Chair for Network Architectures and Services—Prof. Carle

Department of Computer Science
TU Minchen

Analysis of System Performance
IN2072
Chapter 3 — Markov Chains

Dr. Alexander Klein
Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services

Department of Computer Science
Technische Universitat Minchen
http://www.net.in.tum.de




X L
7¢g Classification

Waiting queue system, petri net, process algebra, Analysis

abstract machine, transition system

Analysis Analysis




e

a Process development

X(i)4 S TR A A - S R ;
i i i /N
: : : A
: : : ,' N
3 o N 3 /‘\ """"""""
: 1N L '\
: V2R S :
1 I \ |I 1 \
________ o N il
2 N0 e A ’:
N : A
v e IRV
i A e S
| | > .
1 2 3 4 5 6 7 Ume

Process trajectory is given by the following expression:

:> P{X (tn+1) = Xn+1|x(tn) RTRE X(to) - XO}
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74 Stochastic process

a Process development

Process trajectory is given by the following expression:

:> P{X (tn+1) = Xn+1‘x(tn) RTRE X(to) - XO}
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74 Markovian process

Transient behavior of markovian processes:

The future development of a markovian process only depends on its
current state and not on its behavior in the past.

P{X (tn+1) — Xn+1|x (tn) — Xn""’ X (tO) = XO}:
P{X (o) = Xpua | X (£,) = X, } t, <t <..<t <t ..

X(i)
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o Markov chain:

A markov chain is a markovian process with finite or countable
(discrete) state space.




;ﬁ'.“ Discrete Time Markov Chain (DTMC)

a A DTMC evolves over time, that is, step by step, according to one-step
transition probabilities.

a Transition probability:

The probability that the process changes from state i to state j within a
single process step is given by:

Superscript corresponds to the number of process ticks
:> m) = P{X (tn+1) = Xn+1 = J | X (tn) = Xn = I}

a (One-step) Transition probability matrix:

( poo p01 poz with Z pij 1
— p_pO _[p,]=| o Pu Po ,
Poo Par Poz ™ and 0<p; <1
\ : . .




iﬁ".‘ Classification of DTMCs

a Definition:
Any state j is said to be reachable from any other state i, where

I, j €S, if itis possible to transit from state i to state j in a finite number
of steps according to the given transition probability matrix. For some
integer n>1, the following relation must hold for the n-step transition
probability:

—> p;”>0, 3nn>1

a Irreducible:

A DTMC is called irreducuble if all states in the chain can be reached
pairwise from each other.

—> Vi,jeS, 3nnx1:p” >0

a Absorbing:

A state is called absorbing state if and only if no other state of the
DTMC can be reached from it. T—»> p; =1
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'f‘ Discrete Time Markov Chain (DTMC)

o Example:

Consider a system with two states, e.g. a CPU which can be either idle
or busy.

= The state space of the system is modelled as S ={0,1}.

» The one-step transition probability matrix of this two-state DTMC is

given by:
B 0.75 0.25
05 05
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= |ts behavior can be represented by the following finite directed graph:
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;ﬁ"“ Discrete Time Markov Chain (DTMC)

0 N-step transition probability:
Is the probability that markov chain transits from state i at time k to
state j at time | in exactly n=1—k steps.

|::> pign)(k’l):P{X(tl):XI:jlx(tk):Xk:i}1 OSkSI
with 2, P"(D=1 and 0<p(k,1)<1
]




;ﬁv'.‘ Discrete Time Markov Chain (DTMC)

o ldea:

Compute the n-step transition probabilities recursively from the
one-step transition probabilities.

Split the transition from state i at time k to state j at time | into
sub-transitions from state i at time k to a state h at time m and
from state h at time m to state j at time |, where k<m<I and n=I-k.

p" (k. )= pir(k,m)-pi™,  0<k<lI

heS




;ﬁ"“ Discrete Time Markov Chain (DTMC)

o Homogeneous DTMC:
Behaviour of DTMC is not time-dependent.

—> p" =p{" (k1)

pi(jn) only depends on the difference n =1 -k and not on the
absolute values of k and I.

> p" =P{X,,, = J|X, =i}=P{X, = j|X, =i} VkeT

|::> p(”) Z p(m) pf,j' m), 0<m<n Chapman-Kolmogorov

heS

‘ p(”) Z p(l) (”‘1), m<n [ @ Start state and number of time steps ]

hes are sufficient for the calculation.




iﬁ'.“ Discrete Time Markov Chain (DTMC)

o Homogeneous DTMC:

‘ pi(j”) = Z pi(#) . pr(l;‘_l), m<n [ @ Start state and number of time steps ]

hes are sufficient for the calculation.

With P™ as the matrix of n-step transition propabilities Pj" , we can
formulate the Chapman-Kolmogorov equation from the previous slide
as:

—> PO =p®.p0Y=p.pth - p"

The n-step transition propability matrix can be computed by the
(n-1)-fold multiplication of the one-step transition matrix by itself.




iﬁ'.“ Discrete Time Markov Chain (DTMC)

o Example: 1

3 ) 1

4 1 2
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One step transition probability matrix:

3 1

o _| 4 4| 0.75 0.25

: |1 1} o5 05
\2 2/

Four step transition propability matrix:

S o (0.75 o.25j4

05 0.5




;ﬁv'.‘ Discrete Time Markov Chain (DTMC)
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Four step transition propability matrix:

o Example:

3 1
> PW=p.p®_p2.p®

0.75 0.25)
— .p®
05 05
N )

(0.6875 0.3125] " (0.67188 O.32813j
= P.-PY = pY

N |,
N | —,D

10625 0.375 0.65625 0.34375

0.66406 0.33594

B (0.66797 0.33203]




'f‘ Discrete Time Markov Chain (DTMC)

o Goal:

Compute the probability mass function of the random variable X , that
is, the probabilities v, (n) = P{X, =1} that the DTMC is in state i at time
step n.

Vector of state probabillities at time n

v(n) =1v(n),v1(n),v,(n),.. }

can be obtained by un-conditioning the transition probability matrix P™
on the initial probability vector v(0) ={v,(0),v,(0),v,(0),.. .}

—> v(n)=v(0Q)P™ =v(0)-P" =v(n-1)-P




;ﬁ'.“ Discrete Time Markov Chain (DTMC)

1

2
We assume that the system is in state one which results in the initial
probability vector v (0) =(0,1) .

o Example:

0.66797 0.33203
—> vP4)=(0))- = (0.66406,0.33594)
0.66406 0.33594

o Example:

o2 1. 068033
y (0)_(3,3) (0.66,0.33)

_  _ (0.66797 0.33203 _
—> v(l)(4):(0.66,0.33)-( j:(0.66,0.33)

0.66406 0.33594




;ﬁ'.“ Discrete Time Markov Chain (DTMC)

Q Stationary state probabillities:

State probability v = (v,,v;,...,V;,...) of a discrete-time Markov chain
are said to be stationary, if any transitions of the underlying DTMC
according to the given one-step transition propabilities P =[p;] have
no effect on these state probabilities, that is, v; = Zies Vip; holds all
states ] €S . This relation can also be expressed in matrix form:

—> v=vP, Y v=1

ieS




;ﬁ"“ Discrete Time Markov Chain (DTMC)

1
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The n-step transition probabilities converge as n—w .

- 0.75 0.25) 66 0.33
—> P=IimP(”)=Iim( J=£066 033]

Ao >=| 0.5 0.5 0.66 0.33

o Example:

—> ¥=(0.66,0.33)




;ﬁ'.“ Discrete Time Markov Chain (DTMC)

a Transient analysis QO Steady-state analysis
= Short-term behavior » Long-term behavior
= State probabilities are time = State probabilities are time
dependent independent
= [nitial state probability vector = [nitial state probability vector
influences the state does not affect the steady-state
probabilities probabilities

importance than long-term behavior

[ @ Transient analysis has special relevance if short-term behavior is of more ]




%@ DTMC Examples

@ @D
.. . : 1 0
Transition probability matrix: P =

0 1
~ (10
—> limP"=pP=
n—o0 0O 1

0o Example:

vV =v(0)- P =v(0)

Limiting state probabilities V do exist and are identical with the
initial state probability vector v(0) .

—
—




¥4q DTMC Examples

o Example: 1

1

0 1
Transition probability matrix: P = (1 Oj

|:> lim PP}P  The n-step transition matrix P™ does not converge.
N—oo

I:> Stationary probability vector v =(0.5,0.5)

Limiting state probabilities V do NOT exist since the n-step
transition matrix P™ does not converge.




e

o Example: 1

O

01
Transition probability matrix: P = (O J

|:> limP™ =P  The n-step transition matrix P™" converges.
= (all TPMs are identical)

I:> Stationary probability vector v =(0,1)



ig'.‘ Birth-death process

a Definition;
Birth-death processes are markovian processes which only have
transitions between two neighbor states.

= Birth-death processes have usually one dimensional state spaces.

= A markov model with multi-dimensional state space is also often referred
to as birth-death process if there only exist transitions among neighbor
states in each direction of the state space.

A 4 A, Ay 4 Ana
My Hy Hiq H; Hig M,

Birth-death process with finite state space




'4" Birth-death process
Ay A A, Ay A, A
H H, Hiy H; Hin Hy

Transition probability densities:

(A i=01...,n-1 j=i+1

|:> q; =14 1=12,...,n j=1-1

|0 else

Special case:

I:> =0, VieS Pure birth process
X(nN)=P{X =n}=1 x(@{1)=0 else

I:> A =0, VieS Puredeath process
X(0)=P{X =0}=1 x(1)=0 else




ig'.‘ Instationary birth-death process
Ay A A, Ay A, A
H H, Hiy H; Hin Hy

o Time-dependent probabilities of the birth-death process

— %x(o,t) = 2.x(0,1) + ux(L 1)

—> % X(1,1) = —=(A + 4)x(1,1) + 4 x(1 =1, 1) + 14, X(1 +1,1),
1=1...,n-1
—> % x(n,t) = — x(n, 1)+ A, x(n—1,1)

Solving the differential system of equations with starting conditions
{X(i,O), I =0,...,n} leads to the state probability vector at observation
time t {x(i,t), i=0,...,n}.




ig"‘ Stationary birth-death process
Ay A A, Ay A, A
H H, Hiy H; Hin Hy

Equilibrium state of the system of equations of the micro states is
given by:

> 2X(0) = 14x(1)

> (4 +w)X() = A, X(1 —1) + 1, X[ +1),  i=12,...,n-1
:> /1n_1X(n—1)=,LlnX(n)

—> ix(i)zl




: y) A Ay A A
0SSO0 SRar S0 S Ras0)
l 14 % Hia # | fhia 7
'""""""""""\" """
Macro state S
Macro state S consists of micro states{X =01,...,i—1}.

> AuX(-1)=px(@), i=12...,n
—> ix(i):l




Macro state S

This system of equations can be resolved by succesive insertion of the
micro states.
|4

—> x(i)=x(0)-£>—, i=12..,n
Hﬂk

The unknown state probability X(0) can be calculated by using the
normalization condition (total probability)

Hﬂ’ n ll_llﬂ“k
—> 1= Zx(l) x(O)+x(O)Z = > x(0) " =1+ &2
- H,Uk = H,Uk
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; " Questions

What are the characteristics of a markov process?

Differences between transient analysis and steady-state analysis.
What is a chain?

What is a markov chain?

When does a system become stationary?

What is an absorbing state?

What is birth-death process?
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