
Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

�������������	
����
�
��
��
�������������
�������������
����������

Jochen H. Schiller
�����������	�
����
������������������	��
��������

�
�������������
��
�������������������

Georg J. Carle
������������������

�����
� ����������!�
���
���
������������

��������

������������	�
� 	��
	�����
���	�� ��	�	
	�
� ���� �����

�������
���	���������
��
��������
	��	����
������������

���
� �	��������������	����������	
�

���������������
	������ 	�� ���
��
��
�������� ������������	�
� �
� ����
�����
	�
������ ����� ���
�� �
������� 	���� �	�� ����� �	��
���
��!	�����������������	������������������
���	�
����
"	���� ��� ��
������� �	� ��� ����� �	� ��	����� #��
$��� �����
����	����
�� ������������	�
� 	�� ��	�	
	�
� "���� ��"
���
��	��������%
������ ��������� ��
���� ����	�� ����
����
�������
�����		�
�� ���
��	���
�������
������� �	�����&��

	����	�� �
� ��
��� 	�� ��
�������� ��������� �	�� ��	�	
	�

��
���
���	�����������
� ������� ��
����
����� �	�� ��	�	
	�
������������	��� ����
�
�	�����'
	����
���� �		�
� �	�
�������� 	�� ���� ��	�	
	��
��
���
���	�� 	��	� ���� ������
�����	����%
���� ���
� ����	�
�� �	�� �� �	"������ ���� ���
������	����������	�	
	�� ���������� �	�"�������	��
	���
�
��	������������
��

�	��"�����	�
���������������
�������
�	��
	����(� ��	�	
	�
� "����
��������� ������� ��#�����
����
��������	�������	�������	�
����
���
�����������
����
����"����
	����	�
�
	��������	�
	��	����	
�

	�
�

���	
����
����

Today’s communication end-systems comprise a large
variety of components with different properties. For ex-
ample for mobile equipment often low power ASICs
(Application Specific Integrated Circuits) are needed,
whereas in high-end workstations the main CPU can
perform most of the networking tasks. All these systems
have to be inter-operable if it comes to the communica-
tion itself, i.e., using the same communication protocol
and protocol mechanisms.

In order to provide high performance communication
services to multimedia applications, new protocols as
well as high-performance implementation architectures
for the communication subsystems need to be designed. It
is widely accepted (see e.g. [13], [10]) that there exists no
single protocol which is able to meet these varying re-
quirements. Therefore it can be expected that in addition

to the large number of new protocols presented in recent
years, even more protocols will be developed.

For new protocols or protocol mechanisms (e.g., for-
ward error correction) to be successful, it must be possi-
ble to implement them under these varying conditions
and evaluate their performance. The traditional approach
is that a systems engineer implements the same mecha-
nisms “by hand” as software, specialized ASIC, pro-
grammable hardware etc. What is needed are tools and
strategies for a semi-automated derivation of implemen-
tations based on a common description. Furthermore, one
should be able to simulate and evaluate the target mecha-
nisms and protocols in advance on different platforms,
which is especially important as soon as specialized
hardware is involved.

This paper presents a new approach for the flexible
design of hardware-supported high-performance commu-
nication subsystems. The design process allows for map-
ping of a formal protocol specification based on the stan-
dardized Specification and Description Language (SDL,
[18]) onto a parallel, hardware-based implementation ar-
chitecture. The highly modular VLSI implementation
architecture designed with parametrizable and program-
mable components allows for service flexibility. The ar-
chitecture is not limited to a certain protocol, but allows
the implementation of a variety of high-speed protocols
and protocol mechanisms. Depending on the perform-
ance requirements, the architecture comprises RISC-
processors, programmable hardware, or application spe-
cific integrated circuits. If powerful general purpose
CPUs can be used, the specification can also be mapped
onto pure software (C-Code). To support the design proc-
ess, several tools and methods have been developed and
combined with commercial synthesis and design tools for
hardware and software. In addition, certain properties of
protocols implemented on the proposed hardware archi-
tecture can be formally verified, which is especially im-
portant for safety-critical applications. We will demon-
strate the approach on protocols featuring forward error
correction in the ATM environment implemented on a
generic multiprocessor architecture.

Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

The paper is organized as follows. Section 2 describes
the design flow used in our approach, in the 3rd section
we will demonstrate the approach on a complex example
out of the high-performance communication area. After
that follows a comparison with related work.

����������	
��

The overall design flow of our approach works as fol-
lows (Figure 1). Basis for our work is the communication
protocol or set of protocols and descriptions of imple-
mentation architectures and components as explained in
section 2.1 in more detail. The protocol specification is
done in SDL [18] with a commercial SDL-tool [30]. This
allows for early simulation of the behavior and results in
a standardized description of the protocol. The SDL
specification of the protocol is developed using the top-
down method as described in [33]. Several SDL proc-
esses are derived as result of step-wise partitioning of the
protocol functionality. The status information, states and
procedures of the processes are specified in SDL. Per-
formance-critical parts at this level of description (e.g.,
complex data structures) can be described using C or
C++ integrated into the SDL specification. The simula-
tion is based directly on SDL, timing diagrams can be
generated and simple validation checks can be applied.
For safety-critical parts of the implementation these tests
may not be satisfactory, since they are not a formal proof
of correctness of the protocol and the implementation.
Therefore, in addition to the SDL-based simulations we
can formally proof the correctness of smaller parts of the
architecture.

architecture,
components

architecture,
components

protocolprotocol

simulation
�����

simulation
�����

simulation
�����

simulation
�����

simulation,
synthesis
��	�
���
�
��	��
����	�

simulation,
synthesis
��	�
���
�
��	��
����	�

compilation
���������������
����
�������������
����

compilation
���������������
����
�������������
����

performance evaluationperformance evaluation

model

model

VHDL

VHDL

parameters

parameters

SDL

SDL,
 microcode

verification
���

verification
���

model

C-compiler
�����������
C-compiler
�����������

C

bytestream

 ����������	
��
�����
� ���� �������
���� ���� ����� ����
����

For this it is very important not only to proof proper-
ties of the protocol standing alone, but to proof a certain
behavior of the protocol implemented on a certain archi-
tecture. We have described several basic components of
the architecture using SMV [2, 3] and are now able to
integrate a protocol or parts of a protocol into this formal

description. This gives us the ability to formally proof,
e.g., if a certain protocol on a given architecture always
performs a graceful release after an error. A very simple,
but illustrative example is the following. We want to as-
sure, that during the execution of a protocol none of the
internal buffers overflow which can result in loss of data
or a complete failure. Thus, we can formally proof the
following condition for buffers (expressed in the syntax
for the tool SMV):

AG !(empty & reading) &
AG !(full & writing)

The interpretation of this expression is the following:
it should be valid on all possible execution paths that
never the signal empty and reading are true at the
same time, and it should be valid on all possible execu-
tion paths that never the signal full and writing are
true at the same time. With other words: do not read
from an empty buffer, do not write into a full buffer.

The next main step towards an implementation is the
translation of the SDL specification into either VHDL
[15, 16] or C. Additionally, we have developed a mi-
crocode compiler for microcode that is tailored to com-
munication protocols. Such microcode can be directly
executed on special protocol automata. The decision be-
tween translating to C or to VHDL is based on the per-
formance requirements. We developed a generic target
architecture for protocol processing which contains a
single or several processing units, and which allows to
execute one or several SDL processes on each processing
unit. Different processing units are available for soft-
ware-based or hardware-based execution of the SDL pro-
cesses. While the same protocol-specific SDL-
specification can be used for all generic implementation
platforms, the appropriate SDL interface specifications
must be selected and adapted.

Choosing C for process implementation requires the
additional step of compiling the C-code into a bytestream
for the DLX-RISC processor we use as generic RISC
processor in our implementation [19, 25]. Different de-
scriptions of the processor (e.g., using VHDL) and a
GNU C-compiler are publicly available. Using other
processors than the DLX requires rewriting of the inter-
faces between the processor and the internal interconnect
as described in 2.1.

The following simulation and synthesis steps are now
based on the standardized hardware description language
VHDL. For the simulation all components are put to-
gether into the desired architecture, the protocol auto-
mata are configured via the VHDL-code generated by the
SDL/VHDL-compiler or the microcode loaded, respec-
tively. If RISC processors are used, we integrate also
their VHDL model and configure them with the byte-
stream generated by the C-compiler. This allows for very

Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

detailed hardware simulation of the whole implementa-
tion including a preliminary timing. Due to the stan-
dardized language chosen several powerful commercial
tools are available for this step [5, 28]. Depending on the
performance requirements these combined descriptions
can now be synthesized onto programmable hardware
(e.g., FPGA [32, 31]) or full-custom VLSI chips (e.g., 0.7
µm CMOS [12]). Certainly, already available standard
components only have to be configured (e.g., programs
for RISC processors). This final synthesis of the system
provides us additionally with detailed timing information
for every part of a communication protocol. Based on
these parameters and more general models of the archi-
tecture, the components, and the protocol, very powerful
simulation models can be built. For this purpose we use a
discrete event simulator (BONeS, [29]) that allows for
simulation of whole networks, systems, and generation of
a large variety of different traffic patterns. Now finally,
after putting all this together, the performance of the
whole system under a simulated load can be evaluated.

������������	

The following explains the main categories of compo-
nents used in the approach in some more detail. All com-
ponents are combined using a generic target architecture
for protocol processing, called GAPPU (Generic ATM
Protocol Processing Unit). Figure 2 shows an overview of
GAPPU, already configured according to an example ex-
plained in section 3. This configuration shows an alter-
native using RISC processors and some special hardware
support.

FEC
Unit

FEC
Unit

CRC
Unit

CRC
Unit

Timer
Unit

Timer
Unit

List
Proc.
Unit

List
Proc.
Unit

DMA
Unit

DMA
Unit

Crossbar

Static Memory
(36 x 2 Kbyte = 72 Kbyte)

Static Memory
(36 x 2 Kbyte = 72 Kbyte)

Send
Mgr.

Send
Mgr.

Ack.
Mgr.

Ack.
Mgr.

Frame
Mgr.
Rcv.

Frame
Mgr.
Rcv.

Frame
Mgr.
Send

Frame
Mgr.
Send

Xmit.
Proc.

Xmit.
Proc.

Rcv.
Proc.

Rcv.
Proc.

Xmit.
Cell
Intfc.

Xmit.
Cell
Intfc.

Rcv.
Cell
Intfc.

Rcv.
Cell
Intfc.

Utopia
ATM

Interface

 ������� ��� 	�
����
�����
���	���� �������
�	�����
�
�

����

������������
• ������������	
���This component provides two sepa-

rated unidirectional connections to every component
inside the GAPPU and to the interfaces to the envi-
ronment. The peak performance of the current im-
plementation is 1.2 Gbit/s per port. Fair sharing
mechanisms and a priority scheme for the access are
integrated.

•
��	�
��� ���
	���� ���	�� �
��): Figure 2 shows 4
examples of so called PFUs, a timer, a CRC unit, a

FEC unit, and a unit for list processing. One of the
main features of this approach is the ability to pro-
vide complex and time-critical functions by dedi-
cated hardware. These components also have the
same interfaces as all other components and are con-
nected to the crossbar switch. Logically, they act as
very specialized ALUs for the other components. In
addition to the four components designed so far one
can also think of e.g. encryption/decryption or com-
pression/decompression units, i.e., very time-
consuming functions that can up to now not be exe-
cuted in pure software for real-time applications.

• ��������
��������The lower half of Figure 2 shows 6
RISC processors (shaded blocks) for the execution of
different protocol state machines. These are exactly
the RISC processors as described in [19, 25], the
only change are the interfaces to the crossbar switch.
These interfaces can include local memory and a
command FIFO. If available, the local memory is
used to store the program executed by the RISC-
processor. Otherwise, this program can also be
stored in the common memory. Again, this decision
trades cost for performance. The FIFO command
buffer is needed to decouple the execution from dif-
ferent components. In the SDL process model, dif-
ferent processes work independently and communi-
cate only via signal exchange. All signals for a proc-
essor are now stored in this FIFO buffer and exe-
cuted one after another. Thus, the semantics of a
SDL description is directly reflected in the imple-
mentation architecture.

• ���	����������
��	�
�����	���	����
����For a com-
plete hardware realization of a protocol automaton a
SPA as shown in Figure 3 can be used. The execu-
tion and control unit is directly derived from the
SDL description using StoV. In addition to the ar-
chitecture shown, a FIFO buffer (input queue) and
the interface to the crossbar switch is needed.

•
������������
��	�
�����	���	���

����If the use
of a microprogrammable protocol automaton is the
right choice in terms of speed and area requirements,
the architecture shown in Figure 4 can be used. Pro-
viding identical interfaces as a SPA, a PPA down-
loads the microcode into internal RAM and starts
autonomously the processing of incoming events.

• ��������Depending on the performance needed the
design flow allows for the integration of local mem-
ory (typ. SRAM) or the access of host memory via a
DMA engine. Typically, all programs executed on
the adapter and some context data of communication
connections should be stored on the adapter, whereas
most of the user data and connection information
remains in the host memory.

Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

• ����������	
 In our example shown in Figure 2 we
have configured UTOPIA interfaces as standardized
by the ATM-Forum towards the network. Generally,
this could be any interface, only the access method
has to be configured and adapted to the crossbar
switch. The same is valid for the host interface, on
this side typically a DMA engine adapted to e.g. a
PCI bus or SCI interconnect is used.

execution
and

control unit

input
queue

�������������	���

ALU-interfaceALU-interface

local
ALU

I/O-interfaceI/O-interface

control
data
address
command

crossbar
switch

 ������� ��� 	
���
�
�����
� ������������� ��� �� ��������
����
���
��������������������

execution unitexecution unit

RAMRAM

down
load

down
load control unit

input
queue

crossbar
switch

local
ALU

control
data
address

�������������	���

 ������� ��� 	
���
�
�����
� ������������� ��� ��
�����
������

������������������
���

�����������	
����	��
��

Based on the more general design flow described
above several alternatives can be realized. These alterna-
tives typically trade cost against performance. The ar-
chitecture allows, e.g., for different widths of data paths,
different sizes and locations of memory, or multiplexing
of certain units to be used by several other components.
The choice of the width for data paths is directly reflected
in the size of the internal interconnect. The size of the
crossbar connect we use for performance reasons grows
linearly in the width of data paths and in the number of

connected components. If changing the size from the
standard 32 bit, the interfaces between components and
interconnect have to be adapted due to the fact that not
all components can work with arbitrary data sizes. As
most protocol specifications do not require communica-
tion of all components with all other components, a
crossbar with limited connectivity can be used. For the
example of the protocol RMC-AAL (c.f. section 3.1),
only 30% of all possible communication paths need to be
supported [9].

The memory used within the architecture consists of
several local memories located at each component and
one global memory shared by all components. Addition-
ally, a DMA processor allows to use the memory of a
host system. Obviously, this results in faster accesses or
simpler implementation, respectively. The designer can
chose between different configurations, i.e. using only
one or two of the presented memory types. To reduce the
gate count, components can be shared by several other
units. The timer unit for example can be shared by sev-
eral other components. This might result in access con-
flicts if two components want to access the timer at the
same time. As the current design of the timer unit does
not support prioritized requests, sharing of the timer unit
is not a good approach if one component needs a high-
precision timer. In such cases, a separate local timer
should be used for this component.

In addition to the design of complete new systems,
sub-components can be developed and integrated into off-
the-shelf systems to enhance their performance. Figure 5
shows a schematic overview of an ATM-adapter inte-
grated into a standard computer architecture. Focus of
our considerations is the SAR/AAL (Segmentation and
Reassembly/ATM Adaptation Layer) processor. In our
design example, we have chosen the Fujitsu ALC proces-
sor [14] for AAL5 SAR/AAL processing, and an inter-
connection of the SAR/AAL processor with the host sys-
tem via DMA.

We investigated 5 different alternatives for the inte-
gration of a component for Forward Error Correction
(FEC), all based on the same protocol description (c.f.
section 3). For this sub-component design we have cho-
sen only the FEC-mechanism of the protocol for it is by
far the most time-consuming part, and, thus, special
hardware-support is required.

The alternatives differ in the interfaces and the way of
accessing data. Alternative 1 enhances the SAR/AAL
processor with capabilities for forward error correction.
Therefore, the description of this component has to be
synthesized together with the SAR/AAL chip to result in
one component. The second alternative works as a pipe-
line, where the FEC component processes all data by
changing, reading and including certain fields in a data

Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

packet. For higher performance it is possible to connect
the network adapter directly with a host CPU via dual
ported RAM as suggested in [14]. The third alternative
requires almost no hardware changes. Here, the FEC
component just snoops the bus and inserts information
when necessary. The fourth alternative acts like an addi-
tional processor inside the system. This is the alternative
without hardware modification. This is also the alterna-
tive we use for functional and performance evaluation.
The component consists in our case of a re-
programmable FPGA with additional memory integrated
in a standard workstation [31]. The fifth alternative acts
similar to the MMX enhancements of Intel Pentium
processors [17] or the VIS (Visual Instruction Set) of an
UltraSPARC [27]. In both cases the functionality of a
CPU was enhanced with several new instructions. In a
similar way we can enhance the instruction set of a RISC
processor by special commands supporting time-critical
parts of the FEC algorithm.

In addition to these architectural alternatives, our ap-
proach allows also for splitting the protocol implementa-
tion between software and hardware. A minimal hard-
ware intensive approach would realize only e.g. fast ma-
trix operations and checksum generations in hardware,
whereas all packet header generation, data transfer, and
protocol processing is done in software by either the host
CPU or a standard RISC CPU on the adapter. A full
custom hardware approach would perform most of the
activities in hardware, move data autonomously, and
manage context data needed on-chip.

system bus

host
memory

host
memory

host
CPU
host
CPU

FEC4
FEC4

FEC5
FEC5

SAR/
AAL

SAR/
AAL

FEC3
FEC3

FEC2
FEC2

FEC1
FEC1

DP
RAM
DP

RAM

 ����������	
����
���������������
��������
�����������
����������
�������������
��������

����������	
����

This section describes only the compilers used in our
approach, we refer for the other tools (simulators, hard-
ware synthesis, verification) that are used in our design
flow to their documentation [3, 5, 28, 29, 30, 32].
• ��������� ��	
��
�� ������� ���
� �
�
�������

GEODE [30] is a commercial tool set for the design
of event-driven real time systems, using the language
SDL, and Message Sequence Charts for formal
specification [18]. The tool set provides support for
graphical editing, simulation, debugging, and C code

generation. Both the graphical form called SDL/GR
and the textual phrase form called SDL/PR are sup-
ported. SDL specifications are logically composed of
a hierarchy of structural objects. It can be selected
how the GEODE code generator performs mapping
of the SDL objects process, process instance, block,
and system onto operating system processes. Specific
functionalities which are specified as abstract data
types can be mapped onto separately specified C
functions. In our flexible design approach, we also
perform mapping of abstract data types onto specific
hardware functions (e.g., list handling, priority
queues).

• ������������ ��	
��
�� ������� In order to facili-
tate the process of hardware implementation of SDL
specifications we developed a dedicated SDL-TO-
VHDL compiler called StoV. The compiler generates
VHDL code that is specially suited to the flexible ar-
chitecture shown in Figure 3. The execution and
control unit is generated automatically. The gener-
ated code makes use of the existing VHDL libraries
that describe the interfaces and the structure of the
automaton. This allows for rapid prototyping of
protocol processing units after successful simulation
of the SDL specification. As there are some SDL
constructs that cannot be translated into hardware
descriptions (e.g., infinite buffers, dynamic process
creation), an appropriate subset of SDL is supported
by the compiler.

• ����� ��	
��
�� �����
����� Based on VHDL-
descriptions of hardware on the register-transfer
level, this commercial tool synthesizes netlists for
different technologies [28]. These netlists can be
used for further synthesis on ASICs or FPGAs.
Compared to hand-coded netlists, this tool does not
achieve the optimum speed and size of the hardware
due to the complexity of the synthesis. On the other
hand, using such a powerful synthesis system is the
only way to manage the complexity of large hard-
ware systems. In addition to synthesis, this tool also
allows for simulation and debugging of VHDL-
descriptions.

• ��������
���	
��
���� ��� Our custom microcode
compiler allows for easy programming of program-
mable protocol automata (PPA) as shown in Figure 4
using a simple assembly level language. The lan-
guage comprises 19 operations, comments, labels,
and macros. The compiler converts this microcode
into a binary format which can be downloaded to the
PPA. The disadvantage of this microcode is its low
level language. Therefore, an additional SDL-to-
Microcode-Compiler is under development. The
following gives a small microcode example for an

Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

automatic repeat request (ARQ) automaton that in-
serts information about a gap in transmitted data
(i.gap) into a queue holding information over all
gaps in transmitted data and increments the number
of gaps by one. Comments in the microcode are
marked with an @, label start with */. A hardware
macro available for the automaton is in this example
PutQueue, which inserts an element into a queue.
Arithmetic and logic operations and the handling of
local memory is available via an ALU, therefore, the
protocol automaton issues ALU commands like inc
a_r to increment a certain register. This is a low
level microprogram, thus, also the program counter
has to be controlled. This is done via commands like
CNT to continue linearly with program execution or
JMP to jump to labels. After handling of an event
like i.gap in this example the new state for this
connection is stored (ARQ_ACTIVE) and the
automaton waits for the next event.

@event i.gap
*/ARQ_ACTIVE_i.gap
@insert i.gap into the queue
/:PutQueue(ARQQueue, [inp,inp])
@store gap_no + 1
arq_gap_no mv mem a_r CNT MOVE S,A
inc a_r CNT MOVE S,A
arq_gap_no mv a_r mem CNT MOVE S,A
ARQ_ACTIVE CNT SAVE
/*LabelARQ JMP SLEEP
/*END

�����������	
��
�

In the following, the application of our design method
for implementing a complex and powerful ATM-specific
protocol is presented.

����������	
���

�����
��
���
�	�����	
�����
���
�	���
	�

When applications require a higher reliability than
offered by the network, protocols with error control
mechanisms must be used. For reliable data communica-
tion, protocols with Automatic Repeat Request (ARQ)
mechanisms are widely used. ARQ mechanisms have
several drawbacks when used in high speed wide-area
networks, such as high delay in case of errors, and bad
scalability for multipoint connections. An alternative ap-
proach is Forward Error Control (FEC), which has a
number of advantages such as reducing delay and im-
proving scalability for multipoint connections when used
in high-speed wide-area networks. Appropriately dimen-
sioned FEC allows to achieve an overall gain, as shown,
e.g., by Biersack [Bier93]. However, FEC is not yet

widely used over high speed networks, as there still re-
mains a number of important questions such as how to
dimension the amount of redundancy and the size of
protocol data units. Another significant problem with
FEC, which prevented its deployment in many cases, is
the high consumption of processing power. Therefore,
the general use of FEC for high-speed communication by
processing FEC functions on a host CPU in software
would frequently result in high load share of the CPU for
FEC processing. As a consequence, the CPU is occupied
and not able to execute applications with high speed at
the same time.

There exist a number of protocols with ARQ or FEC
mechanisms which are suitable for ATM networks, and
which all have individual strengths and weaknesses. The
adaptation layer protocol RMC-AAL (Reliable Multicast
ATM Adaptation Layer) provides frame-based ARQ,
cell-based ARQ and FEC mechanisms for reliable point-
to-point and point-to-multipoint services [6, 7]. It is an
extension of AAL5 and is suitable for a hardware-based
implementation. It can be integrated into end systems
and into AAL-level servers. Figure 6 shows how RMC-
AAL is positioned within the B-ISDN Protocol Reference
Model used for ATM networks. RMC-AAL is a protocol
of the user plane. Fast execution of its protocol mecha-
nisms is therefore crucial if high performance communi-
cation services are to be provided to the applications. As
RMC-AAL is a connection-oriented protocol, less time-
critical functionality is required for connection manage-
ment.

������������	
�	������	

ATM Layer

ATM
Signalling
Protocol

RMC-SAP
RMC
Connection
Managem ent

RMC-AAL

AAL 5

 ������� ��� 	
��

�� ��� ����� ��� ���� ������� ��������
	���������
���������

����!��"�

This functionality is provided by the state machines of
the RMC Connection Management Protocol. RMC-AAL
is a special multicast protocol which can not only be used
within transmitters and receivers of ATM end systems
(i.e., systems attached to an ATM network which termi-
nate ATM connections). It can also be used within dedi-
cated servers (so-called Group Communication Servers,
GCSs). Such servers allow to perform error detection
prior to the receivers, and are able to collect and pre-
process acknowledgments. Servers are also able to per-

Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

form retransmissions in case of errors which occurred on
links between server and receiver, and also allow to
modify protocol parameters on individual sublinks [6].
Therefore, the use of servers within the network allows to
improve the service quality in several cases significantly.
Depending on the characteristics of the connections to be
supported by a server, and depending on the network
scenarios, servers are to be implemented differently.
Therefore, the existence of a semi-automated design
method which insures high performance results is very
beneficial for the implementation of a server.

For both RMC-AAL and RMC Connection Manage-
ment an SDL specification was developed. State-of-the-
art SDL-to-C compilers are adequate to generate a soft-
ware implementation of the connection management
protocol which meets the performance requirements.
However, a software implementation of RMC-AAL gen-
erated by this method does not meet the performance re-
quirements. The semi-automatic generation of a software
implementation for a user plane protocol is only useful
for the purpose of protocol testing.

����������	
��
���
�����	��	�������

RMC-AAL has been formally specified in SDL for
both end systems and GCSs. Figure 7 shows the SDL
processes of RMC-AAL for a GCS that supports only
frame-based ARQ. Each octagon represents a process in
SDL.

For illustration purposes, the cooperation of the differ-
ent processes is presented in the following. A data frame
arriving from the sender enters the diagram at the upper
right corner and is lead to the process FM_Receive by the
process Filter_snd, which forwards frames depending on
their types. The process RM_Receive allocates memory
and stores the frame. The frame is then scheduled for
transmission by the process Send_Manager. The process
FM_Send assembles the head of the frame and passes the
frame to the process Switch_rcv. This takes care that no
cells of different frames are interleaved. Acknowledg-
ments arrive at the process Filter_rcv. The process
RM_Repeat interprets the acknowledgments. The results
are passed to the process Pool_Manager. The core of the
error control mechanism is formed by the process
Frame_Control. RM_Receive starts a Frame_Control
process for each data frame the retransmission of which
has been requested. Acknowledgment frames are created
by the process FAck_Creator. The process Switch_snd is
necessary only in the case of cell-based ARQ; thus, in
this specification it just forwards the acknowledgment
frames generated by the process FAck_Creator.

This explanation shows the high degree of process
interaction in the selected protocol. Our target architec-

ture GAPPU supports this high degree of interaction by
providing multiple support for inter-process communica-
tion: communication using hardware-support and syn-
chronized access to local memory; communication using
the global memory, and communication using dedicated
addresses within the host memory.

����������
�
	��
���

After applying all the design steps as explained in
section 2, we generated two different implementations,
both based on the same SDL-specification and GAPPU as
generic target architecture.
• ���������	

����

	�: The first solution is based on

RISC-processor and special hardware for time-
critical functions as shown in Figure 2. For this con-
figuration we synthesized 6 DLX processors, timer
and list processing components, interfaces, and a
crossbar switch (CBS) with full connectivity. The
gate count for these components is shown in Figure
8. The complete GAPPU configured with these com-
ponents uses ca. 150000 gates, and allows for a clock
speed of 50 MHz using 0.7 µm CMOS (for compari-
son: the Intel Pentium II processor core is designed
using a 0.35µm process and comprises ca. 7.5 mil-
lion transistors, i.e., ca. 1.8 million gates). To avoid
having a separate RISC-processor for every process
shown in Figure 7, we are able to map several proc-
esses onto one processor depending on the perform-
ance requirements (c.f. section 3.4).

• ������
����	
��	�� ���������
����
�
: To compare
different solutions we also synthesized every process
in Figure 7 onto its own hardware component using
StoV. Figure 9 shows the resulting gate count for
each process. This shows clearly, that the gate count
for these specialized components is less than the gate
count even for a simple RISC processor as the DLX.
Therefore, this is a proper solution if power con-
sumption and high performance are design goals.
The SDL specification for this synthesis consists of
ca. 1700 lines of code, the generated VHDL code for
hardware synthesis is 15k lines of code. Each of
these full-custom protocol automata can run at a
clock speed of at least 100 MHz (the internal critical
paths are between 5ns and 9.5ns).

�����������	��	���	
��
���
�����	����	���������
������	��
����
����

A simple mapping of the 11 SDL processes shown in
Figure 7 onto the implementation architecture GAPPU
would require 11 protocol processing units. This simple
one-to-one mapping results in a large number of proc-

Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

essing units, and in intensive interprocess communica-
tion. The SDL processes of RMC-AAL do not have iden-
tical processing requirements. This would allow to use
processing units with different processing capabilities.
However, several using processing units with identical
processing capabilities, and mapping SDL processes onto
these processing units in a way that bottle-necks are
avoided allows to reduce communication overhead, and
allows to meet the processing requirements with lower
hardware complexity at the same time. We searched for a
mapping which results in high protocol processing per-
formance similar to the one-to-one mapping, while re-
ducing the implementation complexity. The solution we
identified as suitable maps the 11 SDL processes of
RMC-AAL onto 6 RISC-Processors, and uses additional
protocol functional units (PFUs) for processing of func-
tions involving FEC, CRC, timers and lists. The GAPPU
configuration shown in Figure 2 represents this mapping
result.

�����������	
��

The automatic derivation of a high-performance
communication subsystem from a formal specification is
already for a relatively long time subject of ongoing re-
search. While existing methods like [20] could be suc-
cessfully applied to lower-layer protocols (e.g., for proto-
cols of the MAC sublayer), the successful application of
these methods for complex, transport-level protocols has
not yet been demonstrated. In addition, many existing
approaches are based on specialized specification lan-
guages, such as e.g. ASPL [21] which is not supported by
any other tool then the one especially developed for this
language. This means that a developer cannot utilize the
many person years of experience implicitly available in
many commercial tools.

Table 1 shows a comparison of some of the existing
approaches for communication systems with hardware
support. PSi [22], [1] and ASPL [21], [20] are two ap-
proaches that deal directly with the synthesis of full cus-
tom hardware based on a formal specification.

Switch_rcv

Send_Manager

[SendDataFramePart,
StopDataFrame]

macro Transp_Dcl

block Transport
Filter_rcv

Pool_Manager

Switch_snd

FM_Receive

[DelayedRequest,
CollectRequest]

Frame_Control (0,n)FAck_Creator

[FAckList.ind,
FAckStart]

[FrameStart, FrameContinue,
FrameEnd, FrameDiscard]

[DiscardRequest,
RequestDone]

[SendFrame, SendContinue,
SendDiscard]

FM_Send

SetFramePart.req, IAck, SndLWE]

FM_Repeat

[FAckArrived]

GetFramePart.req,
GetFrameInfo.req]

[ReleaseFrame.req,

GetFrameInfo.ind]
[OK.ind, NOK.ind, GetFramePart.ind,

Filter_snd

CPCS_snd

[CPCS.UnitData.Signal]

[CPCS.UnitData.Invoke]

[WaitingForPart]

CPCS_rcv

CPCS_rcv_out

[FrameStart, FrameEnd]

CPCS_snd_in

CPCS_rcv_in

CPCS_rcv

[CPCS.UnitData.Signal]

CPCS_snd_out

CPCS_snd

[CPCS.UnitData.Invoke]

[SendFAck]

[DataFrameArrived]

[OK.ind, NOK.ind]

[FAckStart]

RecFAckNeg, RecFAckPos]
[RecLWE, RecUWE,

[FAckDone,
FAckList.req]

[SetRequest]
[OpenFrame.req, PrepareFrame.req,

 ����������	
���
�����������������������������	�

Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

0

5000

10000

15000

20000

25000

30000

CBS DLX TIMER LIST Int_DLX I_MEM I_LIST I_TIMER

Gates

 ������� ��� 	
��� �
���� �
�� ���� �������
����
�� �
���
�
����
�

6200

6400

6600

6800

7000

7200

7400

7600

7800

8000

8200

F
ilt

er
_s

nd

F
M

_r
cv

P
oo

l_
M

an

F
M

_S
en

d

S
en

d_
M

an

S
w

itc
h_

rc
v

F
ilt

er
_r

cv

F
M

_R
ep

F
A

ck
_C

rt

F
co

nt
r

S
w

itc
h_

sn
d

��
��
��
��
��

 ����������	
��� �
���� �
�� ���� �
����
�� �
����
�� ����
�����������
�
�
��
��
�
�

Both approaches are limited to lower layer protocols
and lack aspects of system integration. Axon [26] and
Afterburner [11] are examples of network adapters which
are fully designed by hand to derive a very high perform-
ance. Therefore, they lack the support of specification or
synthesis. The Washington University Broadband Termi-
nal (WUBT, [24]) and the Desk Area Network (DAN,
[23]) are two examples of complete systems, i.e., they in-
clude not only the network adapter, but also host system,
storage, and operating system. Typically, those systems
have a quite high performance, good system integration,
but no support for formal techniques like specification or
semi-automated synthesis.

Special features of the proposed approach are a very
high performance, high modularity, but also the ability to
support a wide range of specification, simulation, and
synthesis techniques. A better system integration is sub-
ject of ongoing work. A relatively new approach to sup-
port implementations which are able to meet largely
varying performance requirements on different platforms
is the use of Java. The advantage of this approach is the
existence of a language which allows to use a single de-
scription and implementation on many different plat-
forms. A number of disadvantages can be identified. Java
was not designed with the intention to support the im-

plementation of communication protocols, and therefore
lacks several features which can be found in protocol-
specific languages. Examples are support for validation
by simulation, and also verification by tools which apply
strong mathematical methods for proving correctness. In
addition, Java, as many other programming languages, is
already close to an implementation of, e.g., processes and
data structures, whereas a specification with an appropri-
ate language gives more freedom in this respect.
 �
���� ���
��
���
��
����
�
��������
�

Name

PSi - + o - + +
ASPL - o o o + o
AXON + + o o - o
WUBT + + + o - - - -
DAN + + + + + - - -
After-
burner

+ + + + o - - -

New Ap-
proach

+ + + + + + + +

����������	���

The approach for semi-automated design of protocol
components presented in this paper represents a frame-
work which can be applied to a large number of proto-
cols, and for a large number of implementation plat-
forms. Furthermore, a wide range of already commer-
cially available tools are supported allowing for extensive
simulation and state-of-the-art synthesis. Suitable com-
munication protocols can be found in the ISO/OSI com-
munication layers 2, 3 and 4. Example network types are
conventional ATM networks where high throughput and
exact match of traffic characteristics are required, and
also wireless cellular networks, where high error correc-
tion capability is a major concern. Example target im-
plementation platforms range from network adapters for
conventional PCs and workstations, where high protocol
processing capability is a major concern, to mobile ter-
minals where low energy consumption is of high impor-
tance.

The design approach was applied to a relatively com-
plex multicast protocol with error control by FEC and
ARQ (RMC-AAL, [8]). The synthesis results show that
this approach not only supports the design of different
communication systems based on one common specifica-
tion (full custom, RISC processors, sub-system design),
but also results in very small and efficient hardware
components. Future work will concentrate on system in-

Sy
st

em

Pe
rf

or
m

-
an

ce

Sp
ec

if
i-

ca
ti

on

Fl
ex

i-
bi

li
ty

M
od

u-
la

ri
ty

Sy
nt

he
si

s

Reprint: 31st Annual IEEE Hawaii International Conference on System Sciences, HICCS, 1998

Copyright © by The Institute of Electrical and Electronics Engineers, Inc.

tegration aspects such as the interaction of the synthe-
sized communication systems with operating systems and
host architectures.

�������������

[1] Balraj, T.S.; Yemini, Y.: �������� ���� 	
���
�
�� ����
� ��
����������������	��
����������
, in: Pehrson, B.; Gunning-
berg, P.; Pink, S. (ed.): Protocols for High-Speed Networks, III,
North-Holland, Stockholm, May 1992, pp. 19-34
[2] Beer, I.; Ben-David, S.; Geist, D.; Gewirtzman, R.; Yoeli,
M.: Methodology and System for Practical Formal Verification
of Reactive Hardware, 6th International Conference on Com-
puter Aided Verification, CAV ’94, Stanford, California, USA,
June 1994, pp. 182-193
[3] Burch, J. R.; Clarke, E. M.; Long, D. E.; McMillan, K. L.;
Dill, D. L.: Symbolic Model Checking for Sequential Circuit
Verification, Technical Report CMU-CS-93-211, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA, July 1993
[4] Biersack, E.: ��
��
������ ����������� ��� ��
 �
!� �

�

��

����������an ATM Environment, IEEE Journal on Selected
Areas in Communication, Volume 11, Number 4, May 1993
[5] Cadence Design Systems, Inc.: Documentation of DFW II
(Design Framework II), Cadence Design Systems, Inc., San
Jose, California, 1994
[6] Carle, G.; Schiller, J.: Enabling High Bandwidth Applica-
tions by High-Performance Multicast Transfer Protocol Proc-
essing, 6th IFIP Conference on Performance of Computer Net-
works, PCN95, Istanbul, Turkey, October 1995
[7] Carle, G.; Zitterbart, M.: ATM Adaptation Layer and Group
Communication Servers for High-Performance Multipoint
Services, 7th IEEE Workshop on Local and Metropolitan Area
Networks, Marathon, Florida, March 1995
[8] Carle, G.: Towards Scalable Error Control for Reliable
Multicast Services in ATM Networks, 12th International Con-
ference on Computer Communication, ICCC'95, Seoul, Korea,
August 20-25, 1995
[9] Carle, G. : Zuverlässige Gruppenkommunikationsdienste in
ATM-Netzen (in German), PhD Dissertation, University of
Karlsruhe, Faculty of Computer Science, December 1996
[10] Diot, C.; Dabbous, W., and Crowcroft, J.: "Multipoint
Communication: A Survey of Protocols, Functions, and Mecha-
nisms, IEEE Journal on Selected Areas in Communications,
Vol. 15, Nr. 3, April 1997, pp. 277-290
[11] Dalton, C.; Watson, G.; Banks, D.; Calamvokis, C.; Ed-
wards, A.; Lumley, J.: Afterburner, IEEE Network, July 1993
[12] European Silicon Structures: Documentation of 1.0µm and
0.7µm-library, European Silicon Structures, Rousset, France
[13] Floyd, S.; Jacobson, V.; McCanne, S.; Liu, C.; Zhang, L.:
A Reliable Multicast Framework for Light-Weight Sessions
and Application Level Framing, Computer Communications
Review, Vol. 25, Nr. 4, Proceedings of ACM SIGCOMM'95,
Cambridge, Massachusetts, August 1995
[14] Fujitsu: ALC (MB86687A) Adaptation Layer Controller,
Fujitsu,
http://www.fmi.fujitsu.com/products/network/atm.html, 1996
[15] IEEE: IEEE Standard VHDL Language Reference Manual,
IEEE Std 1076-1987

[16] IEEE: IEEE Standard VHDL Language Reference Manual,
ANSI/IEEE Std 1076-1993
[17] Intel Corp.: MMX technology, Intel Corp.,
http://www.intel.com/sites/mmx/, 1997
[18] ITU-T (formerly CCITT): Functional Specification and
Description Language (SDL), Recommendations Z.100-Z.104,
Blue Book, October 1989
[19] Hennessy, J.L.; Patterson, D.A.: Computer Architecture a
Quantitative Approach, Morgan Kaufman Pub., 2nd ed., San
Francisco, California, 1996
[20] Krishnakumar, A.S.: "������������������ ��
�����������
����� �
�������, Proceedings of the 5th Annual IEEE Interna-
tional ASIC Conference and Exhibit, Rochester, New York,
September 1992
[21] Krishnakumar, A.S.; Kneuer, J.G.; Shaw, A.J.: #���$%
"��"
��������
�� ��
�#�����
��!��
������� ��
������������, in:
Danthine, A.; Spaniol, O. (ed.): High Performance Networking,
IV, IFIP, North-Holland, 1993, pp. 383-396
[22] Morales, F.A.; Abu-Amara, H.: $�����������#��!�
��
���
����
� ��
� �������� ��
������������ ��� ������������ ���&�����
��
�
������� ����"'�, 3rd IEEE International Symposium on High
Performance Distributed Computing, San Francisco, April
1994, pp. 270-277
[23] McAuley, D.R.: �
�
������ ������� ��

�
�� ��
� ���� $��&
"
���'�� �
&, 4th International Workshop on Networking and
Operating System Support for Digital Audio and Video,
NOSSDAV ’93, Lancaster, U.K., LNCS 846, Springer-Verlag,
November 1993
[24] Richard, W.D.; Costa, P.; Sato, K.: 	���(����������)���
��
�����*
��!+��!�	�
�����, IEEE Journal on Selected Areas
in Communications, Vol. 11, No. 2, February 1993
[25] Sailer, P.M.; Kaeli, D.R.: 	���$�,�����
�����������"
����
�����
��#��!+��&, Morgan Kaufman Pub., San Francisco, Cali-
fornia, 1996
[26] Sterbenz, J.P.G.; Parulkar, G.M.: ",�'� #����'�� �
&
����
����� "
��������
�� ��
� -���+��� ��������������,� in: John-
son, M. J. (ed.): Protocols for High-Speed Networks, II, North-
Holland, 1991, pp. 211-236
[27] Sun Microelectronics: 	��� ���� ����
������� ���, Sun Mi-
croelectronics, http://www.sun.com/sparc/vis/, 1997
[28] Synopsys Inc.:�$������������������������
.�$����������

���
.� $������ "����/�
 etc., version 3.2a, Synopsys, Inc.,
Mountain View, California, USA, 1995
[29] Systems & Networks: $������������� ��� *�'��� 0*���&
�
�����!� '�� �
&� ��������
1, Systems & Networks, Foster
City, California, USA, 1995
[30] Verilog SA: $����������������-��$�, Verilog SA, Tou-
louse, France
[31] Virtual Computer Corporation: ���2�� 	��������� ����
�
����, Virtual Computer Corporation, Reseda, California, USA,
May 1995
[32] Xilinx: 	����
��
����+���������$����#��!+��&, Xilinx,
Inc., San Jose, California, USA, 1994
[33] ITU-TS Recommendation Z.100 - Appendix: "

��!������
��!���%��$�������!������-��!������.��$��*�+����
�
��.�Tele-
communication Standardization Sector of International Tele-
communication Union, Geneva, Switzerland, 1988

