Master Kurs
Rechnernetze
Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle
Dr. Thomas Fuhrmann

Institut für Informatik
Technische Universität München
http://www.net.in.tum.de
Course organization

- Lecture
 - Thursday, 10.15-11.45, HS 2
 - Friday, 10.15-11.45, HS 2

- Exercises
 - Typically Bi-weekly, Friday 10.15-11.45, HS 2 (may vary)

- Students are requested to subscribe to lecture and exercises at http://www.net.in.tum.de/de/lehre/ws0809/vorlesungen/master-networks

- Email list
 - for subscribers to lecture and exercises

- Questions and Answers / Office hours
 - Prof. Dr. Georg Carle, carle@net.in.tum.de
 - After the course
 - Office hours: upon reservation, possibly Thursday, 12.30 to 13.30
 - Dr. Thomas Fuhrmann, fuhrmann@net.in.tum.de
Course Material

- Course Material
 - All slides will be made available online. Slides may be updated during the course.
 - The first part of the course focuses on Internet Protocols Material by Thomas Fuhrmann
 - The second part of the course is heavily based on the course CS653 "Advanced Computer Networks" by Prof. Jim Kurose, University of Massachusetts, Amherst. http://www-net.cs.umass.edu/cs653/schedule.htm
 - The permission by Jim Kurose to use his material is gratefully acknowledged!

- Prerequisites
 - A first course on Computer Networks
 - e.g. Introduction to computer networking and distributed systems, IN0010, c.f. http://www.net.in.tum.de/teaching/SS08/rn1/uebungen/
Fundamental Books

 - Innovation: Presentation of Protocols Top-Down
 - Statements of key persons in networking research

Andrew S. Tanenbaum:

- *Computer Networks*
 Prentice-Hall, 4th edition 2003
 ISBN-10: 0130661023, 80 €

- (German translation of this edition unfortunately of low quality, Pearson Studium; 50 €, 4. Auflage 2003
 ISBN-10: 3827370469)
Additional relevant books

- S. Keshav: *An Engineering Approach to Computer Networking*. Addison-Wesley, 1999
 - Very good quantitative treatment of computer networks
 - Motivation of many design decisions

 - Many details of the implementation of TCP/IP in BSD Unix
Course Outline

- Part 1: Internet protocols
 - Link Layer protocols
 - Network Layer protocols
 - Transport Layer protocols
 - Application Layer protocols
- Part 2: Advanced Computer Networks Principles
 - review: packet-, circuit-switching
 - common themes: signaling, indirection, virtualization, multiplexing, randomization, scalability
 - implementation principles: techniques
 - network architecture: the big picture, synthesis
 - network algorithmics: self stabilization (routing examples), broadcast/controlled flooding (link state broadcast, ad hoc routing), routing and congestion control: an optimization viewpoint
 - network simulation: discrete event simulation, simulator ns-2
 - performance analysis (time permitting)