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Network Functions Are Pervasive 

3

Firewall NAT Load-Balancer

Network Functions Virtualization is an essential 
architectural paradigm of today’s networks
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Network speeds have been increasing dramatically
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Talk goal
How to handle stateful network functions for terabit per second 

of traffic? 

 High-speed stateful software packet processing
  Switch-assisted stateful packet processing
  NIC-assisted stateful packet processing
  NFV service chain combined stateful packet processing

PR TOM BARBETTE



Connection Tracking
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Connection tracking is about classifying packets in micro-flows

FW

LB

IDS



Connection Tracking
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Connection tracking is about classifying packets in micro-flows

is flow #1

is flow #2

FW

LB

IDS

is flow #1

is flow #2



Connection Tracking in a (stateful) Load Balancer
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5-tuple Flow Selected server

100.0.1.1:8888->100.100.100.100:80, TCP 1 Server #3

100.0.1.2:9999->100.100.100.100:80, TCP 2 Server #1

Send all the flow’s packets to the same server

LB

Connection Tracking



Challenges in High-speed Connection Tracking
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On a 100 Gbps link, packets arrive every 6.72 ns

A DRAM access takes ~100 ns

Data structures must leverage CPU caches
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How do we build 100GbE+ software stateful Network 
Functions?

PR TOM BARBETTE



Hash Tables (HT) in a nutshell

17



Hash Tables (HT) in a nutshell
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Index Data

00

01

02

03

04

05

06

11.11.1.1:1111->100.100.100.100:80, TCP

22.22.2.2:2222->100.100.100.100:80, TCP

Hash 
Function

Perfect Hash Functions are difficult to implement

33.33.3.3:3333->100.100.100.100:80, TCP

33.33.3.3:3333->100.100.100.100:80, TCP

22.22.2.2:2222->100.100.100.100:80, TCP

11.11.1.1:1111->100.100.100.100:80, TCP

44.44.4.4:4444->100.100.100.100:80, TCP44.44.4.4:4444->100.100.100.100:80, TCP

HT implementations differ for collision handling



Chaining Hash Tables
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Index

00

01

02

03

04

05

06

Hash 
Function

Lists can grow infinitely!

100.0.1.3:1111->100.100.100.100:80, TCP

11.11.1.1:1111->100.100.100.100:80, TCP

22.22.2.2:2222->100.100.100.100:80, TCP

33.33.3.3:3333->100.100.100.100:80, TCP

11.11.1.1…

33.33.3.3…

22.22.2.2… 44.44.4.4…

44.44.4.4:4444->100.100.100.100:80, TCP

66.66.6.6..... 77.77.7.7



Index Data
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06

Cuckoo Hash Tables
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Hash 
FunctionUnder high load, long swapping chain

22.22.2.2:2222->100.100.100.100:80, TCP
11.11.1.1…

33.33.3.3…

22.22.2.2…

44.44.4.4:4444->100.100.100.100:80, TCP

Primary Location

Secondary Location

44.44.4.4…

Constant time lookups



Testbed
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2 server machines connected back-to-back

Mellanox ConnectX-5 @ 100Gbps

FastClick Stateful Load Balancer 
configuration

Traces captured at our campus and CAIDA

Multiple parallel replays

Device Under Testing

Traffic Generator

FastClick
Replay and Measurement

FastClick
Connection
Tracking

LB
Hash Table

100 Gbps link

Traces
[HPSR’21] Girondi, M Chiesa, T Barbette



Studied Hash Tables
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N. Le Scouarnec, Cuckoo++ Hash Tables in ANCS 2018
M. Herlihy et al., Hopscotch hashing in DISC 2008
P. Celis et al., Robin hood hashing in SFCS 1985



Single core: throughput

23

4M entries hash table, ≈ 55 Gbps
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4M entries hash table, ≈ 55 Gbps



Single core: throughput
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Single core: throughput
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4M entries hash table, ≈ 55 Gbps



Single core: throughput
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4M entries hash table, ≈ 55 Gbps



Single core: throughput
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4M entries hash table, ≈ 55 GbpsCAIDA has ≈ twice flows, similar trends 
Study of Insertion and Lookup cycles in the paper

1 core is not enough to handle 100 Gbps



Core scaling: single table
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Core scaling: single table
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8M entries hash table, ≈ 100 Gbps



Core scaling: single table
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8M entries hash table, ≈ 100 Gbps



Core scaling: single table
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8M entries hash table, ≈ 100 Gbps



Core scaling: single table
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8M entries hash table, ≈ 100 GbpsLock-Free heavily depends on the workload



Multi core scaling: core sharding
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Leverage RSS to spread packets to multiple independent cores



Core scaling: sharding
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4M hash tables, 32x parallel traces ≈ 100 GbpsAll implementations scale always linearly



The aging dilemma
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When flows terminate, their entries should be removed
Timer-based approach is needed

Deletion could be more delicate than insertion: concurrency

Three implementations studied:
 Scanning
 Lazy Deletion
Timing Wheels



Flow Table maintenance techniques
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Scanning
Parse the table periodically, deleting expired entries.

Lazy Deletion
compare last access time upon collisions.

Timing Wheels
entries are registered in time-based buckets. 



Deletion: scaling
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Caida, 4M hash tables, 32x parallel traces ≈ 100 Gbps
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Cuckoo (Per-Core) + Lazy
Cuckoo LF + Timer wheel
Cuckoo LF + Lazy

At scale, Lock Free is 10% slower than Core Sharding
Timing wheels can be as effective as Lazy Deletion
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Conclusion: we have spare capacity
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Can we design a packet processing pipeline that handles
one terabit per second of traffic 
on a single dedicated device?

PR TOM BARBETTE



The bandwidth limit
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H Payload

Switch

Dedicated NF Server
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The bandwidth limit
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H Payload

Switch

Dedicated NF Server
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The bandwidth limit
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H Payload

Throughput capped by 
the network bandwidth

(100-400 Gbps)

Need to deploy more servers

Switch

Dedicated NF Server
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The bandwidth limit
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H Payload
Not cost-effective!

Need to deploy more servers

Switch

Dedicated NF Servers

Throughput capped by 
the network bandwidth

(100-400 Gbps)
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The bandwidth limit
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H Payload
Not cost-effective!

Need to deploy more servers

Switch

Dedicated NF Servers

Throughput capped by 
the network bandwidth

(100-400 Gbps)

Many network functions need only headers!

Send Only Relevant Bits!

PR TOM BARBETTE



Send Only Relevant Bits!
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PayloadH

HHHHH HHHHH HHHHH HHHHH H

Free up bandwidth Higher cache-hit ratio

PayloadH

1.5KB

70B

PR TOM BARBETTE



Send Only Relevant Bits!
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Where to store payloads? 

Store Payloads on the Switch

PayloadPark [CoNEXT '20] 

HHHHH HHHHH HHHHH HHHHH H

PayloadH

H

Payload

Switch

Dedicated NF Server

PR TOM BARBETTE



Send Only Relevant Bits!
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HHHHH HHHHH HHHHH HHHHH H

PayloadH

ad

PayloH

Where to store payloads? 

Store Payloads on the Switch

PayloadPark [CoNEXT '20] 

Switch

Dedicated NF Server

PR TOM BARBETTE



Store Payloads on the Switch
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What is the impact?
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Store Payloads on the Switch
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What is the impact?

Let’s examine a CAIDA trace

PR TOM BARBETTE



Store Payloads on the Switch
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Store Payloads on the Switch
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What is the impact?

Let’s examine a CAIDA trace

Baseline PayloadH
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Store Payloads on the Switch
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What is the impact?

Let’s examine a CAIDA trace

Baseline
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PayloadH

PayloadH
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Store Payloads on the Switch
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Let’s examine a CAIDA trace

Baseline

PayloadPark-like

Ideal

PayloadH

H

PayloadH

PR TOM BARBETTE



Store Payloads on the Switch
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Store Payloads on the Switch
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How to extend the switch memory?

PayloadH

H

PayloadH

Packets sent to the NF

What is the impact?

Let’s examine a CAIDA trace
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How to extend the switch memory?
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Using a dedicated external memory (e.g., HBM)

Simple solution

HBM

PayloadPayloadProgrammable Switch

PR TOM BARBETTE



How to extend the switch memory?
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Higher energy footprint

High-cost 

HBM

HBM

HBM

HBM

PayloadPayloadProgrammable Switch

Wastes some ports on the switch

Simple solution

Using a dedicated external memory (e.g., HBM)

Not cost-effective

PR TOM BARBETTE



How to extend the switch memory?
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Shared Server

Shared Server

Shared Server

Shared Server

PayloadPayloadProgrammable SwitchExploiting a disaggregated pipeline on shared servers 

Better resources usage

Low-cost 

Many spare resources in the datacenter

The Ribosome Approach

PR TOM BARBETTE

[NSDI’23] Mariano Scazzariello, Tommaso Caiazzi, Hamid 
Ghasemirahni, Tom Barbette, Dejan Kostić, Marco Chiesa



The Ribosome Approach
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Hdr Payload

Dedicated NF Processor

Programmable Switch

Shared External Memory
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The Ribosome Approach
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Hdr Payload

Dedicated NF Processor

Programmable Switch

Shared External Memory
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The Ribosome Approach
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Dedicated NF Processor

Programmable Switch

Shared External Memory

Hdr
Payload
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The Ribosome Approach
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Dedicated NF Processor

Programmable Switch

Shared External Memory

HdrHdr

Payload
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The Ribosome Approach
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Dedicated NF Processor

Programmable Switch

Shared External Memory

Payload

Hdr
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The Ribosome Approach
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Dedicated NF Processor

Programmable Switch

Shared External Memory

PayloadHdr
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The Ribosome Approach
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Dedicated NF Processor

Programmable Switch

Shared External Memory

PayloadHdr

PR TOM BARBETTE



Shared External Memory

Programmable Switch

Dedicated NF Processor

Intel Tofino

FastClick

Implementation

71PR TOM BARBETTE



RDMA!

Shared External Memory

Programmable Switch

Dedicated NF Processor

RDMA servers

Intel Tofino

FastClick

Implementation

72

How to access the remote 
memory without affecting 

the server CPUs?

PR TOM BARBETTE



Challenges
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Dedicated NF processor

Programmable switch

Shared external memory

FastClick

Intel Tofino

RDMA servers

High speed reliable RDMA 
Connection on multiple 

servers for storing payloads

Reconstructing millions of 
packets per second!

See the paper!

Where to store headers while 
retrieving payloads from 

RDMA servers? 

Store Headers on the Switch

How to access the remote 
memory without affecting 

the server CPUs?

RDMA!

PR TOM BARBETTE



Store Headers on the Switch
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Dedicated NF processorFastClick

Payload

Intel Tofino

HdrHdr

RDMA servers

PR TOM BARBETTE



Intel Tofino

Store Headers on the Switch
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Dedicated NF processor

Shared external memory

Payload

RDMA servers

FastClick

Intel Tofino

Hdr

PR TOM BARBETTE



Store Headers on the Switch
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Dedicated NF processor

Shared external memory

FastClick

RDMA servers

Hdr

Payload

Intel Tofino

RDMA Read

PR TOM BARBETTE



Store Headers on the Switch
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Dedicated NF processor

Shared external memory

FastClick

RDMA servers

Hdr

RDMA Read

Payload

Intel Tofino

PR TOM BARBETTE



Store Headers on the Switch
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Dedicated NF processor

Shared external memory

FastClick

RDMA servers

Hdr

Payload

Intel Tofino

R
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Store Headers on the Switch

79

Dedicated NF processor

Shared external memory

FastClick

RDMA servers

Hdr

Intel Tofino

PayloadR

PR TOM BARBETTE



Store Headers on the Switch
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Dedicated NF processor

Shared external memory

FastClick

Hdr Payload

4µs (max) 

1∗1012𝑏𝑏𝑏𝑏𝑏𝑏
8∗103𝑏𝑏

∗ 4µ𝑠𝑠 = 500 headers

500 ∗ 72𝐵𝐵 = 36000𝐵𝐵

RDMA servers

Intel Tofino

PR TOM BARBETTE



Evaluation
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Testbed and Workload Generation
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Traffic 
Generator

Multicast Switch

Ribosome Switch

RDMA
Server 1

RDMA
Server 2

RDMA
Server 3

RDMA
Server 4

NF

PR TOM BARBETTE



83

Testbed and Workload Generation

Traffic 
Generator

Multicast Switch

Ribosome Switch

RDMA
Server 1

RDMA
Server 2

RDMA
Server 3

RDMA
Server 4

NF
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Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?
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300 Gbps
With a bandwidth

requirement on the NF of 
~20 Gbps

115 Gbps
Stores only 160B 

of payloads100 Gbps
Network I/O 
bottleneck

Tested NF: Forwarder
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With a bandwidth

requirement on the NF of 
~20 Gbps
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bottleneck
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Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?
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Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?
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With a bandwidth

requirement on the NF of 
~20 Gbps

115 Gbps
Stores only 160B 

of payloads100 Gbps
Network I/O 
bottleneck

Ribosome enables multi-100Gbps packet processing!
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Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?
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Due to RDMA overheads
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Ribosome enables multi-100Gbps packet processing!
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Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?
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~75Gbps for RDMA server
Due to RDMA overheads

How many servers to potentially  
process 1Tbps?

14 shared RDMA servers

300 Gbps
With a bandwidth

requirement on the NF of 
~20 Gbps

115 Gbps
Stores only 160B 

of payloads100 Gbps
Network I/O 
bottleneck

Ribosome enables multi-100Gbps packet processing!
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~75Gbps for RDMA server
Due to RDMA overheads

How many servers to potentially  
process 1Tbps?

14 shared RDMA servers

A datacenter 
has thousands 

of servers!

300 Gbps
With a bandwidth

requirement on the NF of 
~20 Gbps

89

Throughput Gain

115 Gbps
Stores only 160B 

of payloads100 Gbps
Network I/O 
bottleneck

Ribosome enables multi-100Gbps packet processing!
How much Ribosome improves the per-packet throughput on the NF server?
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Latency Gain

How much Ribosome improves the latency gain on the NF server?

~ 110 µs
Due to congestioned queues and 

the high transmission rate

~25 µs
Almost constant
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Latency Gain

How much Ribosome improves the latency gain on the NF server?

4x
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Latency Gain

How much Ribosome improves the latency gain on the NF server?

4x

And the tail latency? Similar trend!

PR TOM BARBETTE
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Latency Gain

~ 500 µs
Due to congestioned
queues and the high 

trasmission rate

~60 µs
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How much Ribosome improves the latency gain on the NF server?

And the tail latency? Similar trend!
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Latency Gain

How much Ribosome improves the latency gain on the NF server?
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Reducing queue sizes and the input throughput on the NF reduce latency! 

4x
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And the tail latency? Similar trend!
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Packet Size Impact

How does the packet size impact the throughput gains?
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Packet Size Impact

How does the packet size impact the throughput gains?
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Packet Size Impact
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How does the packet size impact the throughput gains?
Highly effective for relevant real-world scenarios!
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Packet Size Impact

300Gbps
With 400B packets
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How does the packet size impact the throughput gains?
Highly effective for relevant real-world scenarios!
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Packet Size Impact

300Gbps
With 400B packets

Corresponds to ~93Mpps
NF can handle them!
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How does the packet size impact the throughput gains?
Highly effective for relevant real-world scenarios!
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Packet Size Impact

With 93M packets of 1.5KB
We process 1Tbps!
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Corresponds to ~93Mpps
NF can handle them!

How does the packet size impact the throughput gains?
Highly effective for relevant real-world scenarios!
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Packet Size Impact

With 93M packets of 1.5KB
We process 1Tbps!
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300Gbps
With 400B packets

Corresponds to ~93Mpps
NF can handle them!

How does the packet size impact the throughput gains?
Highly effective for relevant real-world scenarios!

We can process 1Tbps on a single dedicated CPU!
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Side note : can’t switches handle connection 
tracking?

After all, that’s the promise of OpenFlow.

PR TOM BARBETTE 102

Intel Tofino

PayloadHdr
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Side note : can’t switches handle connection 
tracking?

After all, that’s the promise of OpenFlow.
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Side note : can’t switches handle connection 
tracking?

NO

TEA [SIGCOMM’20]  Tofino has a maximum of 100k flows/seconds

CPU  Around 7M/core

OpenFlow switches are around 40K at best

PR TOM BARBETTE 106

Intel Tofino

H

After all, that’s the promise of OpenFlow.



Advanced Network Functions
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Can we build advanced NFs on top of Ribosome?

Advanced Scheduler  Reframer 
[NSDI’22]

~300Gbps
For stateful NFs

~220Gbps
2.2x speedup
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Can we build advanced NFs on top of Ribosome?
Ribosome supports advanced NFs!
Ribosome moves the NF bottleneck on the 
CPU! 

 Back to software !

~300Gbps
For stateful NFs

~220Gbps
2.2x speedup
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Can we improve the performance of connection tracking on the 
NF server further?

PR TOM BARBETTE
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Offloading classification: what are the limits?

IP Source IP 
Destinatio

n

Action

1.1.1.1 2.2.2.2 DROP

3.3.3.3 4.4.4.4 QUEUE=0

5.5.5.5 6.6.0.0/16 RSS

NIC-Bench
PAM’21

What you need to know about (Smart) Network Interface Cards 
Open source code and results with NVIDIA ConnectX-4, 
ConnectX-5, ConnectX-6, and Bluefield NICs (here)
Georgios P. Katsikas, Tom Barbette, Marco Chiesa, Dejan 
Kostić, and Gerald Q. Maguire Jr.

PR TOM BARBETTE

https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://github.com/nic-bench
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Table 1

PR TOM BARBETTE



How do NICs perform processing?
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Table 0

Match-Action Pipelines

Table N-1
...

Network
Match

*
Action

jumpTable=N

Match
udp_port=53

Action
dst_ip=1.1.1.1

queue=4

Queue 4
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Table 0

Match-Action Pipelines
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How do NICs perform processing?
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Table 0

Match-Action Pipelines

Table N-1
...

Network
Match

*
Action

jumpTable=N

Match
udp_port=53

Action
dst_ip=1.1.1.1

queue=4

Queue 4
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Table 1 Tables 1-2
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Table 1 Tables 1-2 Tables 1-4
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Table 1 Tables 1-2 Tables 1-4 Tables 1-8
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Throughput acc. number of tables
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Table 1 Tables 1-2 Tables 1-4 Tables 1-8 Tables 1-16

>7.5x

PR TOM BARBETTE



Scenario 1- Latency
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Table 1

PR TOM BARBETTE



Scenario 1- Latency
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Table 1 Tables 1-16

~10x

PR TOM BARBETTE



Impact of number of flows in the input load
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Can we offload some of the flows?

Offloading every flow is not going to work

PR TOM BARBETTE
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How do we use the NIC to pre-process packets ?​

PR TOM BARBETTE

Mark packet, tag “3”
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WIP : Connection Tracking Offloading

~10% Improvement
Done by a master student. Further work needed!

PR TOM BARBETTE
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Can we combine the tracking for multiple Network Functions 
and offload some part of the classification ?

PR TOM BARBETTE



Single Server

Service Chaining: Tracking inside each NF

PR TOM BARBETTE 155

Firewall NAT Load-Balancer



MiddleClick: Combining Classification

PR TOM BARBETTE 156

Firewall NAT Load-Balancer

[IEEE/ACM ToN, 2021] T. Barbette, C. Soldani, L. Mathy



MiddleClick: Combining Classification

PR TOM BARBETTE 157

Firewall

NAT

Load-Balancer

[IEEE/ACM ToN, 2021] T. Barbette, C. Soldani, L. Mathy



MiddleClick: Combining Classification

PR TOM BARBETTE 158

Firewall

NAT

Load-Balancer

[IEEE/ACM ToN, 2021] T. Barbette, C. Soldani, L. Mathy

Flow Control Block

Metadata Firewall NAT

Metadata Firewall Load-balancer



Evaluation : Avoiding re-classification
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NAT running between 128 HTTP clients making requests to 4 NGINX servers – 35Gbps is the limit of the testbed



Evaluation: Offloading (HTTP load-balancer)
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Takeout
• High-speed stateful software packet processing

• Sharding is the way to go
• Especially with the trend to many cores
• Load-balancing problem : use RSS++ [CoNEXT’19]

• Switch-based stateful packet processing
• Ribosome processes 300Gbps worth of traffic with 20Gbps of bandwidth
• Send what you need where you actually need it

• NIC-assisted stateful packet processing
• Promising approach, still under development

• Combined stateful packet processing
• Do not re-classify the same thing
• Hardware does help !

PR TOM BARBETTE 169



170

Conclusion
www.tombarbette.be

tom.barbette@uclouvain.be

Try FastClick, a high speed dataplane based on 
Click and its PacketMill improvement ! While load-
balacing with RSS++ and combining sessions with
MiddleClick, all included!

Try Retina for high-
speed passive traffic  
analysis!

High-speed packet processing techniques
 NFV with FastClick (+PacketMill + MiddleClick + RSS++)µ
 Integration for software state (ConnTrack + MiddleClick)

Load-balancing
 Inside (RSS++) and between servers (Cheetah) or both (Metron, CrossRSS)

The network is starting to be programmable, and has per-connection programmability
 Job scheduling, optimization

Build the infrastructure for an efficient, competitive, and local Internet
 Make the network’s core programmable by the service provider
 Improve today’s network efficiency and enable the agility needed to sustain tomorrow’s services

PR TOM BARBETTE

http://www.tombarbette.be/
mailto:Tom.barbette@uclouvain.be
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