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ig"‘ Non Markov Systems

a Content:
= (Non Memory-less) systems

* Embedded markov chain
* General distributed service times

= Waiting system M/GI/1-s (Infinite number of sources)
« State probabilities
» Transition probabilities
« Waiting time distribution
» Impact of variance of the service process on system performance

» Waiting system GI/M/1-s (Infinite number of sources)
 State probabilities
» Transition probabilities
« Waiting time distribution




ig"‘ Non Markov Systems

a Markov Systems:
= Arrival process is memory-less.
= Service process is memory-less.

I:> System is memory less at any given point in time.

a Non Markov Systems:
= Have one component which is memory-less AND
= one component which is NOT memory-less.

I:> System becomes memory-less either at the time of an arrival or at
the time a service is completed.

> M/Gl/landGl/M/1

0 ldea:
Analyze the system when it is memory-less.




iﬁ'"‘ Embedded Markov Chalin

Assumption:

State discrete stochastic process {X (t),t >0} which is memory-less
(markovian) at time{t,,n=01,.. .}.

:> P{X (tn+1) — Xn+1|X (tn) — Xn""’ X (to) — XO}:
PIX (1) = Xt X (8) = X, b, <t, <...<t, <t,...

X(i)




ig"‘ Embedded Markov Chain

Characteristics:

Q

Q

The future development of the process only depends on its current
state.

Knowledge about the current state X (t,) attime t_ is sufficient to
calculate its consecutive states X (t,;), X (t,.,).---

Due to the state discrete nature of the process, the states{X(t,)}
represent a chain.

The chain is a markov chain according to our assumption which states
that the process is memory-less at time {t ,n=0,1,.. }.



ig'“ Embedded Markov Chalin

a Points of regeneration:

X(t) A Arrivals

System state

voy¥ v Y .

A A l\_/\'l t
P P P P

I:> Embedded points in time when the system is memory-less
(markovian).




ig"‘ Embedded Markov Chain

o The state probabilities at the embedded points t, can be described by
a state probability vector.

—> X, ={x@,n), i=01..}
—> x(i,n)=P{X(t,) =i}

State transition probability matrix P which describes the relation
between any consecutive state probability vectors X, and X, at
embedded points t, andt__.is given by

:> P:{pij}
|:> P = P{X (tn+1) =] | X(tn) =1}, ,]=012,...

n+1

I:> Xy =X,-P Relation of consecutive state transition vectors.

‘ X=X-P Probability vector in stationary state.




iﬁ".‘ Embedded Markov Chain

o Characteristics:

» The probability vector of the markov chain in steady state is given by the
left eigenvector of the transition probability matrix P of eigenvalue 1.

= Embedded markov chain is usually applied if only one component is non-
memory less.

» Embedded points are located where this component becomes memory
less.

o M/GI/1
= Service process is the only non-memory less component.
= State process becomes memory less after service completion.
I:> Embedded points are located directly after a service completion.

o GI/M/1

= Arrival process is the only non-memory less component.
= State process becomes memory less after an arrival.

I::> Embedded points are located directly before an arrival occurs.
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X

a M/Gl/1-Waiting system

/ 7N\
0 Model:
(- )
1
Poisson arrival
> o ||| —
M, A
. . H
Waiting queue with  \__ v,
unlimited capacity General independent

distributed service time

0 Model and parameter description:
= M/GI/1-o (No jobs are blocked!)

= Arrival process is a Poisson process with an exponential distributed inter-
arrival time A.

= Service time B is general independent (GI) distributed.

= Jobs that arrive at a point in time when all service units are busy, are
gueued and served in FIFO order as soon as a free serving unit is
available.

© IN2072-Analysis of System Performance, SS2012 g




ig"‘ M/ Gl /1-Waiting system

a Arrival process:
Arrival rate A
Average number of arriving jobs per time unit.

Alt)=P(A<t)=1-e™, E[A] :%

Q Service process:
Service rate y

Average number of service completions.
(assuming the service unit only has two states — idle or busy)

B(t)=P(B<t), E[B]=—
Y7

a System:
= Waiting system
= Waiting queue with unlimited capacity
» Queuing strategy — First In First Out (FIFO)




ig'.‘ M/ Gl /1- Waiting system

Q State space:

= Random variable X (t) describes the number of (waiting and currently
served) jobs in the system.

» State process is state discrete and time continuous stochastic process

X®) A Arrivals
Y vy v VvV Y

Waiting jobs

System state

Busy serving unit
T I B N 1
t

3.4 06 17 16 0707 13 n  grivals
A 4 A A 4 A 4 \ A A A 4 -

\ 4 \ AN 4 v V V service time
17 |10l | 3.3 4.0 07 o
events

YV V.V VY V VVVY VVY -




ig'.‘ M/ Gl /1- Waiting system

Q State space:

= Random variable X (t) describes the number of (waiting and currently
served) jobs in the system.

» State process is state discrete and time continuous stochastic process

X(t) h Arrivals
v vy Y YVYVY Y
QA :
8
(7))
E -
L .-
2 Waiting jobs
0p]
1____ — o e — i —
tn-1 tn t |
4 YV VvV VYVYVY ¥V anvas
\ 4 vV V \ 4 \ 4 serxcehme
\ A 4 v\}v A A 4 V VVVVY Vy SV
P P P P




ig"‘ M/ Gl /1 - Waiting system

0 Embedded points:
= State process becomes memory less at the time of a service completion.

= Embedded points of the markov chain are located directly after service
completion.

o Embedded Markov Chain:

» The point in time of the nihn embedded point corresponds to the nt service
completion.

» The sequence of the process states

X (), X (), ..., X(t,), X(ty.0),- -}

at these points represent the embedded markov chain.




e

a Analysis:

Introduce a random variable I" which describes the number of arrivals
during a service duration.

y() =PI =1)

with T (2) = Zy(i) .z'  Generation Function
i=0

— E[F]=% _ 1-E[B]=p

z=1



ig'.‘ M/ Gl /1-Waiting system

o Transition behavior:

Arrivals (j-i+1) arrivals ~ Arrivals j arrivals during

X(t) A Y vy ¥|during the service X(t) A Y V Y V' |the service

L S 2 P

< - [ E o :

2 i <

E | : X (tn+1) = J E a : E :

()] i ; X(tn)=|-¢0 )] 29 . X(tn+1):j
1_____: P P : i
__-_t, o]

tn tn+1 X(t)=i=0 tn tn+1 t
VYV V arnva»ls VVY V arnva»ls
v ¥ servm:: time v v serwc»e time
t
vVYVY vy VYVY vy
P P

State transition i—j with i0 State transition i=0 —j




ig'“ M/ Gl /1 - Waiting system

0 State transition:
State transition between consecutive embedded pointst, and t,,,.

|:> Py = P{X(t,..) = J[ X(t,) =1}

Case 1: System not empty (i = 0) at time
= Attime t  areijobs in the system.
= The service of the next job starts directly after t.
= ]jobs remain in the system attime t_,.

I:> (j-i+1) jobs have to arrive during the interval [tn ;tn+1] which
corresponds (in this case) to the service duration.

= py=r(i-i+D, i=12.., j=i-1i...




ig"‘ M/ Gl /1- Waiting system

Case 2: System is empty (i = 0) attime t,
= Attime t, are i=0 jobs in the system.
» The service of the next job starts directly after the arrival of the job.
= ] jobs remain in the system attime t_ .

I:> ] jobs have to arrive during the service duration.

:> pOj:7/(j), j=01,...

(y©) 7@ 72 @3 -
y(0) y@ 72 »()
=) P={p}=| 0 #0) y@ (2
O 0 yO0 »@




iﬁ".‘ M/ GI/1-Walting system

o The state probabilities at the embedded points t, can be described by
a state probability vector.

—> X, ={x(O,n),x@n),....x(j,n),... j=01..}
—> x(j,n)=P{X(t,) = j}

State transition probability matrix P which describes the relation
between any consecutive state probability vectors X, and X, at
embedded points t, andt__,is given by

n+1

I:> Xy =X,-P Relation of consecutive state transition vectors.

A start vector X, is sufficient to calculate the future state probability
vectors X, ,n=12,... .

:> This method allows us to evaluate systems in overload or during
transient phase which are typical issues in communication
networks.
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ig"‘ M/ Gl /1-Waiting system

Q Stationary state equation:
A system is called stable if it state probability vector does not further
change. (c.f. Chapter 3)

> X, =X,,=...=X
—> X={x(0),x®),...,x(j),..}
‘ X=X-P Probability vector in stationary state.

j+1

) x(j)= X(0)7/(J')+Zx(i)7(j —-1+1)  j=01...

State probabilities can be calculated by using the distribution of RV I
and the probability vector.
= In general the process or system is in an instationary state X, at the
beginning.
» The stationary state vector is typically determined by numerical method.




ig"‘ M/ Gl /1-Waiting system

o Power method:

Robust numerical method to determine the steady probability state
vector.

I:> Calculate the general state probability equation X ., = X, - P until
a certain abortion criteria is reached.

I:> It is assumed that the statistical equilibrium is reached if the
following abortion criteria holds true:

—> |E[X(t,.)]-E[X(t)]<e=10"




iﬁ".‘ M/ GI/1- Waiting system

o Complementary waiting time distribution functionin M/ Gl / 1.

In the following the complementary waiting distribution function of a
M/ Gl /1 Waiting system depending on ist utilization p and the
coefficient of variation c: of the service time distribution is shown.

0 Coefficient of variation (Variationskoeffizient)

» The coefficient of variation is a normalized measure of dispersion of a
probability distribution

= |tis a dimensionless number which does not require knowledge of the
mean of the distribution in order to describe the distribution
Oy
Cy = , E[X]>0
<= EX] [X]

c =0 — deterministic (constant service duration)
c <1l — variance lower than exponential distribution
= C¢>1 - variance higher than exponential distribution
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ig"‘ M/ Gl /1-Waiting system

o Complementary waiting time distribution function in M/ GI/ 1.

Probability that the a
system is busy.

3
—> xO0)=1-p § *"

g
—> p=1-x(0) |3

§ oot

0.001

t/E[B]

I:> Waiting duration increases with higher variance of the service process!

I:> Variance of the service process becomes the dominating factor.




iﬁ'"‘ M/ Gl /1-Waiting system

o Average waiting time of waiting jobs:

High utilization should be avoided if the service duration has a high
coefficient of variation!
Best performance is achieved by systems with constant service times.

!




iﬁ'"‘ M/ Gl /1-Waiting system

Q State probabilities at random observation points:

I:> X (), i=01...,n  State probabilities at a randomly chosen
observation point t*.

I:> X,(), 1=01...,n  State probabilities at points of arrival.

I:> State probabilities of a M / G / 1 — Waiting system are valid at any
randomly chosen observation point t*.

> x@(i)=x"(I))=x,(), i=01...




ig"‘ M/ Gl /1-Waiting system

Q ldea:
= Observe the state process over an interval of length T.
= Focus on a single state [ X =1] and count the following state transitions:

I:> Arrival event:
- State transition [X =i] >[X =i+]]
* n,(i,T) number of these state transitions during interval T.

I:> Departure event:

« State transition [ X =1+1] >[X =i]
* N, (1,T) number of these state transitions during interval T.




e

Q State probabilities at random observation points:
Number of arrivals during interval T while the system was in state |.

X® A Arrivals
v A

System state

0 t
arrivals




ig'“ M/ Gl /1-Waiting system

Q State probabilities at random observation points:

Number of departures during interval T which changed the system
state from i+1 to state I.

X(®) A Arrivals
\{ \ A / YY VY
L
S
(2]
E -
%Hl
> .
h T - -——- ey iy Eam i i
1_
\V4 \VARAVA \VARVA \V4 -
0 1 | ! | 1 T | t
T
v v v vV v departures
! | | | 1 | o
0 T ]
n,(1,T)
| Y Y Y T -
0 T




ig'“ M/ Gl /1 - Waiting system

a Both events are alternating during the process development.
a During an observation interval T the following inequality holds true:

—> [n.(.T)—ny(i,T)<1

a The total number of arrival and departure events during time interval T
IS given by:

I:> n,(T)= ZHA(i,T) Total number of arrivals during interval T
=0

|:> n,(T) = ZnD (i,T)  Total number of departure during interval T
i—0

o Start state is given by X(0) and the final state is given by X(T).

I:> N, (T)=X(0)—-X(T)+n,(T) Total number of departure events

during interval T




ig'“ M/ Gl /1-Waiting system

Q State probability at embedded points:

N e N (T) L N (L T)+ng (1LT)—n,(1,T)
= O m T T+ X - X (M)

n,(i,T) N N, (1,T)—n,(i,T)

. n,(T) n,(T) :
= lim —& A i=01,...
NA(T)

with T
I:> lim n0.T) _ X,(i), 1=0J... State transition at arrivals

T—>w nA( )
and - -

1T - ’T

T—w nA(T)




ig"‘ M/ Gl /1 - Waiting system

Q State probability at embedded points:

Stationary

system |X (0)— X (I')|

—> lim =0
T > nA(T)

m) x(i)=x,3i), i=01...

The arrival process is memory less. Thus, an arrival sees the system
from the same perspective state than an independent observer.

PASTA

—> xX(@{)=x,3), i=01,...

g.e.d.




'y, :
wyg Questions

What is an embedded chain?

What is an embedded markov chain?

When does a system become stable?

What is the power method?

Does the start probability vector have an impact on the power method?
How can you analyze a M/GI/1 waiting system?

What impact does the variation coefficient of the service distribution
have on the system performance?

0 What is the difference between waiting time of all jobs and waiting time
of waiting jobs?

a How can you proof that arrival see a M/GI/1 system from the same
perspective than an independent observer?

(WU R N N I MRy

IN2072 — Analysis of System Performance, SS 2012
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ig'.‘ Gl /M /1 - Waiting system

o Model:

General independent 4 1 R
distributed

> o ||| —
Gl, A L

Waiting queue with '\ J

unlimited capacity Poisson

process

0 Model and parameter description:
= GI/M/1-o (No jobs are blocked!)
= Arrival process is general independent (Gl) distributed.

= Service time B is a Poisson process with an exponential distributed
inter-arrival time A.

= Jobs that arrive at a point in time when the service unit is busy, are queued
and served in FIFO order as soon as the serving unit has served the
current job.

Y




ig"‘ Gl /M /1 - Waiting system

a Arrival process:
Arrival rate A
Average number of arriving jobs per time unit.

At)=P(A<t), E[A] =%

Q Service process:
Service rate y

Average number of service completions.
(assuming the service unit only has two states — idle or busy)

B(t)=P(B<t)=1-e*, E[B]-—

7,

a System:
= Waiting system
= Waiting queue with unlimited capacity
» Queuing strategy — First In First Out (FIFO)




ig'.‘ Gl /M /1 - Waiting system

Q State space:

= Random variable X (t) describes the number of (waiting and currently
served) jobs in the system.

= State process is state discrete and time continuous stochastic process.

X(@t)h Arrivals
v vy A4 vyvy vy
QA T
[
wn
E —
[T
2 Waiting jobs
(7))
1____ — -_—— ——— T e e e
tn-1 tn t |
4 YV VvV VYVYVY ¥V anvas
\ 4 v \ 4 \ 4 \ 4 sericeUme
VY V.V VY V VVVY VYV events




ig"‘ Gl / M/ 1-Waiting system

0 Embedded points:
= State process becomes memory less at an arrival.

= Embedded points of the markov chain are located directly before an
arrival.

o Embedded Markov Chain:

» The point in time of the nihn embedded point corresponds to the nt service
completion.

» The sequence of the process states

X (), X (), ..., X(t,), X(ty.0),- -}

at these points represent the embedded markov chain.




e

a Analysis:

Introduce a random variable I" which describes the number of served jobs
within an inter-arrival interval.

y(1) =P =)
with T (2) = Zy(i) .z'  Generation Function
i=0

Al (2)] . :l
—> E[r]_—dZ = - E[A] p

z=1




ig"‘ Gl / M/ 1-Waiting system

0 State transition:
= State transition between consecutive embedded points t, and t_.,.

|:> Py = P{X(t,..) = J[ X(t,) =1}

Case 1: System not empty (j = 0) attime t__,.
» |jobs in the system right before the nw arrival.
= i+1 jobs are in the system the embedded point {__,.
= jjobs remain in the system at the next embedded point.

I:> (i+1-)) jobs have to be served during the interval [tn;tn+11

—> p=y>i+1-j), i=0L.., j=12,..i+1




ig"‘ Gl / M/ 1-Waiting system

Case 2: System is empty (j = 0) at time t
= Attime {, arei+1 jobs in the system.
= no jobs remain in the system at time 1

n+1

n+l1*

I:> i+1 jobs have to be served during [tn;tn+1].

= P = iy(k):l—'zy(k), i=01,...

k=i+1

(1-y(0) »(0) 0 O
1—Zy(k) y@ y0) O

=) P={p}=|1-Dsk) 7 7@ 70
-3 7@ 7@ 70




ig'.‘ Gl /M /1 - Waiting system

o The state probabilities at the embedded points t, can be described by
a state probability vector.

—> X, ={x(O,n),x@n),....x(j,n),... j=01..}
—> x(j,n)=P{X(t,) = j}

State transition probability matrix P which describes the relation
between any consecutive state probability vectors X, and X, at
embedded points t, andt__,is given by

n+1

I:> Xy =X,-P Relation of consecutive state transition vectors.

A start vector X, is sufficient to calculate the future state probability
vectors X, ,n=12,... .

:> This method allows us to evaluate systems in overload or during
transient phase which are typical issues in communication
networks.

IN2072 — Analysis of System Performance, SS 2012




ig'“ Gl / M/ 1-Waiting system

Q Stationary state equation:

A system is called stable if it state probability vector does not further
change. (c.f. Chapter 3)

> X, =X,,=...=X
—> X={x(0),x®),...,x(j),..}

‘ X=X-P Probability vector in stationary state.

i=0 k=i+1

=) x©) =ix(i)-(1—2y(k)j=ix(i)iy(k)

—> x(j)=ix(i)-y(i+1—j)=ix(i+j—l)-y(i), i=12,...

i=j—1




X .
vog Questions

a How can you analyze a GI/M/1 waiting system?
a What is the utilization of a GI/M/1 waiting system?

0 What impact has the variation of the arrival process on the waiting time
of a GI/M/1 waliting system?

a When does the system become memory-less?
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ig'.‘ M/GI[O,K]/1-S Loss system

Batch service system with start threshold:

Model: K . l
Activation

Poisson arrival :@) 4 1 5 K )

process
=l I1H @) @) - E) —
V/S: " ” ),

Batch service process with Gl
distributed service duration

0 Model and parameter description:
= M/GIO,K]/1-S - System with S waiting slots.
= Arrival process is a Poisson process.
= Service duration is Gl distributed. Up to K jobs can be served in parallel.
= Service unit is activated if ® or more jobs are waiting.
= All jobs of a batch experience exactly the same service time.
= Arriving jobs have to wait until the current batch is served.

IN2072 — Analysis of System Performance, SS 2012




".'l M/ GI[O,K]/1-S Loss system

0 Model and parameter description:

System has S waiting slots.
Jobs are blocked if S jobs are waiting in the queue.

At the end of a batch service, new jobs are loaded into the servers if at
least ® jobs are waiting.

Up to K jobs are loaded into the system after a batch service.

If less than ® jobs are waiting in the queue at the end of a batch service,
the servers remain idle until ® jobs are in the queue and a new batch
service starts.




ig'.‘ M/ GI[O,K]/1-S Loss system

Q State space:
= Random variable X (t) describes the number of waiting the system.
= State process is state discrete and time continuous stochastic process.

X(t) A
1Y, YVVV VW VV V. VV VYV VvV

Arrivals _|_

K== = e = = e e e e e e e = R N el el
_,q_,) N :
8
n
=R CE NpNpguy GEp— 0 - S
ICEE
D
o BEREE R
1: 2! service process t3: t4: L
Embedded points :
H é B T ;»
U U U ¢
< Case l € Case 3 ><€ >




ig"‘ M/ GI[O,K]/1-S Loss system

0 Embedded points:
= State process becomes memory less at the time of a service completion.

= Embedded points of the markov chain are located directly after service
completion.

o Embedded Markov Chain:

» The point in time of the nin embedded point corresponds to the nwn (batch)
service completion.

» The sequence of the process states

X (), X (), ..., X(t,), X(ty.0),--

at these points represent the embedded markov chain.




ig"‘ M/ GI[O,K]/1-S Loss system

a Analysis:

= |ntroduce a random variable I" which describes the number of arrivals
during a service duration.

y() =PI =1)

The state probabilities at the embedded points t, and t, ., can be
described by a state probability vector.

::> pij = P{X (tn+1) = J | X (tn) = I}




iﬁ'.l‘ M/ GI[O,K]/1-S Loss system

0 State transition:
= State transition between consecutive embedded points t, and t_,

|:> Py = P{X(t,..) = J[ X(t,) =1}

Case 1l: 1<® Lessthan © jobs in the queue at time t,.
* @-ijobs have to arrive until the service process is started.
= This waiting period is Erlang (®-i) distributed E .
= Service unit is activated as soon as ® jobs are waiting.
= |jobs arrive during the service.
Transition time U is given by:

:> U=E,. +B
—> py=r(i). Jj=01...5-1 PO

Embedded point

0
|:> piS - Z}/(k)’ J = S < Caso 1 >< 03593_’%:?;—
k=S

X(t)
1Y YVYVY VW VYV V. VYV VY vy

System state
v ¢ T
T T




ig'.‘ M/ GI[O,K]/1-S Loss system

0 State transition:
= State transition between consecutive embedded points t, and t_.,.

|:> Py = P{X(t,..) = J[ X(t,) =1}

Case 2: ®<i1<k Number of jobs in the queue higher than the threshold.
= Service process is started immediately and the queue is emptied.
= Transition time U is identical with the service duration.
= State transition probability is identical to that in case 1.
= |jobs arrive during the service.

—)> U=B

|:> pij:7(j): J=01...,5-1

—> Ps=27(k), =S e p—————
k=S ase case s PG

X(t)

System state




ig"‘ M/ GI[O,K]/1-S Loss system

Case 3: K<IiLS
Number of jobs in the queue is higher than the number of servers.

= Service process is started immediately and K jobs are served.
= (i-k) jobs remain in the queue after the service is started.

» Transition time U is identical with the service duration.

j jobs are in the queue after the batch service is completed.
(j-i+K) jobs arrive during the service duration.

X(t)

=

—> U=B

I:> pljzj/(j_l_l_k)! j:O,l,...,S—l

']
p — (k) j — S  Embedded points : :
1S 7/ ’ u u U
N Case 1 P Case3 T Cose s

k=S—-i+K

System state

[}
N




ig"‘ M/ GI[O,K]/1-S Loss system

State transition matrix:

0 1 2 .- S-1 S
y0) 7@ 72 - #(S-1) iy(k) 0

Y0 7O 7@ - y6-) Yk | 1

Y0 ¥ 7@ - #(s-1) Sk | K
=) P={p}=

0 A0 O - 78-2) Y| K+l

0 0 y(0) - #(S-3) _iy(k) K+2

0 0 0 - yK-1) >yk| s




ig"‘ M/ GI[O,K]/1-S Loss system

O Average waiting time:
= Start threshold
» Traffic load

= Variance of the service S
process

0 Characteristics:
= High waiting time for
systems with low traffic

load and high start
threshold.

= Start threshold becomes
dominating for systems | ' '
with low traffic load since 0.0 0.2 0.4 0.6 0.8 1.0 12 1.4
it takes a long time until p=A-E[B]/k
the start threshold is
reached.

Average waiting time E[W]

M/ GI[®,K]/1-S with K=32 service units and
S=64 waliting slots




(/
7

iﬁl‘ M/ GI[®,K]/1-S Loss system

O Average waiting time:
= Start threshold
» Traffic load

= Variance of the service
process

o Characteristics:

» Impact of variance of the
service process
decreases with higher
start thresholds.

= Optimum in terms of
average waiting time is
highly parameter
sensitive.

N
o

n
o
1

ik
o
1

Average waiting time E[W]
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M/ GI[®,K]/1-S with K=32 service units and
S=64 waliting slots



X .
vog Questions

Describe the M/GI[®,K]/1-S loss system and its parameter.
What impact has the start threshold on the waiting duration?
How can you analyze the M/GI[0®,K]/1-S loss system?

Which state changes are possible between to consecutive embedded
points?
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