

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

Discrete Event Simulation

IN2045

Dr. Alexander Klein Stephan Günther Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

- Mobility in General
 - Realistic Movement
 - Human Mobility Pattern
- Visualization
 - Density
 - Speed Histograms
- □ Characteristics of Mobility Pattern
 - Link Duration, Transient Phase, Node Distribution, Speed Distribution, Correlated Movement
- Synthetic Mobility Models
 - Random Waypoint
 - Random Direction
 - Random Walk
 - Levi-Flight
 - Brownian Motion
 - Group Mobility

□ What is (random) mobility?

□ Why simulate mobility?

- Improvements in technology enable new technologies and result in cheaper hardware prices
- Number of powerful mobile devices increases very quickly (Smartphones with high data rate interfaces)
- Number of applications for mobile devices increases
- Impact on the system performance can often not be predicted in advance

Impact on wireless networks:

- Topology depends on the user mobility
- Routing protocols have to react on topology changes (link duration)
- Frequent changes of the user density result in variation of the interference
- May lead to a collapse of the network if the applied protocols are not optimized (overhead, dissemination of outdated information)
- Enables new information dissemination strategies (Delay-Tolerant-Networking)

□ What is realistic movement?

- Random movement?
- Correlated movement?
- Movement of humans?

Mobility Pattern

- Pedestrians
- Police patrol / avalanche rescue
- Cars on the road
- Trains
- Air planes
- Animals (hunter and prey)
- Constraint by obstacles / infrastructure

Antony Gormley's *Quantum Cloud* sculpture in London (based on a random walk model)

Human mobility pattern:

- Short-term and long-term characteristics
- Often approximated by the levy-flight synthetic mobility model which is derived from the random walk model
- High probability that the next position is close to the previous one
- Low probability that the individual travels long distances
- High variation between different individuals

González, M. C.; Hidalgo, C. A. & Barabási, A. Understanding Individual Human Mobility Patterns *Nature*, 2008, *453*, 779-782

- Simulation
 - Area (circle, square, rectangle, sphere, torus, ...)

- Long-term simulation
 - Transient phase of the model
 - Node distribution
 - Speed distribution
 - Partitioning of the network

- Simulation
 - Bouncing rule:

Node Distribution changes depending on the applied bouncing rule

- Visualization
 - Movement (Debugging)
 - Debugging
 - Detect correlated movement
 - Evaluation
 - Density
 - Spatial node distribution
 - Border effects
 - Estimation of transient phase
 - Histograms
 - Node speed distribution
 - Link duration
 - Estimation of transient phase

- □ Characteristics:
 - Link duration
 - Important wireless communication parameter
 - Represents the time interval during which two nodes are able to communicate with each other
 - Transient phase
 - One or more parameters change significantly during this phase
 - Duration of the transient phase varies between different synthetic mobility models
 - Spatial node distribution
 - Depends on the mobility model
 - Often affected by the shape of the simulation plane
 - Influenced by the applied bouncing rule

- Characteristics:
 - Speed distribution
 - Good indicator for the duration of the transient phase
 - Mainly influenced by the following parameters:
 - Time-based or distance-based movement decision
 - Pause time
 - Shape of the simulation plane
 - Correlated / Constraint movement
 - Each move is affected by the previous one
 - Objects may interact with each other
 - Group mobility
 - The movement of objects is a composition of the movement of the individual and a common (group leader) object

Synthetic Mobility Models

IN2045 – Discrete Event Simulation, WS 2011/2012

Algorithm:

Step 1:Select a random destination within the scenarioStep 2:Select a random speed $speed \in [speed_{Min}; speed_{Max}]$ Step 3:Move until the destination is reachedStep 4:Wait a random period of time $pause \in [0; pause_{Max}]$ Step 5:Go to step 1

- Characteristics:
 - Node density decreases towards the border
 - Highest node density in the center
 - The fraction of slow moving nodes increases over time
 - Long transient phase
 - Individual nodes recognize density waves while moving through the center
 - Average node speed decreases over time \implies speed decay problem
- Advantage:
 - Simple to implement
 - Challenging mobility due to changing node density
- Disadvantage:
 - Has to be configured carefully (Minimum speed and pause duration)
 - Movement affected by the shape of the simulation plane

Node speed distribution:

IN2045 – Discrete Event Simulation, WS 2011/2012

Node density:

IN2045 – Discrete Event Simulation, WS 2011/2012

- Characteristics:
 - Node density increases towards the border
 - Highest node density at the border and in the corners
 - The fraction of slow moving nodes increases over time
 - Short transient phase
 - Nodes in the corner are strongly affected by the applied bouncing rule
- Advantage:
 - Simple to implement
 - Uniform distributed node density (depends on the bouncing rule)
- Disadvantage:
 - Has to be configured carefully (Minimum speed and pause duration)
 - Movement affected by the shape of the simulation plane
 - Large impact of the bouncing rule

Step 1:	Select a random speed speed $\in [speed_{Min}; speed_{Max}]$
Step 2:	Select a random direction direction $\in [0;2\pi]$
Step 3:	 Move into that direction a. for a pre-defined period of time b. for a certain distance c. if the border of the scenario is reached, select a new direction (bouncing rule)
Step 4:	Wait a random period of time $pause \in [0; pause_{Max}]$
Step 5:	Go to step 1

Random Walk (time-based)

- Characteristics (time-based):
 - Node density (almost) uniform distributed
 - Nodes in are affected by the applied bouncing rule
 - Node speed uniform distributed
- Advantage:
 - Simple to implement
 - Uniform distributed node density (depends on the bouncing rule)
- Disadvantage:
 - Has to be configured carefully
 - Minimum speed
 - Pause duration
 - Travel duration
 - Affected by the bouncing rule
 - Required computational power depends on the movement duration

Random Walk (distance-based)

- Characteristics (distance-based):
 - Node density (almost) uniform distributed
 - Nodes in the corner are affected by the applied bouncing rule
 - Node speed decreases over time (similar to RWP)

➡ Speed decay problem

- Advantage:
 - Simple to implement
 - Uniform distributed node density (depends on the bouncing rule)
- Disadvantage:
 - · Has to be configured carefully
 - Minimum speed
 - Pause duration
 - Travel distance
 - Movement affected by the shape of the simulation plane
 - Required computational power depends on the travel distance

Random Walk (time-based)

Node speed distribution:

6 8 10 12 Speed in m/s

6 8 10 12 14 16 18 Speed in m/s

(d) 800 Seconds

(b) 200 Seconds

14 16 18

4 6

4

$speed_{Min}$	1 m/s
$speed_{Max}$	20 m/s
pause _{Min}	0 s
pause _{Max}	0 s
Movement	time-based
Movement Duration	10 s

- Random Walk (distance-based)
 - Node speed distribution:

$speed_{Min}$	1 m/s
$speed_{Max}$	20 m/s
pause _{Min}	0 s
$pause_{Max}$	0 s
Movement	distance-based
Travel Distance	200 m

- Random Walk (time-based)
 - Node density:

$speed_{Min}$	1 m/s
$speed_{Max}$	20 m/s
pause _{Min}	0 s
pause _{Max}	0 s
Movement	time-based
Movement Duration	10 s

- Random Walk (distance-based)
 - Node density:

$speed_{Min}$	1 m/s
$speed_{Max}$	20 m/s
pause _{Min}	0 s
$pause_{Max}$	0 s
Movement	distance-based
Travel Distance	200 m

Random Walk

- Lévy flight
 - Distance-based random walk
 - Distance is chosen according to a heavy-tailed distribution
 - Probability is high that the object only moves a short distance
 - Probability is low that the object moves straight over a long distance
 - Often used to simulate the movement of humans and animals
- Brownian Motion
 - Distance-based random walk
 - Travel distance between subsequent points is close to zero
 - Describes the movement of small particles in liquids

Example: Brownian Motion

- □ Random Walk (according to Turchin)
 - Uncorrelated random walk:
 - Previous move does not affect the following move
 - Each move is independent from the previous one
 - Correlated random walk:
 - Previous move affects the following move
 - High probability of moving into the same direction
 - Long travels are followed by short travels with high probability
 - Biased random walk:
 - The probability of moving in a certain direction is higher than moving into other directions (non-uniform selection of the direction)
 - Biased correlated random walk:
 - Each move is affected by the previous one and an absolute direction
 - Constrained random walk:
 - Measured parameters and estimated distributions are used as input for the synthetic mobility model
 - The direction and speed are chosen with respect to the measurements

Algorithm (1/2):

Preliminary steps

Step 1:	Define a group	of nodes
---------	----------------	----------

- Step 2: Select one node as group leader and mark the others as fellows
- Step 3: Choose the maximum allowed distance between a fellow node and the group leader

Group leader

Step 4:	Select a random speed speed $\in [speed_{Min}; speed_{Max}]$ Select a random direction direction $\in [0:2\pi]$
Step 5.	Select a failed in direction $uirection \in [0, 2n]$
Step 6:	Go to step 10
Step 7:	Move into that direction
	a. for a pre-defined period of time / remaining
	movement duration
	 b. for a pre-defined distance
	c. Go to step 15 if the border of the scenario is
	reached before the movement is complete
Step 8:	Wait a random period of time $pause \in [0; pause_{Max}]$
Step 9:	Go to step 4

Algorithm (2/2):

Fellow nodes

- Step 10: Calculate the position of the group leader at the next movement / bouncing position
- Step 11: Calculate the allowed area around the group leader at the next movement / bouncing position
- Step 12: Choose a random position within the allowed area
- Step 13: Calculate speed and direction such that the new position is reached at the same time the group leader reaches its next movement / bouncing position

Step 14: Go to step 7

Group leader

Step 15: Select a new direction of the group leader Step 16: Go to step 10

- Random Group Mobility
 - Node speed distribution:

(a) 100 Seconds

(b) 200 Seconds

(d) 800 Seconds

IN2045 – Discrete Event Simulation, WS 2011/2012

- **Random Group Mobility**
 - Node density:

Leader Mobility	Random Walk(time-based)
Leader-Fellow Distance	< 200m
Fellow Area	circle
$speed_{Min}$	5 m/s
$speed_{Max}$	20 m/s
pause _{Max}	0 s
Movement Duration	20 s

IN2045 – Discrete Event Simulation, WS 2011/2012

Obstacles:

- Movement of objects is usually constraint by
 - obstacles
 - pre-defined pathways
- Bouncing rule becomes more import with an increasing number of obstacles
- Obstacles block movement but do not necessarily affect the signal propagation (e.g. river or lake)
- Some models use Voronoi diagrams as predefined paths

Movement with obstacles

Movement with obstacles and predefined paths

- □ How to describe position and orientation?
 - Position:
 - Geographic Latitude φ, Longitude λ, Altitude

Cartesian
 X, Y, Z

- Orientation:
 - Yaw
 - Pitch
 - Roll

- □ Implementation:
 - Types of mobility
 - Direct
 - Change the position and orientation of objects directly at a given simulation time
 - Trajectory
 - Sequence of triples [position, orientation, simulation time] which describe the position and orientation at a given simulation time
 - The movement is usually interpolated between subsequent triples
 - Vector
 - Bearing, ground speed, ascent rate
 - Trajectories can be described by [bearing, ground speed, simulation time] triples
 - External modification
 - Co-simulation
 - Hardware-In-The-Loop
 - Can use any type of mobility