

Chair for Network Architectures and Services—Prof. Carle Department of Computer Science TU München

Analysis of System Performance IN2072 Chapter 5 – Analysis of Non Markov Systems

Dr. Alexander Klein Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

- **Content:**
 - (Non Memory-less) systems
 - Embedded markov chain
 - General distributed service times
 - Waiting system M/GI/1-s (Infinite number of sources)
 - State probabilities
 - Transition probabilities
 - Waiting time distribution
 - Impact of variance of the service process on system performance
 - Waiting system GI/M/1-s (Infinite number of sources)
 - State probabilities
 - Transition probabilities
 - Waiting time distribution

Markov Systems:

- Arrival process is memory-less.
- Service process is memory-less.

 \Rightarrow System is memory less at any given point in time.

Non Markov Systems:

- Have one component which is memory-less AND
- one component which is NOT memory-less.

System becomes memory-less either at the time of an arrival or at the time a service is completed.

```
\rightarrow M/GI/1 and GI/M/1
```

□ Idea:

Analyze the system when it is memory-less.

Assumption:

State discrete stochastic process $\{X(t), t > 0\}$ which is memory-less (markovian) at time $\{t_n, n = 0, 1, ...\}$.

$$P\{X(t_{n+1}) = x_{n+1} | X(t_n) = x_n, \dots, X(t_0) = x_0\} = P\{X(t_{n+1}) = x_{n+1} | X(t_n) = x_n\}, t_0 < t_1 < \dots < t_n < t_{n+1}.$$

Characteristics:

- The future development of the process only depends on its current state.
- □ Knowledge about the current state $X(t_n)$ at time t_n is sufficient to calculate its consecutive states $X(t_{n+1}), X(t_{n+2}), ...$
- □ Due to the state discrete nature of the process, the states $\{X(t_n)\}$ represent a chain.
- □ The chain is a markov chain according to our assumption which states that the process is memory-less at time $\{t_n, n = 0, 1, ...\}$.

□ Points of regeneration:

Embedded points in time when the system is memory-less (markovian).

□ The state probabilities at the embedded points t_n can be described by a state probability vector.

$$\square X_n = \{x(i, n), i = 0, 1, ...\}$$

$$x(i,n) = P\{X(t_n) = i\}$$

State transition probability matrix P which describes the relation between any consecutive state probability vectors X_n and X_{n+1} at embedded points t_n and t_{n+1} is given by

$$P = \{p_{ij}\}$$

$$P = \{p_{ij}\}$$

$$P_{ij} = P\{X(t_{n+1}) = j \mid X(t_n) = i\}, \quad i, j = 0, 1, 2, ...$$

$$X_{n+1} = X_n \cdot P$$
Relation of consecutive state transition vectors.
$$X = X \cdot P$$
Probability vector in stationary state.

Characteristics:

- The probability vector of the markov chain in steady state is given by the left eigenvector of the transition probability matrix P of eigenvalue 1.
- Embedded markov chain is usually applied if only one component is nonmemory less.
- Embedded points are located where this component becomes memory less.

□ **M/GI/1**

- Service process is the only non-memory less component.
- State process becomes memory less after service completion.

 \Rightarrow Embedded points are located directly after a service completion.

GI/M/1

- Arrival process is the only non-memory less component.
- State process becomes memory less after an arrival.

 \Rightarrow Embedded points are located directly before an arrival occurs.

□ Model:

- □ Model and parameter description:
 - M / GI / 1∞ (No jobs are blocked!)
 - Arrival process is a Poisson process with an exponential distributed interarrival time A.
 - Service time B is general independent (GI) distributed.
 - Jobs that arrive at a point in time when all service units are busy, are queued and served in FIFO order as soon as a free serving unit is available.

□ Arrival process:

Arrival rate λ

Average number of arriving jobs per time unit.

$$A(t) = P(A \le t) = 1 - e^{-\lambda t}, \quad E[A] = \frac{1}{\lambda}$$

Service process:

Service rate µ

Average number of service completions.

(assuming the service unit only has two states - idle or busy)

$$B(t) = P(B \le t), \qquad E[B] = \frac{1}{\mu}$$

□ System:

- Waiting system
- Waiting queue with unlimited capacity
- Queuing strategy First In First Out (FIFO)

IN2072 – Analysis of System Performance, SS 2012

□ State space:

- Random variable X(t) describes the number of (waiting and currently served) jobs in the system.
- State process is state discrete and time continuous stochastic process

□ State space:

- Random variable X(t) describes the number of (waiting and currently served) jobs in the system.
- State process is state discrete and time continuous stochastic process

• Embedded points:

- State process becomes memory less at the time of a service completion.
- Embedded points of the markov chain are located directly after service completion.

Embedded Markov Chain:

- The point in time of the nth embedded point corresponds to the nth service completion.
- The sequence of the process states

{ $X(t_0), X(t_1), \dots, X(t_n), X(t_{n+1}), \dots$ }

at these points represent the embedded markov chain.

□ Analysis:

 Introduce a random variable Γ which describes the number of arrivals during a service duration.

$$\gamma(i) = P(\Gamma = i)$$
with $\Gamma_{GF}(z) = \sum_{i=0}^{\infty} \gamma(i) \cdot z^{i}$ Generation Function
$$\implies E[\Gamma] = \frac{d\Gamma_{GF}(z)}{dz}\Big|_{z=1} = \lambda \cdot E[B] = \rho$$

M / GI / 1 – Waiting system

Transition behavior:

State transition $i \rightarrow j$ with $i \neq 0$

IN2072 – Analysis of System Performance, SS 2012

□ State transition:

State transition between consecutive embedded points t_n and t_{n+1} .

$$p_{ij} = P\{X(t_{n+1}) = j \mid X(t_n) = i\}$$

Case 1: System not empty ($i \neq 0$) at time

- At time t_n are i jobs in the system.
- The service of the next job starts directly after t_n .
- j jobs remain in the system at time t_{n+1} .

(j-i+1) jobs have to arrive during the interval $[t_n; t_{n+1}]$ which corresponds (in this case) to the service duration.

$$p_{ij} = \gamma(j-i+1), \quad i = 1, 2, ..., \quad j = i-1, i, ...$$

M / GI / 1 – Waiting system

Case 2: System is empty (i = 0) at time t_n

- At time t_n are i=0 jobs in the system.
- The service of the next job starts directly after the arrival of the job.
- j jobs remain in the system at time t_{n+1} .

 \rightarrow j jobs have to arrive during the service duration.

$$P = \{ p_{ij} \} = \begin{cases} \gamma(0) & \gamma(1) & \gamma(2) & \gamma(3) & \cdots \\ \gamma(0) & \gamma(1) & \gamma(2) & \gamma(3) & \cdots \\ 0 & \gamma(0) & \gamma(1) & \gamma(2) & \cdots \\ 0 & 0 & \gamma(0) & \gamma(1) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{cases}$$

□ The state probabilities at the embedded points t_n can be described by a state probability vector.

$$X_n = \{ x(0,n), x(1,n), \dots, x(j,n), \dots j = 0, 1, \dots \}$$

$$x(j,n) = P\{X(t_n) = j\}$$

State transition probability matrix P which describes the relation between any consecutive state probability vectors X_n and X_{n+1} at embedded points t_n and t_{n+1} is given by

$$\longrightarrow$$
 $X_{n+1} = X_n \cdot P$ Relation of consecutive state transition vectors.

A start vector X_0 is sufficient to calculate the future state probability vectors X_n , n = 1, 2, ...

This method allows us to evaluate systems in overload or during transient phase which are typical issues in communication networks.

□ Stationary state equation:

A system is called stable if it state probability vector does not further change. (c.f. Chapter 3)

$$X_{n} = X_{n+1} = \dots = X$$

$$X = \{x(0), x(1), \dots, x(j), \dots\}$$

$$X = X \cdot P$$

$$Y = X \cdot P$$

$$X = X \cdot P$$

$$X = X \cdot P$$

$$X = X \cdot P$$

$$Y = x(0)\gamma(j) + \sum_{i=1}^{j+1} x(i)\gamma(j-i+1)$$

$$Y = 0, 1, \dots$$

State probabilities can be calculated by using the distribution of RV Γ and the probability vector.

- In general the process or system is in an instationary state X₀ at the beginning.
- The stationary state vector is typically determined by numerical method.

Power method:

Robust numerical method to determine the steady probability state vector.

Calculate the general state probability equation $X_{n+1} = X_n \cdot P$ until a certain abortion criteria is reached.

It is assumed that the statistical equilibrium is reached if the following abortion criteria holds true:

$$|E[X(t_{n+1})] - E[X(t_n)]| < \varepsilon = 10^{-6}$$

Complementary waiting time distribution function in M / GI / 1:

In the following the complementary waiting distribution function of a M / GI / 1 Waiting system depending on ist utilization ρ and the coefficient of variation c_{B} of the service time distribution is shown.

Coefficient of variation (Variationskoeffizient)

- The coefficient of variation is a normalized measure of dispersion of a probability distribution
- It is a dimensionless number which does not require knowledge of the mean of the distribution in order to describe the distribution

$$c_X = \frac{\sigma_X}{E[X]}, \qquad E[X] > 0$$

- $c = 0 \rightarrow$ deterministic (constant service duration)
- $c < 1 \rightarrow$ variance lower than exponential distribution
- $c > 1 \rightarrow$ variance higher than exponential distribution

Complementary waiting time distribution function in M / GI / 1:

Waiting duration increases with higher variance of the service process!
 Variance of the service process becomes the dominating factor.

□ Average waiting time of waiting jobs:

High utilization should be avoided if the service duration has a high coefficient of variation!

Best performance is achieved by systems with constant service times.

State probabilities at random observation points:

$$x^{*}(i), \quad i = 0, 1, ..., n$$

State probabilities at a randomly chosen observation point t*.

$$x_A(i)$$
, $i = 0, 1, ..., n$ State probabilities at points of arrival.

State probabilities of a M / G / 1 – Waiting system are valid at any randomly chosen observation point t*.

$$x(i) = x^*(i) = x_A(i), \quad i = 0, 1, \dots$$

M / GI / 1 – Waiting system

□ Idea:

- Observe the state process over an interval of length T.
- Focus on a single state [X = i] and count the following state transitions:

Arrival event:

- State transition $[X = i] \rightarrow [X = i+1]$
- $n_A(i,T)$ number of these state transitions during interval T.

Departure event:

- State transition $[X = i+1] \rightarrow [X = i]$
- $n_D(i,T)$ number of these state transitions during interval T.

□ State probabilities at random observation points:

Number of arrivals during interval T while the system was in state i.

□ State probabilities at random observation points:

Number of departures during interval T which changed the system state from i+1 to state i.

M / GI / 1 – Waiting system

- □ Both events are alternating during the process development.
- During an observation interval T the following inequality holds true:

$$\square \rangle |n_A(i,T) - n_D(i,T)| \le 1$$

The total number of arrival and departure events during time interval T is given by:

$$\square \qquad n_A(T) = \sum_{i=0}^{\infty} n_A(i,T) \qquad \text{Total number of arrivals during interval T}$$
$$\square \qquad n_D(T) = \sum_{i=0}^{\infty} n_D(i,T) \qquad \text{Total number of departure during interval T}$$

 \Box Start state is given by X(0) and the final state is given by X(T).

$$n_D(T) = X(0) - X(T) + n_A(T)$$

Total number of departure events during interval T

□ State probability at embedded points:

$$x(i) = \lim_{T \to \infty} \frac{n_D(i,T)}{n_D(T)} = \lim_{T \to \infty} \frac{n_A(i,T) + n_D(i,T) - n_A(i,T)}{n_A(i,T) + X(0) - X(T)}$$

$$= \lim_{T \to \infty} \frac{\frac{n_A(i,T)}{n_A(T)} + \frac{n_D(i,T) - n_A(i,T)}{n_A(T)}}{1 + \frac{X(0) - X(T)}{n_A(T)}} \qquad i = 0,1,\dots$$

with

 $\lim_{T \to \infty} \lim_{T \to \infty} \frac{n_A(i,T)}{n_A(T)} = x_A(i), \quad i = 0,1,\dots$ State transition at arrivals

and
$$\lim_{T \to \infty} \frac{\left| n_D(i,T) - n_A(i,T) \right|}{n_A(T)} = 0$$

□ State probability at embedded points:

Stationary

system

$$\lim_{T \to \infty} \frac{|X(0) - X(T)|}{n_A(T)} = 0$$

$$x(i) = x_A(i), \quad i = 0, 1, \dots$$

The arrival process is memory less. Thus, an arrival sees the system from the same perspective state than an independent observer.

PASTA

$$x^*(i) = x_A(i), \quad i = 0, 1, \dots$$

q.e.d.

- What is an embedded chain?
- □ What is an embedded markov chain?
- □ When does a system become stable?
- □ What is the power method?
- Does the start probability vector have an impact on the power method?
- □ How can you analyze a M/GI/1 waiting system?
- What impact does the variation coefficient of the service distribution have on the system performance?
- What is the difference between waiting time of all jobs and waiting time of waiting jobs?
- How can you proof that arrival see a M/GI/1 system from the same perspective than an independent observer?

Analysis of System Performance IN2072 Chapter 5 – Analysis of Non Markov Systems

GI / M / 1 – Waiting system

□ Model:

- □ Model and parameter description:
 - GI / M / 1 ∞ (No jobs are blocked!)
 - Arrival process is general independent (GI) distributed.
 - Service time B is a Poisson process with an exponential distributed inter-arrival time A.
 - Jobs that arrive at a point in time when the service unit is busy, are queued and served in FIFO order as soon as the serving unit has served the current job.

□ Arrival process:

Arrival rate λ

Average number of arriving jobs per time unit.

$$A(t) = P(A \le t), \qquad E[A] = \frac{1}{\lambda}$$

Service process:

Service rate µ

Average number of service completions.

(assuming the service unit only has two states - idle or busy)

$$B(t) = P(B \le t) = 1 - e^{-\mu t}, \qquad E[B] = \frac{1}{\mu}$$

□ System:

- Waiting system
- Waiting queue with unlimited capacity
- Queuing strategy First In First Out (FIFO)

IN2072 – Analysis of System Performance, SS 2012

□ State space:

- Random variable X(t) describes the number of (waiting and currently served) jobs in the system.
- State process is state discrete and time continuous stochastic process.

- **Embedded points:**
 - State process becomes memory less at an arrival.
 - Embedded points of the markov chain are located directly before an arrival.

Embedded Markov Chain:

- The point in time of the nth embedded point corresponds to the nth service completion.
- The sequence of the process states

{ $X(t_0), X(t_1), \dots, X(t_n), X(t_{n+1}), \dots$ }

at these points represent the embedded markov chain.

□ Analysis:

 Introduce a random variable Γ which describes the number of served jobs within an inter-arrival interval.

$$\gamma(i) = P(\Gamma = i)$$
with $\Gamma_{GF}(z) = \sum_{i=0}^{\infty} \gamma(i) \cdot z^{i}$ Generation Function
$$E[\Gamma] = \frac{d\Gamma_{GF}(z)}{dz}\Big|_{z=1} = \mu \cdot E[A] = \frac{1}{\rho}$$

- □ State transition:
 - State transition between consecutive embedded points t_n and t_{n+1} .

$$p_{ij} = P\{X(t_{n+1}) = j \mid X(t_n) = i\}$$

Case 1: System not empty ($j \neq 0$) at time t_{n+1} .

- i jobs in the system right before the nth arrival.
- i+1 jobs are in the system the embedded point t_{n+1} .
- j jobs remain in the system at the next embedded point.

(i+1-j) jobs have to be served during the interval $[t_n; t_{n+1}]$.

$$p_{ij} = \gamma(i+1-j), \quad i = 0,1,..., \quad j = 1,2,...,i+1$$

GI / M / 1 – Waiting system

Case 2: System is empty (j = 0) at time t_{n+1}

- At time t_n are i+1 jobs in the system.
- no jobs remain in the system at time t_{n+1} .

$$i+1$$
 jobs have to be served during $[t_n; t_{n+1}]$

$$p_{i0} = \sum_{k=i+1}^{\infty} \gamma(k) = 1 - \sum_{k=0}^{i} \gamma(k), \quad i = 0, 1, \dots$$

$$P = \{ p_{ij} \} = \begin{cases} 1 - \gamma(0) & \gamma(0) & 0 & 0 & \cdots \\ 1 - \sum_{k=0}^{1} \gamma(k) & \gamma(1) & \gamma(0) & 0 & \cdots \\ 1 - \sum_{k=0}^{2} \gamma(k) & \gamma(2) & \gamma(1) & \gamma(0) & \cdots \\ 1 - \sum_{k=0}^{3} \gamma(k) & \gamma(3) & \gamma(2) & \gamma(1) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{cases}$$

□ The state probabilities at the embedded points t_n can be described by a state probability vector.

$$X_n = \{ x(0,n), x(1,n), \dots, x(j,n), \dots j = 0, 1, \dots \}$$

$$x(j,n) = P\{X(t_n) = j\}$$

State transition probability matrix P which describes the relation between any consecutive state probability vectors X_n and X_{n+1} at embedded points t_n and t_{n+1} is given by

$$\longrightarrow$$
 $X_{n+1} = X_n \cdot P$ Relation of consecutive state transition vectors.

A start vector X_0 is sufficient to calculate the future state probability vectors X_n , n = 1, 2, ...

This method allows us to evaluate systems in overload or during transient phase which are typical issues in communication networks.

□ Stationary state equation:

A system is called stable if it state probability vector does not further change. (c.f. Chapter 3)

$$X_{n} = X_{n+1} = \dots = X$$

$$X = \{x(0), x(1), \dots, x(j), \dots\}$$

$$X = X \cdot P$$
Probability vector in stationary state.
$$x(0) = \sum_{i=0}^{\infty} x(i) \cdot \left(1 - \sum_{k=0}^{i} \gamma(k)\right) = \sum_{i=0}^{\infty} x(i) \sum_{k=i+1}^{\infty} \gamma(k)$$

$$x(j) = \sum_{i=j-1}^{\infty} x(i) \cdot \gamma(i+1-j) = \sum_{i=0}^{\infty} x(i+j-1) \cdot \gamma(i), \quad j = 1, 2, \dots$$

- □ How can you analyze a GI/M/1 waiting system?
- □ What is the utilization of a GI/M/1 waiting system?
- What impact has the variation of the arrival process on the waiting time of a GI/M/1 waiting system?
- □ When does the system become memory-less?

Analysis of System Performance IN2072 Chapter 5 – Analysis of Non Markov Systems

M / GI[O,K] / 1 – S
Batch Service with
Start Threshold

Batch service system with start threshold:

distributed service duration

□ Model and parameter description:

- $M / GI[\Theta, K] / 1 S System with S waiting slots.$
- Arrival process is a Poisson process.
- Service duration is GI distributed. Up to K jobs can be served in parallel.
- Service unit is activated if Θ or more jobs are waiting.
- All jobs of a batch experience exactly the same service time.
- Arriving jobs have to wait until the current batch is served.

M / GI[Θ ,K] / 1 – S Loss system

- Model and parameter description:
 - System has S waiting slots.
 - Jobs are blocked if S jobs are waiting in the queue.
 - At the end of a batch service, new jobs are loaded into the servers if at least

 jobs are waiting.
 - Up to K jobs are loaded into the system after a batch service.
 - If less than Θ jobs are waiting in the queue at the end of a batch service, the servers remain idle until Θ jobs are in the queue and a new batch service starts.

M / GI[Θ ,K] / 1 – S Loss system

□ State space:

- Random variable X(t) describes the number of waiting the system.
- State process is state discrete and time continuous stochastic process.

• Embedded points:

- State process becomes memory less at the time of a service completion.
- Embedded points of the markov chain are located directly after service completion.

Embedded Markov Chain:

- The point in time of the nth embedded point corresponds to the nth (batch) service completion.
- The sequence of the process states

{ $X(t_0), X(t_1), \dots, X(t_n), X(t_{n+1}), \dots$ }

at these points represent the embedded markov chain.

□ Analysis:

 Introduce a random variable Γ which describes the number of arrivals during a service duration.

 $\gamma(i) = P(\Gamma = i)$

The state probabilities at the embedded points t_n and t_{n+1} can be described by a state probability vector.

$$p_{ij} = P\{X(t_{n+1}) = j \mid X(t_n) = i\}$$

- □ State transition:
 - State transition between consecutive embedded points t_n and t_{n+1} .

$$p_{ij} = P\{X(t_{n+1}) = j \mid X(t_n) = i\}$$

Case 1: $i < \Theta$ Less than Θ jobs in the queue at time t_1 .

- Θ-i jobs have to arrive until the service process is started.
- This waiting period is Erlang (Θ -i) distributed $E_{\Theta-i}$.
- Service unit is activated as soon as Θ jobs are waiting.
- j jobs arrive during the service.
- Transition time U is given by:

$$\bigcup U = E_{\Theta - i} + B$$

$$\bigcup p_{ij} = \gamma(j), \quad j = 0, 1, \dots, S - 1$$

$$\bigcup p_{iS} = \sum_{k=S}^{\infty} \gamma(k), \quad j = S$$

- □ State transition:
 - State transition between consecutive embedded points t_n and t_{n+1} .

$$p_{ij} = P\{X(t_{n+1}) = j \mid X(t_n) = i\}$$

Case 2: $\Theta \le i \le k$ Number of jobs in the queue higher than the threshold.

- Service process is started immediately and the queue is emptied.
- Transition time U is identical with the service duration.
- State transition probability is identical to that in case 1.
- j jobs arrive during the service.

$$\bigcup U = B$$

$$\bigcup p_{ij} = \gamma(j), \quad j = 0, 1, \dots, S - 1$$

$$\bigcup p_{iS} = \sum_{k=S}^{\infty} \gamma(k), \quad j = S$$

Case 3: $K \le i \le S$

Number of jobs in the queue is higher than the number of servers.

- Service process is started immediately and K jobs are served.
- (i-k) jobs remain in the queue after the service is started.
- Transition time U is identical with the service duration.
- j jobs are in the queue after the batch service is completed.
- (j-i+K) jobs arrive during the service duration.

$$\bigcup U = B$$

$$\longmapsto p_{ij} = \gamma(j - i + k), \quad j = 0, 1, \dots, S - 1$$

$$\longmapsto p_{iS} = \sum_{k=S-i+K}^{\infty} \gamma(k), \quad j = S$$

State transition matrix:

$$P = \{p_{ij}\} = \begin{cases} 0 & 1 & 2 & \cdots & S-1 & S \\ \gamma(0) & \gamma(1) & \gamma(2) & \cdots & \gamma(S-1) & \sum_{k=S}^{\infty} \gamma(k) \\ \gamma(0) & \gamma(1) & \gamma(2) & \cdots & \gamma(S-1) & \sum_{k=S}^{\infty} \gamma(k) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma(0) & \gamma(1) & \gamma(2) & \cdots & \gamma(S-1) & \sum_{k=S}^{\infty} \gamma(k) \\ 0 & \gamma(0) & \gamma(1) & \cdots & \gamma(S-2) & \sum_{k=S-1}^{\infty} \gamma(k) \\ 0 & 0 & \gamma(0) & \cdots & \gamma(S-3) & \sum_{k=S-2}^{\infty} \gamma(k) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \gamma(K-1) & \sum_{k=K}^{\infty} \gamma(k) \\ \end{bmatrix}$$

□ Average waiting time:

- Start threshold
- Traffic load
- Variance of the service process

Characteristics:

- High waiting time for systems with low traffic load and high start threshold.
- Start threshold becomes dominating for systems with low traffic load since it takes a long time until the start threshold is reached.

M / GI[Θ ,K] / 1 – S with K=32 service units and S=64 waiting slots

□ Average waiting time:

- Start threshold
- Traffic load
- Variance of the service process

Characteristics:

- Impact of variance of the service process decreases with higher start thresholds.
- Optimum in terms of average waiting time is highly parameter sensitive.

M / GI[Θ ,K] / 1 – S with K=32 service units and S=64 waiting slots

- Describe the M/GI[Θ ,K]/1-S loss system and its parameter.
- □ What impact has the start threshold on the waiting duration?
- □ How can you analyze the M/GI[Θ ,K]/1-S loss system?
- Which state changes are possible between to consecutive embedded points?