Expectations

What counts as “profound” feedback?

Abstract—Although the QUIC protocol is specified in-depth
in the RFC 9000, the technical implementations differ signifi-
cantly. The design choice of a suitable QUIC library is crucial
for the available functionality and performance of a launch-
ing project. This paper analyses the utilisation and internal
i of CI e’s QUIC i quiche
based on the C4 model, its relation to the host application
and quiche-specific features that are not explicitly defined in
the RFC 9000. Subsequently, our findings are added to the
QUIC Explorer, a project i for pers to facili
the decision of a suitable QUIC library.
Index Terms—QUIC, QUIC explorer, quiche, C4 model,
architecture, Congestion Control, stream prioritisation,
BoringSSL

1. Introduction

Since the Internet became increasingly important in
our daily lives, TCP was one of the most used protocols
for data transmission, but it had to face some challenges
like higher throughput, lower latency and better security.
In 2016, the first Internet-Draft of Quick UDP Internet
Connections (QUIC) was published by Google’s developer
team on the IETF forum [1]. The main goal of QUIC
was to merge the advantages of TCP and UDP in one
protocol with a focus on security, reliability and perfor-
mance. In 2021, after several iterations and improvements,
the IETF published the RFC 9000 that defines the QUIC
protocol [2]. Already in October 2019, Cloudflare released
version 0.1.0 of their QUIC implementation called quiche
on GitHub [3]. Since then, the library has been continu-
ously developed and improved.

According to Alessandro Ghedini, one of the leading
developers of quiche, it was a major design goal to provide
most functionality of QUIC to the host application but
implemented in a minimal and intuitive Application Pro-
gramming Interface (API). However, the field of applica-
tion of quiche should not be restricted by any assumptions
taken during the development process [3].

In this paper, we will analyse quiche’s architecture
and internal relations from an abstract point of view.
Mainly, two abstraction levels (container & component)
of the C4 model by Simon Brown will be considered [4].
We will deliberately not analyse and discuss the code
level, as it goes beyond our scope and could be outdated
shortly due to the quick development. In Section 2, the
communication of quiche with its enyironment and inner
elements will be analysed. Section "_{ﬁome features of
quiche that are not strictly defined in the RFC 9000 will

X

be discussed. Furthermore, for easy access to the analysis
results, they will be added to the QUIC Explorer [5].
This information pool is designed for developers to gain
a quick overview of the capabilities of different QUIC
impl i It is i ded to facilitate the team’s
design choices and to provide a comprehensive overview
of the QUIC ecosystem.

2. C4 Model-Based Analysis

To strike a balance between an abstract view of the
integration of quiche into a software project and a detailed
analysis of the internal structure, we chose the C4 model
to visualize and describe the architectural elements of the
library. Unlike the prevalent Unified Modeling Language
(UML), the C4 model is less formal and more lightweight,
which makes it easier to understand, especially for peo-
ple without a deep knowledge of software architecture.
Nevertheless, it can represent such a system, which is
as complex as the architecture of quiche in a simple but
precise way [6]. In total, the C4 model consists of four
abstraction levels: system context, container, component
and code. Each level focuses on a certain degree of
abstraction to address different stakeholders [7, p. 920].

Since we want to focus on a structural analysis of
quiche, we start in Section 2.1 at the container level to
point out the interaction of the library with the software
environment. Afterwards, we will dive deeper into the
component level (Section 2.2) to analyze the library’s
architecture. To clarify the terms container and component
in the context of the C4 model: A component is a cohesive
set of functionalities that are not separately deployable.
It functions as a facade with a well-defined interface for
its underlying elements (e.g. structs, classes, instances)
one level deeper. In contrast, a container is composed of
several logically separate components that operate as a
single deployable unit [4].

2.1. Container Level

quiche is designed as a multifunctional user-space
library that enables rapid, iterative development and the
possibility to be integrated into various services of differ-
ent purposes [8]. On the one hand, Cloudflare developed
quiche for their application in their Content Delivery
Network (CDN) backbone, where it needs to be highly
performant and reliable [3], [9]. On the other hand, quiche
was in its initial phase released as an open-source project
to be co-developed by the community and integrated into
a wide range of applications outside of Cloudflare. As

Abstract—Whenever a new software project starts many

ial and must be taken by the
developers. Theses design choices are crutial for the course of
the project and should well-considered. This paper outlines
the general architecture of Cloudflare’s QUIC implemen-
tation Quiche based on the C4 model by Simon Brown to
faciliate such tremendous decisions. We analyze the library’s
internal structure, its relation to the host application and
Quiche-specific features that are not explicitly defined in the
RFC 9000.

Index Terms—QUIC, QUIC explorer, Quiche, C4 model,
architecture, Congestion Control, stream prioritization, Bor-
ingSSL

ok vsed
1. Introduction

Since the internet became more And more important
in our daily live, TCP was one of th¢ most used protocols
for data transmission, but it had tq face some challenges
like higher throughput, lower 1 'y and better security.
In 2016 the first Internet-Draft (I-D)) of Quick UDP Inter-
net Connections (QUIC) was published by some Google

?ﬁf::é{ developer on the IETF forum [1]. The main goal of QUIC
was to combine the advantages of TCP and UDP in one
protocol with a focus on security, reliability and perfor-
mance. In 2021, after several iterations and improvements,
the IETF published the RFC 9000 that defines the QUIC
protocol [2].

quiehe s Already in October 2019 Cloudflare released version

dylaed i 0.1.0 of their QUIC implementation called &uiche 3]

::th“; 1.0on GitHub. Since then, the library has been continuously

§ =3 developed and improved. Allessandro Ghedini, one of the
main developers of Quiche, summerized it as followed:
“The main design principle that guided quiche’s
initial development was exposing most of the
QUIC complexity to applications through a min-
?gmp‘m;* imal and intuitive API, but without making too
wskead of many assumptions about the application itself,
quotiny in order to allow us to reuse the same library in

different contexts” [3].

In this paper we will analyze the software architecture
and internal relations of Quiche in an abstract manner.
Mainly two abstraction levels (container & component)
of the C4 model by Simon Brown [4] will be considered,
not to become outdated during the next few commits. In
Section 2 the communication of Quiche with its environ-
ment and innere elements will be analyzed. In Section 3

lave Jeonym

Bre wain

some features of Quiche that are not strictly defined in
the RFC 9000 will be discussed. Furthermore, for an easy
access of the analysis results, they will be added to the
QUIC Explorer [5]. This information pool is designed for
developers to gain a quick oberview of the capabilities of
different QUIC implementations. It is intended to faciliate
the team’s design choices and to provide a comprehensive
overview of the QUIC ecosystem.

2. C4 Model-Based Analysis

To strike a balance between an abstract view on the
integration of Quiche into a software project and a detailed
analysis of the internal structure, we chose the C4 model

by Wn to visualize and describe the architec- B ke

tural elements of the code. Te- th ion—why

he> Menkioned

. : ! 7, Oal:
is not used: It is useful to document the current p(lwl;ﬁ,,f'iu.\‘(:a

state of the project code, but if the code changes the Medeluy Lony,
UML diagrams have to be updated as well. But we aim (OMV), e 4

for a precise and understandable abstraction of the entire

codebase that does not go beyond our scope [6,-minute yee (o Ci
Moawka

19} move wmiwke to e souce o leave ik ook

In total the C4 model consists of four abstraction
levels: system context, container, component and code.
Each level focus on a certain degree of abstraction in
order to address different stakeholders [7, p. 920]./Since
we want to focus on a structural analysis of quiche, we
start in Gection 2.1 at the container level to point out the
interaction of the library with the software environment.
Afterwards, we will dive deeper into the component level
(Section 2.2) to analyze the software architecture of the
library. To clarify the terms container and component in
the context of the C4 model: “A component is a grouping

Tegrac

lswt tus also

1

agle

of related functionality encapsulated behind a well-defined pssaase.
interface, [which] are not separately deployable units” [4, Uk v 4

of several logically separate components that operate as a

- In contrast, a container is comp()sed'(B
single deployable unit.

2.1. Container Level

Quiche is designed as a multifunctional user-space
library. This “facilitated its deployment as part of vari-

ous applications and enabled iterative changes to occur s

at_application update timescales” [8]. On the one hand,
Cloudflare developed Quiche for their own application
in the thier Content Delivery Network (CDN) backbone,
where it needs to be highly performant and reliable [3],
[9]. On the other hand, Quiche was in its initial phase
released as an open-source project to be co-developed

v

M. Kempf, D. Petri, S. Genchev — Seminar: IITM

aphiase

6



