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I. Extreme Value Theory Delay Models of Containers TI.ITI
What? Why?
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Containerized applications are important for sharing
hardware resources and providing resources on-demand

Applications with user interaction are latency-sensitive
High impact of tail-latencies
No available forwarding delay benchmark of containers
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I. Extreme Value Theory Delay Models of Containers TI.ITI
What? Why?

Container Container (Virtual Machine]
Apphcanon [ Application ] [Application ]
. . e Containerized applications are important for sharing
Libraries [ Libraries ] [ Libraries ] hardware resources and providing resources on-demand
[ Guest OS ] e Applications with user interaction are latency-sensitive
[ Container Engine ] e High impact of tail-latencies
- . * No available forwarding delay benchmark of containers
[ Host OS ]
[ Hardware ]

= Can we predict tail-latency behavior of containers?
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I. Extreme Value Theory Delay Models of Containers TI.ITI
Modeling Approach: Extreme Value Theory

Extreme Value Theory (EVT):

e Predict future extreme events based on historical data
e Previously used for natural disaster prediction
e High latencies are a type of extreme event in networks

Modeling Approach:

e Select a threshold (what are tail latencies?)

e Fit a Generalized Pareto Distribution (GPD) to values above threshold using, e.g., a Maximum Likelihood Estimator
(MLE)

e Obtained model can be used to extrapolate to future events, assess "expected worst-case behavior”
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I. Extreme Value Theory Delay Models of Containers TI.ITI
EVT Model
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e Return level: Expected worst-case latency
e Return period: Within this timeframe

e E.g. within 10 minutes the expected worst-case
latency is 30us, within 20 minutes it is 35us

Model convergence:

e Expected worst-case latency converges or diverges
based on sign of tail parameter

e Return period — co

e/'/'o d 10000 &(b‘
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I. Extreme Value Theory Delay Models of Containers

Return level is the latency that is expected to be exceeded exactly once during a given timespan
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I. Extreme Value Theory Delay Models of Containers

. . L

Return level is the latency that is expected to be exceeded exactly once during a given timespan

Experiment:
Xperiment Platform Exceedances of return level
e Divide container latency measurements -
into 20% training, 80% evaluation gs:gﬁ:e'\r/k)del :gg

e Fit an EVT model to the 20%
e Make predictions for the remaining 80%
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Return level is the latency that is expected to be exceeded exactly once during a given timespan

E i :
Xperiment Platform Exceedances of return level
e Divide container latency measurements -
into 20% training, 80% evaluation gs:gﬁ:e'\r/k)del :gg
e Fitan EVT model to the 20% -
Virtual Machine 2.58

e Make predictions for the remaining 80%

= The predicted worst-case latency is exceeded 1.5 times instead of the expected one time on average
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I. Extreme Value Theory Delay Models of Containers

. . L

Return level is the latency that is expected to be exceeded exactly once during a given timespan

E i :
Xperiment Platform Exceedances of return level
e Divide container latency measurements -
into 20% training, 80% evaluation gg:gie:e'\r/k)del :gg
e Fitan EVT model to the 20% -
Virtual Machine 2.58

e Make predictions for the remaining 80%

= The predicted worst-case latency is exceeded 1.5 times instead of the expected one time on average

(this type of verification of an EVT model is typically not done in literature due to scarcity of evaulation data)
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Il. Network Calculus as Latency Quantile Predictor Assistant

What? Why?
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Il. Network Calculus as Latency Quantile Predictor Assistant

Network Calculus Basics

Data
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II. Network Calculus as Latency Quantile Predictor Assistant
Network Topologies

(a) Network I (b) Network II (c) Network IIT
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Il. Network Calculus as Latency Quantile Predictor Assistant

Latency Quantile Point Predictions
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Il. Network Calculus as Latency Quantile Predictor Assistant

Importance of Network Calculus Results

Analysis methods:

e Total Flow Analysis (TFA): Bounds on flow aggregates
on per-hop basis

e Separate Flow Analysis (SFA): Bounds per flow using
left-over service curves and service curve convolutions

e SFA bounds tighter or equally tight as TFA bounds

e (other analytical and linear programming-based
approaches exist)
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Importance of Network Calculus Results
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Conclusion TuTl

I. Extreme Value Theory Latency Models of Containers
e EVT suitable to model tail latencies

Wiedner, F., Helm, M., Daichendt, A., Andre, J., & Carle, G. (2023). Containing Low Tail-Latencies in Packet Processing
Using Lightweight Virtualization. In 35rd International Teletraffic Congress (ITC-35).

Il. Network Calculus as Latency Quantile Predictor Assistant
e Network Calculus bounds helpful for other modeling approaches

Helm, M., & Carle, G.. (2023). Predicting Latency Quantiles using Network Calculus-assisted GNNs. In Proceedings of
the 2nd Graph Neural Networking Workshop 2023 (GNNet '23).
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