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Network Functions Are Pervasive

Network Functions Virtualization is an essential
architectural paradigm of today’s networks

[Firewall & l l NAT L. l I Load-Balancer I[1
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Network speeds have been increasing dramatically
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Talk goal

How to handle for terabit per second
of traffic?

%

* High-speed stateful packet processing
stateful packet processing

stateful packet processing

* NFV service chain stateful packet processing
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Connection Tracking

Connection tracking is about classifying packets in micro-flows
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Connection Tracking

Connection tracking is about classifying packets in micro-flows

8 isflow #1

EF@

is flow #2

is flow #2
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Connection Tracking in a (stateful) Load Balancer

Send all the flow’s packets to the same server

T

) 100.0.1.1:8888->100.100.100.100:80, TCP 1 Server #3

100.0.1.2:9999->100.100.100.100:80, TCP 2 Server #1

Connection Tracking
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Challenges in High-speed Connection Tracking

On a 100 Gbps link, packets arrive every 6.72 ns

A DRAM access takes ~100 ns

Data structures must leverage CPU caches



How do we build 100GbE+ software stateful Network
Functions?
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Hash Tables (HT) in a nutshell
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Hash Tables (HT) in a nutshell

00

11.11.1.1:1111->100.100.100.100:80, TCP 01
& 02 11.11.1.1:1111->100.100.100.100:80, TCP

22.22.2.2:2222->100.100.100.100:80, TCP
03 33.33.3.3:3333->100.100.100.100:80, TCP
04 22.22.2.2:2222->100.100.100.100:80, TCP
33.33.3.3:3333->100.100.100.100:80, TCP

44.44 4.4:4444->100.100.100.100:80, TCP / 06

HT implementations differ for collision handling

Perfect Hash Functions are difficult to implement



Chaining Hash Tables
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11.11.1.1:1111->100.100.100.100:80, TCP

00

33.33.3.3:3333->100.100.100.100:80, TCP

44.44 4.4:4444->100.100.100.100:80, TCP

01
\—< 02
03
04

05
06

Lists can grow infinitely!

— 111111,

_, 33.3333..

— 2222 —

44.444.4...

» 066.66.6.6.....

» 77.77.7.7
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Cuckoo Hash Tables

Primary Location

mm Secondary Location

_________________________ >

00
e 01

02 1.11.1.1...

| 2222.2.2:2222->100.100.100.100:80, TCP .
(Y

4
X 04 44.44.4.4...
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Testbed

=2 server machines connected back-to-back

Device Under Testing

FastClick

*Mellanox ConnectX-5 @ 100Gbps e

Tracking
=FastClick Stateful Load Balancer
configuration 100 Gbps link

"Traces captured at our campus and CAIDA

FastClick
"Multiple parallel replays Replay and Measurement

Traffic Generator

[HPSR’21] Girondi, M Chiesa, T Barbette
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Studied Hash Tables

N. Le Scouarnec, Cuckoo++ Hash Tables in ANCS 2018
M. Herlihy et al., Hopscotch hashing in DISC 2008
P. Celis et al., Robin hood hashing in SFCS 1985
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Single core: throughput

B DPDK Cuckoo BN HopScotch B Chaining (FC)
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4M entries hash table, = 55 Gbis
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Single core: throughput
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Single core: throughput
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Single core: throughput

B DPDK Cuckoo BN HopScotch B Chaining (FC)

e Cuckoo++ B RobinMap B Chaining (C++)

Csob 48-347.147.2. ... ]
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CAIDA Campus

4M entries hash table, = 55 Gbis
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Single core: throughput

B DPDK Cuckoo BN HopScotch B Chaining (FC)
Cuckoo++ B RobinMap B Chaining (C++)

| 47.147.2
>0 44 .2 43.9
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Core scaling: single table

—o— DPDK Cuckoo Mutex
DPDK Cuckoo Spinlock
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Core scaling: single table

100 —
sol T T T
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Throughput (Gbps)
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Core scaling: single table

100 —

80 S S -
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Throughput (Gbps)
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Core scaling: single table

100 = ! ! ! ! ! ! !

80 S S -

—S— DPDK Cuckoo Mutex

DPDK Cuckoo Spinlock
—£1- Hierarchical Locked Chaining
-<»- DPDK Cuckoo Lock Based

Throughput (Gbps)

1 2 3 4 5 6 7 8
Number of cores

8M entries hash table, = 100 Gbis



B UCLouvain

Core scaling: single table

100 — - = = 7 =
80
m
o
O 60
—6— DPDK Cuckoo Mutex Q
DPDK Cuckoo Spinlock §_
—£1- Hierarchical Locked Chaining S
DPDK Cuckoo Lock Based o 40f
—v— DPDK Cuckoo Lock Free =
20

Lock-Free heavily depends on the workload
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Multi core scaling: core sharding

Leverage RSS to spread packets to multiple independent cores
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Core scaling: sharding

80 F
—&— Cuckoo++ Tg_
HopScotch 8 60 F
—£1- RobinMap -
.- DPDK Cuckoo a
Cha?n?ng FC %’ 40l 9
—&- Chaining C++ =
|_
20 |
0

1 2 3 4 5 6 7 8
Number of cores

All implementations scale always linearly
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The aging dilemma

When flows terminate, their entries should be removed
*Timer-based approach is needed

=Deletion could be more delicate than insertion: concurrency

*Three implementations studied:
= Scanning

= Lazy Deletion
" Timing Wheels
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Flow Table maintenance techniques

=Scanning
Parse the table periodically, deleting expired entries.

=Lazy Deletion
compare last access time upon collisions.

*Timing Wheels
entries are registered in time-based buckets.
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Deletion: scaling

100 T T T T /};—té\'____‘r’_\ﬂ_._.-f—\,
y NP
- "/0 g
80 X4
M s
o =
8 60 /«»
- 7
8— f.‘_\/’/v
< .
2 40 =

At scale, Lock Free is 10% slower than Core Sharding

Timing wheels can be as effective as Lazy Deletion

Caida, 4M hash tables, 32x parallel traces = 100 Gbps




Conclusion: we have spare capacity




Can we design a packet processing pipeline that handles
one terabit per second of traffic

on a single dedicated device?

PR TOM BARBETTE
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The bandwidth limit

Dedicated NF Server

H Payload

Switch
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Dedicated NF Server

H Payload

Switch
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The bandwidth limit

Dedicated NF Server

H Payload

A Need to deploy more servers

Throughput capped by
+— the network bandwidth
(100-400 Gbps)

Switch

PR TOM BARBETTE 46
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The bandwidth limit

" \»
n, Not cost-effective!
Q

Dedicated NF Servers

A Need to deploy more servers

H Payload

Throughput capped by
+— the network bandwidth
(100-400 Gbps)

Switch

PR TOM BARBETTE 47




@ Many network functions need only headers!

Send Only Relevant Bits!
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Send Only Relevant Bits!

1.5KB

|

S
/0B

H H H H H H HH HH HH H H H H H H H H H

/ Free up bandwidth / Higher cache-hit ratio
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Send Only Relevant Bits!

H H H H H H H H H H H H H H H H H H H H H

Dedicated NF Server

Where to store payloads?

Store Payloads on the Switch
I PayloadPark [CONEXT '20]
I
)l =0 | >
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Send Only Relevant Bits!

H H H H H H H H H H H H H H H H H H H H H

Dedicated NF Server

Where to store payloads?

Store Payloads on the Switch
I PayloadPark [CONEXT '20]
» 2 | >

Switch
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Store Payloads on the Switch

What is the impact?
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Store Payloads on the Switch

What is the impact?

Let’s examine a CAIDA trace
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Store Payloads on the Switch

What is the impact?

Let’s examine a CAIDA trace

Packets sent to the NF

Switch-to-NF Link Rate
[Gbps]
N

PR TOM BARBETTE 54
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Store Payloads on the Switch

What is the impact?

Let’s examine a CAIDA trace

Packets sent to the NF

3 Baseline H Payload

Switch-to-NF Link Rate
[Gbps]
N

B Baseline

PR TOM BARBETTE 55
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Store Payloads on the Switch

What is the impact?

Let’s examine a CAIDA trace

Packets sent to the NF

4
g
©
v 3 Baseline H Payload
5 = )
w o . -
=87 PayloadPark-like [§ Payload
<
S 1
E
(V]
0
W Baseline m PayloadPark-like
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Store Payloads on the Switch

What is the impact?

Let’s examine a CAIDA trace

Packets sent to the NF

4
g
< 3 Baseline H Payload
<
%gz PayloadPark-like |a Payload
P | [ —————
S Ideal ]
(V]

0 —

W Baseline m PayloadPark-like M Ideal

PR TOM BARBETTE Y4
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Store Payloads on the Switch

What is the impact?

Let’s examine a CAIDA trace

Packets sent to the NF

4

2 PayloadPark-like [§ Payload N

1 16x dead @ ]
]

0

Switch-to-NF Link Rate
[Gbps]

W Baseline m PayloadPark-like M Ideal

PR TOM BARBETTE 58




B UCLouvain

Store Payloads on the Switch

What is the impact?

Let’s examine a CAIDA trace

Packets sent to the NF

4

2 PayloadPark-like [§ Payload N

' 16x |deal E ________________________________
]

Switch-to-NF Link Rate
[Gbps]

0 How to extend the switch memory?
W Baseline m PayloadPark-like M Ideal
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How to extend the switch memory? A

Q Using a dedicated external memory (e.g., HBM)

v/ Simple solution
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How to extend the switch memory? A

X Not cost-effective

Q Using a dedicated external memory (e.g., HBM)

v/ Simple solution

& Higher energy footprint

JL High-cost

| Wastes some ports on the switch

PR TOM BARBETTE 61
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How to extend the switch memory? Q

The Ribosome Approach

Q Exploiting a disaggregated pipeline on shared servers

v Many spare resources in the datacenter

4 Better resources usage

4% Low-cost

[INSDI'23] Mariano Scazzariello, Tommaso Caiazzi, Hamid
Ghasemirahni, Tom Barbette, Dejan Kosti¢, Marco Chiesa
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The Ribosome Approach

Dedicated NF Processor

Programmable Switch

Shared External Memory
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The Ribosome Approach

Dedicated NF Processor

Programmable Switch

Hdr SRRayioac

Shared External Memory
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The Ribosome Approach

Dedicated NF Processor

Programmable Switch
Hdr
Payload

Shared External Memory
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The Ribosome Approach

Dedicated NF Processor

Hdr

Programmable Switch

Shared External Memory

Payload
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The Ribosome Approach

Dedicated NF Processor

Programmable Switch

Hdr

Shared External Memory

Payload
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The Ribosome Approach

Dedicated NF Processor

Programmable Switch

Hdr = Payload

Shared External Memory

PR TOM BARBETTE
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The Ribosome Approach

Dedicated NF Processor

Programmable Switch

Shared External Memory

PR TOM BARBETTE
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Implementation

FastClick

Intel Tofino

Shared External Memory

PR TOM BARBETTE
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Implementation

FastClick

Intel Tofino

—

How to access the remote
memory without affecting
the server CPUs? RDMA servers

O RDMA!

PR TOM BARBETTE



Challenges

B UCLouvain

Store Headers on the Switch

—

How to access the remote
memory without affecting
the server CPUs?

O RDMA!

FastClick

Intel Tofino

RDMA servers

PR TOM BARBETTE

Where to store headers while
retrieving payloads from
RDMA servers?

Reconstructing millions of
packets per second!

High speed reliable RDMA
Connection on multiple
servers for storing payloads

See the paper!
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Store Headers on the Switch

FastClick

Hdr

Intel Tofino

RDMA servers

Payload
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Store Headers on the Switch

FastClick

Intel Tofino

Hdr

RDMA servers

Payload
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Store Headers on the Switch

FastClick

Intel Tofino

Hdr
RDMA Read

RDMA servers

Payload
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Store Headers on the Switch

FastClick

Intel Tofino

Hdr

RDMA servers

RDMA Read

Payload
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Store Headers on the Switch

FastClick

Intel Tofino

Hdr

RDMA servers

R Payload
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Store Headers on the Switch

FastClick

Intel Tofino

Hdr

RDMA servers
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Store Headers on the Switch

FastClick

Intel Tofino

Hdr [ Payload

4us (max)

(1*1012bps
8x103b

) * 4us = 500 headers

RDMA servers

500 % 72B = 360008 V

PR TOM BARBETTE



‘B UCLouvain

Fvaluation
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Testbed and Workload Generation

Traffic
Generator

Y

Multicast Switch

A A A

Y Y Y

Ribosome Switch < > NF

A A A

RDMA RDMA RDMA RDMA
Server 1 Server 2 Server 3 Server 4

PR TOM BARBETTE 82




Testbed and Workload Generation

Traffic o

Generatorn
Multicast Switch i
Ribosome Switch < > NF
RDMA RDMA RDMA RDMA

Server 1 Server 2 Server 3 Server 4




Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?

—6— Ribosome PayloadPark-like -ti- Baseline
A +———— 300 Gbps
<) With a bandwidth
= 200f requirement on the NF of
% ~20 Gbps
o 100f 1< I 115 Gbps
f 100 Gbps Stores only 160B
a ot Network 1/0 of payloads
3 bottleneck

Input Packet Rate (Mpps)

Tested NF: Forwarder
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How much Ribosome improves the per-packet throughput on the NF server?

—6— Ribosome PayloadPark-like -ti- Baseline
A +———— 300 Gbps
<) With a bandwidth
= 200f requirement on the NF of
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o 100f 1< I 115 Gbps
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3 bottleneck

Input Packet Rate (Mpps)
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Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?

Ribosome enables multi-100Gbps packet processing!

Output throughput (Gbps)

—o— Ribosome

PayloadPark-like -1- Baseline

200

1001

= 300 Gbps
With a bandwidth
requirement on the NF of
~20 Gbps

Input Packet Rate (Mpps)

PR TOM BARBETTE

-

100 Gbps
Network /O
bottleneck

115 Gbps
Stores only 160B
of payloads




Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?
Ribosome enables multi-100Gbps packet processing!

~75Gbps for RDMA server
Due to RDMA overheads

l

—o— Ribosome PayloadPark-like -£i- Baseline
A =300 Gbps
(\'3/ With a bandwidth
= 200f requirement on the NF of
% ~20 Gbps
3 100} S I 115 Gbps
:J:: 100 Gbps Stores only 160B
a2 ot Network 1/0 of payloads
-}
o bottleneck

Input Packet Rate (Mpps)
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Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?
Ribosome enables multi-100Gbps packet processing!
How many servers to potentially

process 1Tbps?
14 shared RDMA servers

e ~ 1 9GDbps for RDMA server
Due to RDMA overheads

l

—o— Ribosome PayloadPark-like -£i- Baseline
A =300 Gbps
(\'3/ With a bandwidth
= 200f requirement on the NF of
% ~20 Gbps
3 100} S I 115 Gbps
:J:: 100 Gbps Stores only 160B
a2 ot Network 1/0 of payloads
-}
o bottleneck

Input Packet Rate (Mpps)
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Throughput Gain

How much Ribosome improves the per-packet throughput on the NF server?
Ribosome enables multi-100Gbps packet processing!

A datacenter How many servers to potentially

has thousands *™™
of servers!

process 1Tbps?
14 shared RDMA servers

—o— Ribosome

PayloadPark-like -1- Baseline

200

1001

e~ 1 9GDbps for RDMA server

Due to RDMA overheads

l

= 300 Gbps

With a bandwidth
requirement on the NF of
~20 Gbps

Ak‘

Output throughput (Gbps)

Input Packet Rate (Mpps)

PR TOM BARBETTE

115 Gbps
Stores only 160B
of payloads

I
100 Gbps
Network 1/O
bottleneck




Latency Gain

How much Ribosome improves the latency gain on the NF server?

125 F— ' ' —
= —6— Ribosome
2 100f Baseline | ~ 1_10 MS
> Due to congestioned queues and
g 75} - the high transmission rate
S
c 9S0F i
O
3 25F & S - & & = e © © Je—— ~25 us
= Almost constant

O 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90
Input Rate (Gbps)

Tested NF: Forwarder
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Latency Gain

How much Ribosome improves the latency gain on the NF server?

125_ 1 1 1 I _
— —S— Ribosome
Z 100} Baseline 4
>
(@)
§ 75t .
@ 4x
(- 50' =
©
~ o o ...
? 250 dpmmogp==Fr oGO0
>
O 1 1 1 1 1 1 1 1 1

10 20

30 40 50 60 70 80 90
Input Rate (Gbps)

Tested NF: Forwarder

PR TOM BARBETTE

- ~ 110 ps
Due to congestioned queues
and the high trasmission rate

Sr— <25 IS

Almost constant




Latency Gain

How much Ribosome improves the latency gain on the NF server?

And the tail latency? == Similar trend!

125 F— ! ' —
— —&— Ribosome
2 100k Baseline A | = ~ 110 ps
> Due to congestioned queues
o 75 {1 and the high trasmission rate
'} g
© 4x
|
(- 50 B 7]
O
3 25F & S S = o o o @ S .{* ~25 Us
= Almost constant

O 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90
Input Rate (Gbps)
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Latency Gain

How much Ribosome improves the latency gain on the NF server?

And the tail latency? == Similar trend!

500

~ 500 ps
Due to congestioned

—S— Ribosome

e ~B60 s

N\ paN
paN <
Lo N
1 1 1 1 1

10 20 30 40 50 60 70 80 90 Almost constant
Input Rate (Gbps)

m

2

> . Baseline : )
% 400 queues and the high
© 300t . trasmission rate
Q@

€ 200t -

()

O

¢ 100F -

=

(@)

(@)
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Latency Gain

How much Ribosome improves the latency gain on the NF server?

Reducing queue sizes and the input throughput on the NF reduce latency!

And the tail latency? == Similar trend!

™ 125 —6— Ribosome 1 & >0 —6— Ribosome |
- . A gl .
\o; 100} Baseline - § 400F Baseline -
@
g 75} {1 & 300} -
© 4x P
= 50t {1 = 200} .
S 3
. 7 A o . 3
B 25 mmgm=cgm——g———o6—0—9—9 1 P 4ol 1
E o o ~ PN O C O = C O
0 1 1 1 1 1 1 1 1 1 E 0 T \I/ Iv 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 o 10 20 30 40 50 60 70 80 90

Input Rate (Gbps) Input Rate (Gbps)

PR TOM BARBETTE



Packet Size Impact

How does the packet size impact the throughput gains?

/‘3_\ 300 [ —o— Ribosome i
Q .

9 Baseline

5 200 7
a

c

o

3

é 100 7
5 &

o

S 0 i i i i i

@) 200 400 600 800 1000

Packet Length (Bytes)

Tested NF: Forwarder
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Packet Size Impact

How does the packet size impact the throughput gains?

/‘3_\ 300 [ —o— Ribosome i
Q .

9 Baseline

5 200 7
a

c

o

3

é 100 7
5 &

o

S 0 i i i i i

@) 200 400 600 800 1000

Packet Length (Bytes)

Tested NF: Forwarder
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Packet Size Impact

How does the packet size impact the throughput gains?
Highly effective for relevant real-world scenarios!

'cg 300 1 —o— Ribosome i
2 .

9 Baseline

5 200 7
a

c

o

3

-'_C’: 100 7
= &

o

5 0 I I I I I

@) 200 400 600 800 1000

Packet Length (Bytes)
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Packet Size Impact

How does the packet size impact the throughput gains?
Highly effective for relevant real-world scenarios!

300Gbps
With 400B packets

'cg 300 1 —o— Ribosome i
2 .

9 Baseline

5 200 7
a

c

o

3

-'_C’: 100 7
= &

o

5 0 I I I I I

@) 200 400 600 800 1000

Packet Length (Bytes)
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Packet Size Impact

How does the packet size impact the throughput gains?
Highly effective for relevant real-world scenarios!

300Gbps —— Corresponds to ~93Mpps
With 400B packets NF can handle them!

'cg 300 1 —o— Ribosome i
2 .

9 Baseline

5 200 7
a

c

o

3

-'_C’: 100 7
= &

o

5 0 I I I I I

@) 200 400 600 800 1000

Packet Length (Bytes)
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Packet Size Impact

How does the packet size impact the throughput gains?
Highly effective for relevant real-world scenarios!

300Gbps  ——a Corresponds to ~93Mpps . With 93M packets of 1.5KB
With 400B packets NF can handle them! We process 1Tbps!

300 1 —o— Ribosome
Baseline

200

100

Output throughput (Gbps)

260 460 600 800 1000
Packet Length (Bytes)

PR TOM BARBETTE
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We can process 1Tbps on a single dedicated CPU!




Side note : can’t switches handle connection ®vtouvar
tracking?

After all, that’s the promise of OpenFlow.

Intel Tofino

Hdr Payload -ﬁ

ﬂf
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Side note : can’t switches handle connection ®vtouvar
tracking?

After all, that’s the promise of OpenFlow.

Intel Tofino

Hdr © Payload
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Side note : can’t switches handle connection ®vtouvar
tracking?

After all, that’s the promise of OpenFlow.

Intel Tofino
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Side note : can’t switches handle connection ®vtouvar
tracking?

After all, that’s the promise of OpenFlow.

Intel Tofino

NO
TEA [SIGCOMM’20] = Tofino has a maximum of 100k flows/seconds
CPU = Around 7M/core

OpenFlow switches are around 40K at best

PR TOM BARBETTE 106
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Advanced Network Functions

Can we build advanced NFs on top of Ribosome?

oo f T T e 3006bps

< For stateful NFs

200

| g 5 | ~220Gbps
—S—  Advanced Scheduler 2.2X Speedup

Per-flow Rate Limiter

—Ek - |oad-Balancer

2 4 6 8 10 12 14 16

CPU cores on the NF

100

Output throughput (Gbps)

Advanced Scheduler > Reframer
[INSDI'22]
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Advanced Network Functions

Can we build advanced NFs on top of Ribosome?
Ribosome supports advanced NFs!

Per-flow Rate Limiter

~&k-  Load-Balancer
0 1 1 1 1 T 1 1

Ribosome moves the NF bottleneck on the - Back to software !

CPU!

@ 00 """""""""""""" """"""""""""""" """"""""""""" “““ — -*4' """ | S— ~300Gbps
(f’g‘ ' ' ' ' > | < For stateful NFs
?5’ 200

5 | I ~220Gbps

3 100 . |=8— Advanced Scheduler | 2.2x speedup

= |

3

)

O

2 4 6 8 10 12 14 1-6
CPU cores on the NF
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Can we improve the performance of connection tracking on the
NF server further?
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Offloading classification: what are the limits?

NIC-Bench

PAM'21

IP

Destinatio
n

1.1.1.1 2.2.2.2 DROP
3.3.3.3 4.4.4.4 QUEUE=0

5.5.5.5 6.6.0.0/16 RSS

What you need to know about (Smart) Network Interface Cards
Open source code and results with NVIDIA ConnectX-4,
ConnectX-5, ConnectX-6, and Bluefield NICs (here)

Georgios P. Katsikas, Tom Barbette, Marco Chiesa, Dejan
Kosti¢, and Gerald Q. Maguire Jr.



https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://github.com/nic-bench
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Throughput acc. number of rules

¥ Table 1
[ | |

| I | | I | r—
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A
\

oo —

0 10k 20k 30k 40k 50k 60k 70k 80k 90k100k 1M 2M 3M 4M

# of rules across Tables 1-16 of a 100 GbE Mellanox ConnectX-5 NIC
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How do NICs perform processing?

Match-Action Pipelines

Table 0

| Match = Action
_ - jumpTable=N

Table N-1

Match Action
udp_port=53 dst_ip=1.1.1.1

queue=4
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How do NICs perform processing?

Match-Action Pipelines

Table 0

| Match = Action
_ - jumpTable=N

Table N-1

Match Action
udp_port=53 dst_ip=1.1.1.1

queue=4
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Throughput acc. number of tables
¥R Table 1 [] Tables 1-2
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# of rules across Tables 1-16 of a 100 GbE Mellanox ConnectX-5 NIC
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hroughput acc. number of tables
*Table1 []Tables 1-2 OO Tables 1-4

ﬁ ﬁﬂ * g.ﬁ m ﬁ..ﬁ_//_' "é’"""l'"'"["

—k
o

0

2 80 _ @ @ @ e e T E
S T R T - Y T T A S S -

O 60 - _ _ | | | ]
z e ° o
= :
S 20 .
o
£ 15 7

0.8 .

0.4 -

0 10k 20k 30k 40k 50k 60k 70k 80k 90k100k 1M 2M 3M 4M

# of rules across Tables 1-16 of a 100 GbE Mellanox ConnectX-5 NIC
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Throughput acc. number of tables
*Table 1 JTables 1-2 O Tables 1-4 A Tables 1-8
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Throughput acc. number of tables
*Table 1 [ Tables 1-2 O Tables 1-4 A Tables 1-8 ¥V Tables 1-16
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Scenario 1- Latency

HTable 1
300ms ———— 7

BOUS Lo s g g g g g g g %
ol o
0 10k 20k 30k 40k 50k 60k 70k 80k 90k100k 1M 2M 3M  4M

# of NIC rules in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC
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Scenario 1- Latency
HTable 1 HTables 1-16
300ms — : - = : :

R T N R R R R RN R R
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0 10k 20k 30k 40k 50k 60k 70k 80k 90k100k 1M 2M 3M 4M
# of NIC rules in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC
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Impact of number of flows in the input load

1DDi------—--—---'¥'- e I e .
SR T SR S, WA S

Flows 1k =¥ § ; |
Flows 5Bk - | | |

; i i |
1M 2M 3M 4M 5M 6M
# of rules in Table 1 of a 100 GbE Mellanox ConnectX-5 NIC

Throughput (Gbps)
N
-]

|J§t
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Offloading every flow is not going to work

Can we offload some of the flows?
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How do we use the NIC to pre-process packets ?

' UCLouvain

Rule

Attributes

Pattern|Actions

Mark packet, tag “3”

Server

Host

Network
Interface Card

PR TOM BARBETTE

Connection
states table

Connection
1 state

Connection
2 state

Network

Connection
3 state

140



WIP : Connection Tracking Offloading

Throughput of different implementations by threshold
50

20

wn
o
QO
e
)
-]
o
e
(@)
-]
(@)
| -
-

~10% Improvement

Done by a master student. Further work needed!
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Can we combine the tracking for multiple Network Functions
and offload some part of the classification ?
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Service Chaining: Tracking inside each NF

@gle Server

~

Firewall & NAT “I. Load-Balancer [t
= = —

\_
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MiddleClick: Combining Classification

[IEEE/ACM ToN, 2021] T. Barbette, C. Soldani, L. Mathy

[ Firewall & I | NAT "l. | | Load-Balancer |2
N . 4 _
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MiddleClick: Combining Classification

[IEEE/ACM ToN, 2021] T. Barbette, C. Soldani, L. Mathy

HFlrewall ﬁ

NAT L.

==

Load-Balancer &1
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MiddleClick: Combining Classification

[IEEE/ACM ToN, 2021] T. Barbette, C. Soldani, L. Mathy
NAT 1. |
| | Firewall ﬁ

Load-Balancer &1

‘\\ Flow Control Block

w C Metadata Firewall NAT

Metadata Firewall Load-balancer
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Evaluation : Avoiding re-classification

—— MiddleClick NAT —@- - FastClick NAT
+ Flow monitor _e -

+ Flow Monitor

35 ﬁW!——ﬁ
o 30 - ””’
}'g ’a”’
8 25 - ===
: ,f”
3 20 - —a—"
] -
7] -
g 15 - ’/’
- -
E10] 7
F
T O
o L] L] T T
1 2 3 4

Number of cores

NAT running between 128 HTTP clients making requests to 4 NGINX servers — 35Gbps is the limit of the testbed
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Evaluation: Offloading (HTTP load-balancer)

—J%— MiddleClick
—o— MiddleClick-HW Static classification

— MiddleClick- HW + Cache of connection tracking
using RSS index

+ HAPrOXY
~ 77— NGINX
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wn 60

=
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‘; 40 —
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o 20
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=

=

: o_ T T T T — T
1KB 8 KB 64 KB 512KB 4MB 32MB 256 MB

File size
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Takeout

*  High-speed stateful software packet processing
e  Sharding is the way to go

. Especially with the trend to many cores
. Load-balancing problem : use RSS++ [CONEXT’19]

*  Switch-based stateful packet processing
. Ribosome processes 300Gbps worth of traffic with 20Gbps of bandwidth

Send what you need where you actually need it

*  NIC-assisted stateful packet processing
. Promising approach, still under development

*  Combined stateful packet processing
. Do not re-classify the same thing

. Hardware does help !
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Conclusion

www.tombarbette.be High-speed packet processing techniques
3 » NFV with FastClick (+PacketMill + MiddleClick + RSS++)u
tom.barbette @ uclouvain.be » Integration for software state (ConnTrack + MiddleClick)
Load-balancing

p ® |nside (RSS++) and between servers (Cheetah) or both (Metron, CrossRSS)

The network is starting to be programmable, and has per-connection programmability
= Job scheduling, optimization

-
= % Build the infrastructure for an efficient, competitive, and local Internet
1 = Make the network’s core programmable by the service provider

= |mprove today’s network efficiency and enable the agility needed to sustain tomorrow’s services

E Try FastClick, a high speed dataplane based on Try Retina for high- EEEEE!E
e

Click and its PacketMill improvement ! While load- speed passive traffic
balacing with RSS++ and combining sessions with analysis! E_?E

MiddleClick, all included! r:_EFFO
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http://www.tombarbette.be/
mailto:Tom.barbette@uclouvain.be
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