con-
ditions are useless for finding the primal optimal value, as no

pair of primal and dual optimal values can be found and we
cannot conclude from a non-existing pair to a non-existing
primal optimal. Therefore the KKT conditions alone are not
su�cient for determining the primal optimum.

Here Slater’s condition helps. When the problem satisfies
Slater’s condition, then the corresponding dual optimum is
always attained. As a result, the existence of a primal opti-
mum requires the existence of a corresponding dual optimum
and vice versa. That means, that x is an optimal value of the
primal problem only if there exists an (�, ⌫) that fulfills the
KKT conditions. Then the KKT conditions are necessary
and su�cient for optimality (see [5], p.244).

The KKT conditions play an important role in convex op-
timization. On the one hand, they can be used to solve the
problem analytically in special cases, as shown in the ex-
ample of the derivation of the water filling method. On the
other hand, many algorithms solving convex problems are
based on the KKT conditions (see [5], p.244).

5. SOLVING THE PRIMAL BY THE DUAL
In this section, we use the optimality criteria to solve opti-
mization problems by considering the dual.

5.1 Equality constrained convex quadratic min-
imization

At first, let us consider a very simple problem. The task is
to minimize a convex quadratic function subject to a set of
linear equality constraints (example from [5], p. 244)

minimize f0(x) = 1
2x

T

Px+ q

T

x+ r (P 2 Sn

+)
subject to Ax = b (equal to: Ax� b = 0)

Here the objective function is a n-dimensional quadratic
function with the parameters q and P , which is a symmetric
positive definite n ⇥ n matrix. It is subject to a number of
linear equality constraints.

As the problem is convex and there are only linear equality
constraints, Slater’s condition applies.4 Therefore we can
use the KKT conditions to easily determine the solution
of this problem. At first we have to satisfy the equality
constraint:

Ax = b (1)

Second the gradient of the Lagrangian must vanish at the
optimum:

L(x,�, ⌫) = f0(x) +
pX

i=1

⌫

i

h

i

(x) (2)

=
1
2
x

T

Px+ q

T

x+ r + ⌫

T (Ax� b) (3)

rL(x?

,�

?

, ⌫

?) =
@L

@x

T

= Px

? + q +A⌫

?

!
= 0 (4)

As a result of 1 and 4, we get the following system of linear
equations:


P A

T

A 0

�
·


x

?

⌫

?

�
=


�q

b

�

4We assume that the problem is feasible
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The solution to this set of n+m equations provides us the
optimal primal and dual variables.

5.2 Constrained least squares problem
We consider the problem of finding a linear function f(x) =
mx + t, which approximates the best a given set of points
(x

i

, y

i

). Best in this case means that the sum of the squares
of errors has to be minimized. Furthermore, we consider the
constraint t  0.

Figure 5 shows a random example of such a constrained
least-square problem. The black circles represent the data
samples which have to be approximated by a linear func-
tion. Without the constraint the solution would be the red
function. However, our application domain requires t  0,
so that this cannot be a solution. The solution to the con-
straint problem is the blue dashed function.

Figure 5: A random constrained least square exam-

ple.

We can describe the problem with the standard form:

minimize f0(x) = ||Ax� d||

2
2

subject to g

T

x  0, g =


0
1

�

A =

2

6664

x1 1
x2 1
...

...
x

n

1

3

7775
d =

2

6664

y1

y2

...
y

n

3

7775
x =


m

t

�

The parameters m, t of the linear function are the optimiza-
tion variables. They have to be determined such that the
objective function is minimized. The objective function rep-
resents the sum of the squares of errors in the Euclidian
norm. This can be easily proven:

Ax� d =

2

6664

x1 1
x2 1
...

...
x

n

1

3

7775


m

t

�
�

2

6664

y1

y2

...
y

n

3

7775
=

2

6664

mx1 + t� y1

mx2 + t� y2

...
mx

n

+ t� y

n

3

7775

) ||Ax� d||

2
2 =

nX

i=1

p
(mx

i

+ t� y

i

)2
2

=
nX

i=1

(mx

i

+ t� y

i

)2

The inequality constraint t  0 is expressed by g

T

x � 0.

For simplicity, it is advisable to replace the norm:

f0(x) = ||Ax� d||

2
2

= (Ax� d)T (Ax� d)

= x

T

A

T

Ax� x

T

A

T

d� d

T

Ax+ d

T

d

Let us define B = A

T

A. B plays an important role for the
solvability of the problem. If the problem is well formed,
then B is invertible.

Fortunately this problem is convex. The sum of squares of
errors is apparently convex and the inequality constraint is
even linear. Thus Slater’s condition is fulfilled and strong
duality holds. Therefore it is a good choice to consider the
dual function to solve the problem.

The Lagrangian of this problem is:

L(x,�) = f(x)� �g

T

x

As the problem is convex and meets Slater’s condition, the
KKT conditions apply and we can determine the infimum
of the Lagrangian over x by setting its gradient to 0:

g(x,�) = inf
x

L(x,�)

()rL(x,�) =
@L

@x

T

= 2Bx� 2AT

d� �g

!
= 0

()x = B

�1

✓
A

T

d+
1
2
�g

◆

This result can now be inserted into the dual function, which
leads to the dual problem:

maximize g(�)
subject to � � 0

The solution can be obtained by solving this problem and
maximizing the objective function. However, this is not ad-
visable as it leads to cumbersome calculations. An easier
approach is to consider optimality conditions. Because of
strong duality, we can use the complementary slackness con-
straint:

�

?

> 0 ) g

T

x

? = 0

If gTx?

< 0 holds, then the inequality constraint t  0 is
inactive (�? = 0), that means it does not determine the solu-
tion. Consequently the problem reduces to an unconstrained
least squares problem. The second case is that �

?

> 0 ap-
plies, that means that the constraint is active and deter-
mines the solution. Then you can determine � since g

T

x

?

must be 0:

g

T

x

? = g

T

B

�1

✓
A

T

d+
1
2
�g

◆
!
= 0

) � = �2
g

T

B

�1
A

T

d

g

T

B

�1
g
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Now one can obtain the solution of the constrained problem
by determining x by the use of �.

To put it all in a nutshell, here is the complete solution:

x = (AT

A)�1(AT

d+
1
2
�g),

with � =

(
�2 g

T
B

�1
A

T
d

g

T
B

�1
g

if gTx  0 active

0 otherwise

Whether the constraint is active or inactive depends on the
problem. By determining the solution of the unconstrained
problem (� = 0), one can easily check if t  0. If this is
the case, then the problem is solved. Otherwise the solu-
tion of the constrained problem with the active inequality
constraint has to be calculated.

5.3 Water-filling
Let us consider a practical problem from information the-
ory. It’s about capacity optimization in multiple-input and
multiple-output (MIMO) communication systems. These
systems are characterized by the use of multiple antennas
on the transmitter and receiver side to improve performance.
A common problem is to allocate the power available to the
transmitter, so that the overall throughput is maximized.
For a detailed description see [10].

Allocating power to a transmitter increases its throughput,
as it increases its signal-to-noise ratio. However, it depends
on the specific transmitter and its damping how useful an
allocation is. According to [11] when allocating the power
x

i

to the channel i of the n communication channels, the
mutual information transmitted by the MIMO system can
be calculated as followed:5

I =
nX

i=1

log2(1 +
x

i

%

2
�

i

)

Here %

2 is the mean-square error of the noise and x

i

is the
power assigned. Furthermore �

i

describes the damping and
its value is between 0 and 1. The formula can be derived
from Shannon.

For simplicity we rewrite the formula for the information
throughput.

I =
nX

i=1

log2

✓
1 +

x

i

%

2
�

i

◆

=
nX

i=1

log2

 
1

%

2 1
�i

✓
%

2

�

i

+ x

i

◆!

=
nX

i=1

✓
log2

✓
%

2

�

i

+ x

i

◆
� log2

✓
%

2 1
�

i

◆◆

=
nX

i=1

✓
log2

✓
%

2

�

i

+ x

i

◆◆
�

nX

i=1

✓
log2

✓
%

2 1
�

i

◆◆

=
nX

i=1

(log2 (↵i

+ x

i

))� c

5We assume that there is no interference between channels

Now we can derive a simple optimization problem. Given
a set of n communication channels, we want to allocate
power to these communication channels in order to max-
imize the total communication rate. We define x

i

as the
transmitter power allocated to the i-th communication chan-
nel. Its resulting communication rate is log2(↵i

+ x

i

). Note
that ↵

i

is always positive. Furthermore we limit the total
amount of power by 1, i.e. 100%. As the objective functionP

n

i=1 log2(↵i

+x

i

) is concave, we can transform this problem
to a convex minimization problem by taking the negation of
the objective function (see [5], p.254):

minimize �

P
n

i=1 log2(↵i

+ x

i

)
subject to x ⌫ 0, 1Tx = 1

As we have to derive the objective function later, we replace
the dual logarithm by the natural logarithm.

f0(x) = �

nX

i=1

log2(↵i

+ x

i

)

= �

nX

i=1

ln(↵
i

+ x

i

)
ln(2)

= �

1
ln(2)

nX

i=1

ln(↵
i

+ x

i

)

A positive factor in front of the objective function doesn’t
change its solution and convexity. Therefore we leave it out
and consider the following problem.

minimize �

P
n

i=1 ln(↵i

+ x

i

)
subject to x ⌫ 0, 1Tx = 1

Apparently this problem satisfies again Slater’s condition.
Therefore we can again use the KKT conditions to determine
the solution. First we have to determine the Lagrangian:6

L(x,�, ⌫) = �

nX

i=1

ln(↵
i

+ x

i

)� �

T

x+ ⌫(1Tx� 1)

Then we can apply the KKT conditions to find the optimum.

x

?

⌫ 0, 1Tx? = 1, �

?

⌫ 0, �

?

i

x

?

i

= 0 (i = 1, ..., n)

rL(x?

,�

?

, ⌫

?) =
@L

@x

= 0

For the gradient, we get:

@L(x,�
i

, ⌫)
@x

i

=
@

@x

i

 
nX

i=1

(� ln(↵
i

+ x

i

)� �

i

x

i

) + ⌫

 
nX

i=1

(x
i

)� 1

!!

,

�1
↵

i

+ x

?

i

� �

?

i

+ ⌫

? = 0

, �

?

i

= ⌫

?

�

1
↵

i

+ x

?

i

6Note that the minus before � arises because the inequal-
ity constraint not a less-equal constraint. Furthermore the
equality constraint is also not in the standard form. The 1
has to be taken to the other side.
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To solve these equations in order to find x

?, �? and ⌫

?, we
can start by eliminating �

?, which acts as slack variable.

x ⌫ 0, 1Tx = 1,

x

?

i

✓
⌫

?

�

1
↵

i

+ x

?

i

◆
= 0 (i = 1, ..., n)

⌫

?

�

1
↵

i

+ x

?

i

(i = 1, ..., n)

Let us assume ⌫

?

<

1
↵i

, then x

?

i

must be positive as a re-
sult of the last inequality. Consequently, the third condition
implies ⌫? = 1

↵i+x

?
i
, which leads to x

?

i

= 1
⌫

? � ↵

i

.

On the other hand, if ⌫?

�

1
↵i

holds, x?

i

cannot be positive,
as this would violate the complementary slackness condition:
⌫

?

i

�

1
↵i

>

1
↵i+x

?
i
. Thus, x

?

i

must be non-positive and,

because of the first condition, this results in x

?

i

= 0.

All in all, we get:

x

?

i

=

⇢ 1
⌫

? � ↵

i

⌫

?

<

1
↵i

0 ⌫

?

�

1
↵i

This can be summarized to:

x

?

i

= max

⇢
0,

1
⌫

?

� ↵

i

�

Taking the second condition into account leads to:
nX

i=1

max

⇢
0,

1
⌫

?

� ↵

i

�
= 1

The lefthand side can be interpreted as a piecewise linear
increasing function of 1

⌫

? with breakpoints at ↵

i

. As a re-
sult the equation has a unique solution, which can be easily
obtained as the function is monoton increasing.

Figure 6: Illustration of the water filling algorithm.

The water is shown shadowed and the patches white.

(From [5], p.246)

In practice this solution method is known as water filling
because it has an intuitive interpretation. the default trans-
mitter power ↵

i

of each channel is represented by the height
of the patch i in figure 6. We flood the region with water
to a depth of 1

⌫

? and calculate the amount of used water:P
n

i=1 max
�
0, 1

⌫

?

 
. Then we increase or decrease the water

level until the amount of used water is equal to 1. As a re-
sult the water level above patch i denotes the optimal value
x

?

i

.

6. CONCLUSION
Convex optimization problems are prevalent in practice. For-
tunately, many practical problems meet the requirements for
strong duality. Here, the theory of Lagrangian duality o↵ers
a powerful tool to determine the exact solution of convex
problems. By describing the constraints within the objec-
tive function, it enables us to tackle the problem analytically.
Especially optimality conditions can be very useful for deter-
mining the solution of the primal problem, as demonstrated
in the examples.

Furthermore, the theory of strong duality is in particular the
basis for e�cient and distributed algorithms for convex prob-
lems. As the last example shows, the insights gained from
duality can be easily transformed to algorithms. Although
this example was very problem specific, it is also possible to
come up with more general algorithmic approaches for con-
vex problems, for example by considering the ✏-suboptimality
(see [5], p. 241f). In addition to that, strong duality of-
fers the opportunity for perturbation and sensitivity analysis
(see [5], p. 249↵).

Besides the theory of strong duality, Lagrangian duality has
also a lot of applications. First it can be used to determine
lower bounds for non-convex problems. The main advantage
of this is, no matter how complex the primal problem is,
the dual problem is a concave maximization problem and
therefore easy to solve. So duality enables us to determine
e�ciently a lower bound. Furthermore it can be applied to
determine feasibility of a system of equalities or inequalities
(see [5], p.258↵).

All in all, duality is a comprehensive theory with a lot of
applications and totally worth a deeper look. For more in-
tensive reading, I can recommend the following books: [3],
[5], [9] as well as [6] and [7] cover the Lagrangian duality in
detail. For a German book about optimization in general,
I recommend [8]. In [2] numerous applications of convex
optimizations can be found.
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