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Topics 

 Point Fields 

 Generation of Point Fields 

• Constant / Variable Number of Points  

• Rectangle / Arbitrary Area 

 Homogeneous Point Fields 

 Inhomogeneous Point Fields 

 Poisson Field 

 Matern Cluster Field 

 

 Random Graphs 

 Generation of Random Graphs  

• Probabilistic Model 

• Waxman Model 

 Implementation Issues: 

• Adjacency Matrix/List 

• Incidence Matrix 

 Scale-free Graphs 
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Point Fields 

Point Fields 
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Point Fields 

 Point fields: 
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Point Fields 

 Point field: 

 Two dimensional random process 

 Spatial distribution of objects in two dimensional space 

• Seismology (epicenters of earthquakes) 

• Plant ecology (position of trees or other plants) 

• Epidemiology (home locations of infected people) 

• Zoology (burrows or nests of animals) 

• Astronomy (location of stars) 

• Telecommunication (spatial distribution of mobile users) 

 

 The development of many system parameters is influenced by the 

spatial distribution of the simulated objects 
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Point Fields 

 Point fields with a constant number of points (rectangle): 

 Task: 

 Generate a homogeneous point field with n points in a                            

rectangle which is given by (a1,b1),(a1,b2),(a2,b1),(a2,b2) 

 

 

 Algorithm: 

• for i = 1:n 

 

– Generate random variable z1 ~ U(0,1) 

 

– Generate random variable z2 ~ U(0,1) 

 

– Point 

 

    end 
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Point Fields 

 Point fields with a variable number of points (rectangle): 

 F   -   size of the rectangle 

 

           -   average number of points in F 

 

                   -  intensity of the point field 

 

 X – discrete random variable which describes the number of points in the 

rectangle 

 

 Generate a homogeneous point field with X points 
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Point Fields 

 Binomial – Point Field 

 Binomial distributed number of points  

 

 

 

 

 Upper bound: n 

 

 Poisson – Point Field 

 Poisson distributed number of points 

 

 

 

 Upper bound: no upper bound !!! 

 

 Generation:    c.f. point fields with variable number of points 
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Point Fields 

 Poisson – Point Field 

 Optimized Generation: 

 

1. Generate x-coordinates by using a one dimensional Poisson process   

  

  in (a1, a2) with rate  

 

 

 

 

2. Generate the y-coordinates according to a uniform distribution in the 

interval (b1, b2)  
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Note that the one dimensional process specifies the 

number of points in the point field. 
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Point Fields 

 Poisson – Point Field 

 Optimized Generation: 
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one dimensional Poisson process 

Two dimensional Poisson field 
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Point Fields 

 Point fields with a variable number of points in an arbitrary area: 

 Problem: 

• Area has arbitrary shape and size F* 

• Average number of points in F* = E[X*] 

 

• Point intensity in F*:    

 

• Previously introduced algorithms only work for rectangles 

 

 Solution: 

• Generate a rectangle such that the arbitrary area F* fits in the 

rectangle 

• Generate points in the rectangle which includes the area F* until the 

desired number of points are in the area F* 
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Point Fields 

 Point fields with a variable number of points in an arbitrary area: 

 Optimized Generation: 

a1 

Area F* contains X points  

a2 

b1 

b2 

Rectangle 

F contains 

X points  

• Generation similar to Accept-Reject method: 

• No additional random number required 

• Efficiency of the algorithm is given by F*/F 
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Point Fields 

 Inhomogeneous point fields  

 Characteristics 

• Point intensity                 depends on the position 

 

• Maximum  

 

• Point intensity in F*:    

 

 Generation: 

• Calculate E[x] by integrating                   over F 

• Choose RV X according to E[x] 

• Repeat the following three steps until X points are generated 

1. Generate a point (x, y) in F 

2. Choose a random number z                     RV Z ~ U(0,1) 

 

3. Accept if                          , otherwise reject   
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Point Fields 

Inhomogeneous  / homogeneous point fields  

 

 Impact of the chosen distribution on the point field 

Example 2: 

 x – axis – normal distributed 

 y – axis – normal distributed 

Example 1: 

 x – axis – uniform distributed 

 y – axis – uniform distributed 
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Point Fields 

 Cluster point fields  

 Idea: 

• Generate a point field with low density where each point represents a 

parent point 

• Generate a homogeneous Poisson field with intensity        around 

parent points which represent the centre of the clusters       

 

 Matern cluster field: 

• Create a homogeneous Poisson field around each parent point with 

radius R 

 

• Average number of points in each circle is given by  

 

• Intensity in each field around a parent point 
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Point Fields 

 Cluster point fields  

 Matern cluster field: 

A Matern cluster field can be generated in different ways 

• 1. Generation: Accept-Reject method  

 inefficient due to the high number of circle shaped Poisson field 

 

• 2. Generation: Usage of polar coordinates 

– Generate uniform distributed coordinate 

– Generate distance                      according to the following density 

function 
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• Uniform distribution of r results in a decrease of the intensity 

  towards the border of the circle 

• The rectangle for parent point generation has to be smaller  

  than the Matern cluster field in order to mitigate border effects 
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Parent Point                                   Cluster Point 

Point Fields 

 Matern cluster field 

Example: Each parent has 5 points in his cluster 
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Random Graphs 

Random Graphs 
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Random Graphs 

 Random Graphs 

 A graph is an abstract representation of a set of objects where pairs of objects 

can be connected by links. 

 Graph  

 V: Vertices/Nodes = Router 

 E: Edges = Links  

•   

• Undirected                   bidirectional 

• Directed                       unidirectional 

 Node degree        ,             Number of edges that are connected with v 

 Average node degree: 

 In-degree          : number of edges that point to node v  

 Out-degree          : number of edges that point away from node v  

 Distance              : shortest path between two vertices in the graph  

 Network diameter: longest path between two vertices in the graph  

 K-(edge/vertex)-connected: A graph is called k-connected if at least k 

edges have to be removed in order to partition the graph 
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Random Graphs 

 Random Graphs with predefined characteristics 

 Generate a predefined number of nodes in a plane (point field) 

 Connect the nodes in the network by applying one of the following models 

 

1. Basic model(1/2): 

– Generation: 

 Generate an edge between two nodes with probability p 

– Advantage: 

» Fast and simple 

 

– Disadvantage: 

» Number of links per node varies 

» Average node degree only depends on the number of nodes 

» Connectivity between two nodes does not depend on the 

distance between them 

» Does not guarantee full connectivity of the network 

» Does not fit for large networks 
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Random Graphs 

 Random Graphs with predefined characteristics 

1. Basic model(2/2): 

 

 

2D Plane – 100 nodes Basic Model: p=0.01 Basic Model: p=0.05 



Network Security, WS 2008/09, Chapter 9   22 IN2045 – Discrete Event Simulation, WS 2011/2012   22 

Random Graphs 

 Random Graphs with predefined characteristics 

2. Waxman model: 

– Connectivity between two nodes becomes more likely the shorter 

the distance between them  

– Probability that two nodes are connected is given by  

 

                            with 

» D: Euclidean distance between the two nodes 

» L: The maximum distance between two nodes    

 

L

d

evuP 



 ),( 1,0  

2D Plane – 100 nodes Waxman: 

α=10,β=0.025,L=1400  

Waxman: 

α=10,β=0.030,L=1400  
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Random Graphs 

 Random Graphs with predefined characteristics 

3. Node degree model: 

 Problem: Generate a random graph where nodes have at least a  

       minimum degree but less than a maximum degree 

– These graphs are usually generated in an iterative way by adding  

                     

       edges 

 

– k-connected topologies are often used to make the network more 

resilient against node failures  

 

1-connected graph 2-connected graph 3-connected graph 

2

* V
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Random Graphs 

 Implementation of a graph: 

 Basic operations: 

• add / remove (Edge e / Vertex v) 

• find   (Edge e / Vertex v) 

• getVertices (Graph g) 

• getEdges (Graph g) 

 Complex operations: 

• getDegree  (Vertex v)  - Degree of node v 

• isReachable (Vertex src, Vertex dst) - True if a path exists from  

       src to dst, false otherwise. 

• shortestPath  (Vertex src, Vertex dst)  

• isComplete  (Graph g)  - True if all nodes have max 

       degree. 

• isConnected  (Graph g)  - True if isReachable returns 

       true for all nodes. 

• totalWeight (Graph g)  - Sum of all weights. 

• getOneHopNeighbors (Graph g, Vertex v) - List of all direct neighbors. 

F 

A E 

D C 

B 



Network Security, WS 2008/09, Chapter 9   25 IN2045 – Discrete Event Simulation, WS 2011/2012   25 

Random Graphs 

 Implementation of a graph: 

 Matrix structures: 

• Adjacency matrix: 

Is an n by n matrix A where n is the number of vertices |V| in the 

graph. Two vertices i and j are connected with an edge pointing from 

vertex I to vertex j if the element       is 1, otherwise 0. 

 

 

 Example: 

 

 

 

 

jia ,

F 

A E 

D C 

B 
e1 

e2 
e3 

e4 e7 

e5 

e6 
e8 

Src Vertex / 

Dst Vertex 
A B C D E F 

A 0 1 1 1 0 0 

B 0 0 0 1 0 0 

C 0 0 0 1 0 0 

D 1 0 0 0 0 0 

E 0 0 0 0 0 1 

F 0 0 0 0 1 0 
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Random Graphs 

 Implementation of a graph: 

 Matrix structures: 

• Adjacency matrix: 

Is an n by n matrix A where n is the number of vertices |V| in the 

graph. Two vertices i and j are connected with an edge pointing from 

vertex I to vertex j if the element       is 1, otherwise 0. 

 

 

 Example: 

 

 

 

 

jia ,

F 

A E 

D C 

B 
e1 

e2 
e3 

e4 e7 

e5 

e6 
e8 

Src Vertex / 

Dst Vertex 
A B C D E F 

A 0 1 1 1 0 0 

B 0 0 0 1 0 0 

C 0 0 0 1 0 0 

D 1 0 0 0 0 0 

E 0 0 0 0 0 1 

F 0 0 0 0 1 0 

Outgoing 

Incoming 
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Random Graphs 

 Implementation of a graph: 

 Matrix structures: 

• Adjacency matrix: 

 

 

  

 

 

 

 

Src Vertex / 

Dst Vertex 
A B C D E F Out-degree 

A 0 1 1 1 0 0 3 

B 0 0 0 1 0 0 1 

C 0 0 0 1 0 0 1 

D 1 0 0 0 0 0 1 

E 0 0 0 0 0 1 1 

F 0 0 0 0 1 0 1 

In-degree 1 1 1 3 1 1 0 

Out-degree and in-degree of 

each vertex is represented by 

the sum of the corresponding 

row or column of the 

adjacency matrix  

F 

A E 

D C 

B 

Out-degree / in-degree 
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Random Graphs 

 Implementation of a graph: 

 Matrix structures: 

• Adjacency matrix: 

– Characteristics: 

» Complexity: 

 Insert / Delete O(1) 

 Find  O(1) 

 Find neighbors O(|V|) 

 

» Memory consumption: 

 Directed graph  O(|V|²)   

 Undirected graph  O(|V|² / 2)  

 

» Use case: 

 Small graphs due to simplicity and memory consumption 

 Dense graphs due to low complexity 
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Random Graphs 

 Implementation of a graph: 

 Matrix structures: 

• Incidence matrix: 

Is a matrix B of size |V| (number of vertices) by |E| (number of edges)  

with entries       which indicate whether the vertex i incidence edge j. 

» Edge j enters vertex i: 

» Edge j leaves vertex i: 

» No incident:  0 

 Example: 

jib ,

1, jib

1, jib

F 

A E 

D C 

B 
e1 

e2 
e3 

e4 e7 

e5 

e6 
e8 

Vertex / 

Edge 
e1 e2 e3 e4 e5 e6 e7 e8 e9 

A -1 -1 -1 0 0 1 0 0 0 

B 1 0 0 -1 0 0 0 0 0 

C 0 1 0 0 -1 0 0 0 0 

D 0 0 1 1 1 -1 0 0 0 

E 0 0 0 0 0 0 -1 1 0 

F 0 0 0 0 0 0 1 -1 0 



Network Security, WS 2008/09, Chapter 9   30 IN2045 – Discrete Event Simulation, WS 2011/2012   30 

Random Graphs 

 Implementation of a graph: 

 Linked structures: 

• Adjacency list: 

Is an array/list of length |V| which holds for each node a list of its  

neighbor nodes. 

 

 Example: 

 

 

 

 

F 

A E 

D C 

B 
e1 

e2 
e3 

e4 e7 

e5 

e6 
e8 

A B C D 0 

B D 

C D 

D A 

E F 

F E 

Vertex Edge 

Vertex entries are 

references whereas 

edge entries are 

pointers. 
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Random Graphs 

 Implementation of a graph: 

 Linked structures: 

• Adjacency list: 

– Characteristics: 

» Complexity: 

 Insert  O(1) 

 Delete  O(|V|) 

 Find  O(|V|) 

 Find neighbors O(1) 

 

» Memory consumption: 

 Directed graph  O(|V|+|E|)   

 Undirected graph  O(|V|+2|E|)  

 

» Use case: 

 Sparse graphs  

 Efficient if neighbor nodes have to be found frequently 
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Random Graphs 

 Special Case: 

 Scale-free graph: 

  A graph is called scale-free if its node degree k follows the power law. 

 

  c and γ are constants. Typical range 0 < c < 1, 2 < γ < 3. 

• Examples: 

– Social networks 

– Collaboration networks 

– Computer networks 

– Disease transmission 

 

 ckkP )(

Random Graph Scale-free Graph 
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Random Graphs 

 Special Case: 

 Scale-free graph: 

Characteristics: 

– High number of nodes with a small node degree. 

– Small number of nodes (hubs) with a high node degree. 

 

 

Few nodes with 

high degree 

Many nodes 

with low degree 

2)(  kkP
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Random Graphs 

 Special Case: 

 Scale-free graph: 

  A graph is called scale-free if its node degree k follows the power law. 

 
  c and γ are constants. Typical range 0 < c < 1, 2 < γ < 3. 

 

• Examples: 

 

 ckkP )(

Scale-free Graph: n=200, γ=1.5 Scale-free Graph: n=200, γ=2.0 
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Random Graphs 

 Scale-free networks – real-world examples: 

• Six degrees of separation: 

– Small-world phenomenon: 

 Experiment by Stanley Milgram (1967) 

» Give letters to approx. 100 participants which should forward 

their letter to a specific person they do not know personally. 

Also the address of the person is not known. 

» The participants where only allowed to forward the letter by 

hand to a person, which they think, could forward it more 

closer to the destination. 

» The letters reached the destination via a maximum of 6 

people.   

» Experiment was repeated and confirmed several times with 

sender and receiver even being part of different ethnological 

groups. 

 

  Everybody on this planet is separated only by six 

 other people. 
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Random Graphs 

 Scale-free networks – real-world examples: 

• Kevin Bacon Game and the movie actor network : 

– The Kevin Bacon Number defines the separation of movie actors 

away from Kevin Bacon.  

– One actor has distance 0 (Kevin Bacon himself).1902 actors have 

distance 1 since they played in a movie starring Kevin Beacon. 

160463 actors have distance 2 since they played in movie in which 

someone played who played in a movie starring Kevin Bacon. 

  

Kevin Bacon seems 

to be the 

reasonable center 

of the network. 

Kevin Bacon Number Number of Actors 

0 1 

1 1902 

2 160463 

3 457231 

4 111310 

5 8168 

6 810 

7 81 

8 14 
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Random Graphs 

 Scale-free networks – real-world examples: 

• Kevin Bacon Game and the movie actor network : 

– Kevin Bacon is only the 1049th best center out of nearly 800.000 

movie actors. This makes make Kevin Bacon a better center than 

99% of the actors. 

– However, there are still some better centers, like Sean Connery 

due to his higher first and second degree. 

  

Kevin 

Bacon 

Number 

Number 

of 

Actors 

0 1 

1 1902 

2 160463 

3 457231 

4 111310 

5 8168 

6 810 

7 81 

8 14 

Sean 

Connery 

Number 

Number 

of 

Actors 

0 1 

1 2272 

2 218560 

3 380721 

4 40263 

5 3537 

6 535 

7 66 

8 2 

vs. 
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Random Graphs 

 Scale-free networks – real-world examples: 

• The Internet: 

– The network diameter of the Internet is shorter than expected. 

– The maximum number of hops of a loop free path is approximately 

30 hops. 

  

vs. 

Picture taken from http://www.opte.org 

Internet 2005 
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Random Graphs 

The Internet was a success story already from the beginning 

where it increased its size within 3 months by a factor of four! 

The Internet 

ARPANET September 1969 

Pictures taken from http://www.cybergeography.org/atlas/historical.html 

ARPANET December 1969 
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Random Graphs 

 Scale-free networks – real-world examples: 

• Social networks - Facebook: 

  

vs. 

Picture taken from http://www.opte.org 

Facebook Friendships 


