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Stochastic process 

 Process development 
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Process trajectory is given by the following expression: 
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Stochastic process 

 Process development 
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Markovian process 

 Transient behavior of markovian processes: 

 The future development of a markovian process only depends on its 

current state and not on its behavior in the past. 
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Markovian process 

 Markov chain: 

 A markov chain is a markovian process with finite or countable 

(discrete) state space. 
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Discrete Time Markov Chain (DTMC) 

 A DTMC evolves over time, that is, step by step, according to one-step 

transition probabilities. 

 

 Transition probability: 

 The probability that the process changes from state i to state j within a 

single process step is given by: 

 

 

 

 

 (One-step) Transition probability matrix: 
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Classification of DTMCs 

 Definition: 

 Any state j is said to be reachable from any other state i, where    

                , if it is possible to transit from state i to state j in a finite number 

of steps according to the given transition probability matrix. For some 

integer         , the following relation must hold for the n-step transition 

probability: 

 

 

 Irreducible: 

 A DTMC is called irreducuble if all states in the chain can be reached 

pairwise from each other. 

 

 

 Absorbing: 

 A state is called absorbing state if and only if no other state of the 

DTMC can be reached from it. 
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Discrete Time Markov Chain (DTMC) 

 Example: 

 Consider a system with two states, e.g. a CPU which can be either idle 

or busy.  

 

 The state space of the system is modelled as               . 

 

 The one-step transition probability matrix of this two-state DTMC is     

given by:  

 

 

 

 

 Its behavior can be represented by the following finite directed graph: 
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Discrete Time Markov Chain (DTMC) 

 N-step transition probability: 

 Is the probability that markov chain transits from state i at time k to 

state j at time   in exactly              steps. 
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Discrete Time Markov Chain (DTMC) 

 Idea: 

 Compute the n-step transition probabilities recursively from the        

one-step transition probabilities. 

 
Split the transition from state i at time k to state j at time l into 

sub-transitions from state i at time k to a state h at time m and 

from state h at time m to state j at time l, where k<m<l and n=l-k. 
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Discrete Time Markov Chain (DTMC) 

 Homogeneous DTMC: 

 Behaviour of DTMC is not time-dependent. 

 

        only depends on the difference                and not on the 

absolute values of k and l. 
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Discrete Time Markov Chain (DTMC) 

 Homogeneous DTMC: 

 

 

 

 

 With         as the matrix of n-step transition propabilities         , we can 

formulate the Chapman-Kolmogorov equation from the previous slide 

as: 

 

 

 

 The n-step transition propability matrix can be computed by the           

(n-1)-fold multiplication of the one-step transition matrix by itself. 
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Discrete Time Markov Chain (DTMC) 

 Example: 

 

 

 One step transition probability matrix: 
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1 0 

2

1

4

1

4

3

2

1






























5.05.0

25.075.0

2

1

2

1
4

1

4

3

)1(P

4

)4(

5.05.0

25.075.0








P



Network Security, WS 2008/09, Chapter 9   15 IN2072 – Analysis of System Performance, SS 2012   15 

Discrete Time Markov Chain (DTMC) 

 Example: 

 

 

 Four step transition propability matrix: 
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Discrete Time Markov Chain (DTMC) 

 Goal: 

 Compute the probability mass function of the random variable    , that 

is, the probabilities                              that the DTMC is in state i at time 

step n. 

 

 Vector of state probabilities at time n 

 

 

 can be obtained by un-conditioning the transition probability matrix       

on the initial probability vector 
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Discrete Time Markov Chain (DTMC) 

 Example: 

 

 

 We assume that the system is in state one which results in the initial 

probability vector                       . 
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Discrete Time Markov Chain (DTMC) 

 Stationary state probabilities: 

 State probability                                of a discrete-time Markov chain 

are said to be stationary, if any transitions of the underlying DTMC 

according to the given one-step transition propabilities                have 

no effect on these state probabilities, that is,                          holds all 

states          . This relation can also be expressed in matrix form: 
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Discrete Time Markov Chain (DTMC) 

 Example: 

 

 

 The n-step transition probabilities converge as n . 
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Discrete Time Markov Chain (DTMC) 

 Transient analysis 

 Short-term behavior 

 State probabilities are time 

dependent 

 Initial state probability vector 

influences the state 

probabilities 

 Steady-state analysis 

 Long-term behavior 

 State probabilities are time 

independent 

 Initial state probability vector 

does not affect the steady-state 

probabilities 

Transient analysis has special relevance if short-term behavior is of more 

importance than long-term behavior 
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DTMC Examples 

 Example: 

 

 

 

 Transition probability matrix: 
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DTMC Examples 

 Example: 
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DTMC Examples 

 Example: 

 

 

 

 Transition probability matrix: 
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Birth-death process 

 Definition: 

 Birth-death processes are markovian processes which only have 

transitions between two neighbor states. 

 

 Birth-death processes have usually one dimensional state spaces. 

 A markov model with multi-dimensional state space is also often referred 

to as birth-death process if there only exist transitions among neighbor 

states in each direction of the state space. 
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Birth-death process 

 Transition probability densities: 
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Instationary birth-death process 

 Time-dependent probabilities of the birth-death process 
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Stationary birth-death process 

 Equilibrium state of the system of equations of the micro states is 

given by: 
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Stationary birth-death process 
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Stationary birth-death process 
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Macro state S 

 This system of equations can be resolved by succesive insertion of the 

micro states. 

 

 

 

 

 The unknown state probability          can be calculated by using the 

normalization condition (total probability). 
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Questions 

 What are the characteristics of a markov process? 

 Differences between transient analysis and steady-state analysis. 

 What is a chain? 

 What is a markov chain? 

 When does a system become stationary? 

 What is an absorbing state? 

 What is birth-death process? 


