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Point Fields




o Point fields:
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iﬁ".‘ Point Fields

o Point field:

= Two dimensional random process

= Spatial distribution of objects in two dimensional space
« Seismology (epicenters of earthquakes)
« Plant ecology (position of trees or other plants)
« Epidemiology (home locations of infected people)
« Zoology (burrows or nests of animals)
« Astronomy (location of stars)
« Telecommunication (spatial distribution of mobile users)

» The development of many system parameters is influenced by the
spatial distribution of the simulated objects




;ﬁ".‘ Point Fields

a Point fields with a constant number of points (rectangle):

= Task:

Generate a homogeneous point field with n points in a
rectangle which is given by (ai,b.),(a:,b2),(az,b:),(a:,b-)

= Algorithm:

e fori=1:n

— Generate random variable z1 ~ U(0,1)

— Generate random variable z2 ~ U(0,1)

b2

al a2

- Point (X,¥)=(a,+z-(a,—a), b +2,-(b,-h))

end




e

a Point fields with a variable number of points (rectangle):
= F - size of the rectangle

= E[X] - average number of points in F

" A= @ - intensity of the point field

= X —discrete random variable which describes the number of points in the
rectangle

Generate a homogeneous point field with X points



;ﬁ".‘ Point Fields

0 Binomial — Point Field
» Binomial distributed number of points

P(X =i :mp‘a— s p=t2]

= Upper bound: n

o Poisson — Point Field
= Poisson distributed number of points
E[X]

(AF)I e—iF ’ l:
I! F

= Upper bound: no upper bound !!!

P(X =i) =

» Generation: c.f. point fields with variable number of points




iﬂ"‘ Point Fields

o Poisson - Point Field
= QOptimized Generation:

1. Generate x-coordinates by using a one dimensional Poisson process
E[X]
d, — &

Note that the one dimensional process specifies the
number of points in the point field.

in (a1, a2) with rate A=

2. Generate the y-coordinates according to a uniform distribution in the
interval (b, b2)




one dimensional Poisson process

Point Fields
= QOptimized Generation:
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'l" Point Fields

o Point fields with a variable number of points in an arbitrary area:
= Problem:
» Area has arbitrary shape and size F*
« Average number of points in F* = E[X*]
. E[X7
« Pointintensity in F*: A = %

» Previously introduced algorithms only work for rectangles

= Solution:

» Generate a rectangle such that the arbitrary area F* fits in the
rectangle

» Generate points in the rectangle which includes the area F* until the
desired number of points are in the area F*




iﬁ".‘ Point Fields

o Point fields with a variable number of points in an arbitrary area:
= QOptimized Generation:

Area F* contai\rjs X points

b2
Rectangle
F contains
X points \
b1
a1 az
» Generation similar to Accept-Reject method:
* No additional random number required
« Efficiency of the algorithm is given by F*/F




iﬁ".‘ Point Fields

o Inhomogeneous point fields
» Characteristics
- Pointintensity A(X,Y) depends on the position

« Maximum A__ = r(na>)((ﬁ(X, y))
X,y

« Point intensity in F*: A = EE:X ]

*

= Generation:
» Calculate E[x] by integrating A(X, Yy) over F
« Choose RV X according to E[X]
» Repeat the following three steps until X points are generated
1. Generate a point (X, y) in F
2. Choose a random number z I:> RV Z ~ U(0,1)

A(X,Y)

3. Acceptif Z< , otherwise reject

max




iﬂ"‘ Point Fields

Inhomogeneous / homogeneous point fields

o Impact of the chosen distribution on the point field

Example 1. Example 2:
O X — axis — uniform distributed O X — axis — normal distributed
Q Yy — axis — uniform distributed Q Yy — axis — normal distributed
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'l" Point Fields

a Cluster point fields
» |dea:

« Generate a point field with low density where each point represents a
parent point

« Generate a homogeneous Poisson field with intensity /18 around
parent points which represent the centre of the clusters

= Matern cluster field:

« Create a homogeneous Poisson field around each parent point with
radius R

» Average number of points in each circle is given by E[X]

E[X]_ E[X]

« Intensity in each field around a parent point A =

F R




'l" Point Fields

a Cluster point fields
= Matern cluster field:
A Matern cluster field can be generated in different ways
» 1. Generation: Accept-Reject method
|:> inefficient due to the high number of circle shaped Poisson field

+ 2. Generation: Usage of polar coordinates (¢, I')
— Generate uniform distributed coordinate @ €[0,277(
— Generate distance I € [O, R( according to the following density

function ( o
f (I’) = < ? r S R
0 sonst

.

» Uniform distribution of r results in a decrease of the intensity
towards the border of the circle

* The rectangle for parent point generation has to be smaller
than the Matern cluster field in order to mitigate border effects

e




iﬁ".‘ Point Fields

o Matern cluster field
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Random Graphs




'4'. Random Graphs

o Random Graphs
A graph is an abstract representation of a set of objects where pairs of objects
can be connected by links.
= Graph G=(V,E)
V: Vertices/Nodes = Router
E: Edges = Links
« e={u,v}eVxV

» Undirected bidirectional
» Directed unidirectional
= Node degree 6(v), veV  Number of edges that are connected with v
= Average node degree: & =2:|E|/V|
» In-degree 6 (v): number of edges that point to node v
= Qut-degree o7 (v): number of edges that point away from node v
= Distance dg(u,V) : shortest path between two vertices in the graph

= Network diameter: longest path between two vertices in the graph

» K-(edgel/vertex)-connected: A graph is called k-connected if at least k
edges have to be removed in order to partition the graph
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'4'. Random Graphs

o Random Graphs with predefined characteristics
= Generate a predefined number of nodes in a plane (point field)
= Connect the nodes in the network by applying one of the following models

1. Basic model(1/2):
— Generation:
Generate an edge between two nodes with probability p
— Advantage:
» Fast and simple

— Disadvantage:
» Number of links per node varies
» Average node degree only depends on the number of nodes

» Connectivity between two nodes does not depend on the
distance between them

» Does not guarantee full connectivity of the network
» Does not fit for large networks




;ﬁ".‘ Random Graphs

o Random Graphs with predefined characteristics
1. Basic model(2/2):
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iﬁ"“ Random Graphs

o Random Graphs with predefined characteristics
2. Waxman model:

— Connectivity between two nodes becomes more likely the shorter
the distance between them

— Probability that two nodes are connected is given by
—d
P(uv)=a-e”" with a>0,48<1
» D: Euclidean distance between the two nodes
» L: The maximum distance between two nodes
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iﬁ"“ Random Graphs

o Random Graphs with predefined characteristics
3. Node degree model:

Problem: Generate a random graph where nodes have at least a
minimum degree but less than a maximum degree

— These graphs are usually generated in an iterative way by adding

S -
E| :TM edges

— k-connected topologies are often used to make the network more
resilient against node failures

- e w 5 @ @ = @ @ 2
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o o w s o @ ~ @ © =
g g g g g g g g 2 g

- e w I @ @ = @ @ z
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1-connected graph 2-connected graph 3-connected graph




'4'. Random Graphs

0 Implementation of a graph:
= Basic operations:
 add/remove (Edge e/ Vertexv)

* find (Edge e / Vertex v)
« getVertices (Graph g)
« getEdges (Graph g)
= Complex operations:
« getDegree (Vertex v)

* isReachable (Vertex src, Vertex dst)

» shortestPath  (Vertex src, Vertex dst)
« isComplete (Graph g)

« isConnected (Graph g)

 totalWeight (Graph g)

« getOneHopNeighbors (Graph g, Vertex v)

- Degree of node v

- True if a path exists from
src to dst, false otherwise.

- True if all nodes have max
degree.

- True if isReachable returns
true for all nodes.

- Sum of all weights.
- List of all direct neighbors.
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iﬁ"“ Random Graphs

0 Implementation of a graph:
= Matrix structures:
« Adjacency matrix:
Is an n by n matrix A where n is the number of vertices |V| in the
graph. Two vertices i and j are connected with an edge pointing from
vertex | to vertex ] if the element g, ; is 1, otherwise 0.

Example:

Src Vertex /

Dst Vertex A B E RS E el

A O|1(1]1]10]|0 e e @
B ojo|lo|1]|0]|O e2 e4 o8 le7
C 0j]0]J]0]1(0|O

D 1({0|0(0O0]|]O0](O0O G Q

E ololofofo]1 €5

F 000|010




iﬁ"“ Random Graphs

0 Implementation of a graph:
= Matrix structures:
« Adjacency matrix:
Is an n by n matrix A where n is the number of vertices |V| in the
graph. Two vertices i and j are connected with an edge pointing from
vertex | to vertex ] if the element g, ; is 1, otherwise 0.

Example:

Src Vertex /

Dst Vertex AlBICIDIELF el

A 111(1({01(0 e e @
B 0 0 Outgoing ez ed a8 \1/97
C OO 110|0

D 1100 0|0 G Q

E Incoming O 1 €5

F O[0|]0]0]1




iﬁ"“ Random Graphs

0 Implementation of a graph: e e

= Matrix structures:
« Adjacency matrix:

Out-degree / in-degree

[S);(; xz::zi 4 A|(B|C|D]|E]|F]|Out-degree

A 0{1(1]1]0{0O 3

B 0|0(0}]2]10]|0 1

C 0|0|0|1]0{0O 1

D 1lololololo 1 Out-degree gnd in-degree of

= ololololol 1 each vertex is representec{ by
the sum of the corresponding

> vt ofed e L row or column of the

In-degree 111113 (1(1 0 adjacency matrix




iﬁ"“ Random Graphs

o Implementation of a graph:
= Matrix structures:
« Adjacency matrix:

— Characteristics:
» Complexity:

— Insert / Delete O(1)

— Find O(1)

— Find neighbors Oo(IV))

» Memory consumption:
— Directed graph O(|V]?)
— Undirected graph  O(|V|?/ 2)

» Use case:
— Small graphs due to simplicity and memory consumption
— Dense graphs due to low complexity




52".‘ Random Graphs

0 Implementation of a graph:

= Matrix structures:
 |Incidence matrix:

Is a matrix B of size |V| (humber of vertices) by |E| (humber of edges)
with entries b; ; which indicate whether the vertex i incidence edge |.

» Edge j enters vertex i: b,

» Edge j leaves vertexi: b,

» No incident: 0
Example:
\E/zrgtg)(/ el|e2|e3|ed|e5|e6|e/ e8| e9
A -1(-1{-12]0(0(1]0]0]| O
B 1({0|0(-2/]0|0|0]|O0](O
C 0|1(0|0(-210({0]|0]| O
D o|of1|1(1|-12{0|10| O
E 0|0(O0|O0(0O0O|0O0(f-2]11]|O0
F o|0ofo0|j0f{O0|0f2]|-1|0

=1
=1

o
o[-
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iﬁ"“ Random Graphs

0 Implementation of a graph:

Linked structures:
« Adjacency list:
Is an array/list of length |V| which holds for each node a list of its
neighbor nodes.

Example: \/ortex Edge

& i
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iﬁ".‘ Random Graphs

o Implementation of a graph:
= Linked structures:
« Adjacency list:

— Characteristics:
» Complexity:
— Insert O(1)
— Delete O(|V|)
— Find O(|V|)

— Find neighbors O(1)

» Memory consumption:
— Directed graph O(|VI|+|E|)
— Undirected graph  O(|V|+2]E|)

» Use case:
— Sparse graphs
— Efficient if neighbor nodes have to be found frequently




'4" Random Graphs

o Special Case:
= Scale-free graph:
A graph is called scale-free if its node degree k follows the power law.
P(k)=ck™

c and y are constants. Typicalrange 0 <c<1,2<y<3.

« Examples:
— Social networks
— Collaboration networks
— Computer networks
— Disease transmission

Random Graph Scale-free Graph




iﬁ"“ Random Graphs

o Special Case:
= Scale-free graph:
Characteristics:
— High number of nodes with a small node degree.
— Small number of nodes (hubs) with a high node degree.

0.7 :
: P(k)=k™
0 6 ....................... Many nOdeS ............................................................ i
05°°\ with low degree
=
E 0470/0 : / :
© : :
E 0_3___90':) _______________ S S—— - Few-nodes with---
O\ ~ high degree
02/ “o o\ gnees
01+ O/O

Node Degree




iﬁ"“ Random Graphs

o Special Case:
= Scale-free graph:
A graph is called scale-free if its node degree k follows the power law.

P(k) = ck

c and y are constants. Typicalrange0<c<1,2<y<3.

« Examples:
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Scale-free Graph: n=200, y=1.5 Scale-free Graph: n=200, y=2.0




52".‘ Random Graphs

o Scale-free networks — real-world examples:
« Six degrees of separation:
— Small-world phenomenon:
Experiment by Stanley Milgram (1967)

» Give letters to approx. 100 participants which should forward
their letter to a specific person they do not know personally.
Also the address of the person is not known.

» The participants where only allowed to forward the letter by
hand to a person, which they think, could forward it more
closer to the destination.

» The letters reached the destination via a maximum of 6
people.

» Experiment was repeated and confirmed several times with
sender and receiver even being part of different ethnological
groups.

Everybody on this planet is separated only by six
other people.
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iﬁ"“ Random Graphs

o Scale-free networks — real-world examples:
« Kevin Bacon Game and the movie actor network :

— The Kevin Bacon Number defines the separation of movie actors
away from Kevin Bacon.

— One actor has distance 0 (Kevin Bacon himself).1902 actors have
distance 1 since they played in a movie starring Kevin Beacon.
160463 actors have distance 2 since they played in movie in which
someone played who played in a movie starring Kevin Bacon.

Kevin Bacon Number [ Number of Actors
1

1902

160463

457231

111310

8168 |:> Kevin Bacon seems
810 to be the

81 reasonable center

14 of the network.

T -

O[NP |WIN(F|O




52".‘ Random Graphs

o Scale-free networks — real-world examples:
« Kevin Bacon Game and the movie actor network :

— Kevin Bacon is only the 1049™ best center out of nearly 800.000
movie actors. This makes make Kevin Bacon a better center than
99% of the actors.

— However, there are still some better centers, like Sean Connery
due to his higher first and second degree.

Kevin Number Sean Number
Bacon of Connery |of
Number |Actors Number Actors
0 1 0 1

1 1902 1 2272

2 160463 2 218560
3 457231 3 380721
4 111310 4 40263
5 8168 5 3537

6 810 6 535

7 81 7 66

8 14 8 2
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74".‘ Random Graphs

/X

o Scale-free networks — real-world examples:
 The Internet:
— The network diameter of the Internet is shorter than expected.

— The maximum number of hops of a loop free path is approximately
30 hops.

VA

¥ e

Internet 2005

Picture taken from http://www.opte.org
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iﬁ"“ Random Graphs

The Internet
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The Internet was a success story already from the beginning
where it increased its size within 3 months by a factor of four!

Pictures taken from http://www.cybergeography.org/atlas/historical.html




52".‘ Random Graphs

o Scale-free networks — real-world examples:
« Social networks - Facebook:

Facebook Friendships

Picture taken from http://www.opte.org

IN2045 — Discrete Event Simulation, WS 2011/2012

40



