Chair for Network Architectures and Services—Prof. Carle
Department of Computer Science
TU München

Discrete Event Simulation IN2045

Chapter 5 – Experiment planning Factorial design, factor analysis

Dr. Alexander Klein Stephan Günther Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services

Department of Computer Science

Technische Universität München

http://www.net.in.tum.de

Some of today's slides/figures are borrowed from:

Oliver Rose Averill Law, David Kelton

- Introduction and motivation
- Comparing two alternative systems
- Linear and nonlinear regression
- Analysis of Variance (ANOVA)
 - One-way ANOVA
 - Two-way ANOVA
- Factorial designs
 - 2^k factorial designs
 - Fractional factorial designs
- Important background information (within above topics): Hypothesis testing

- Statistics chapter:
 - Basic statistical concepts
 - Hypothesis testing
 - Analysis of a single simulation run
- □ But: Simulation not only used for single runs
 - ⇒ We want to compare alternative designs!
- Approach for comparison
 - Explorative approach ("Fiddle around with parameters" / "Hit or Miss" strategy) = inefficient or even dangerous
 - Methodic design of Experiments (DOE)

Why compare system alternatives?

- Goals:
 - Better understanding of system
 - Better control of system
 - Better performance of system
- Methods:
 - Try out in different simulated environments
 - Try out different workloads with different characteristics
 - Try out different network topologies
 - Try out with different system parameters

Terminology

- factor: input variable (e.g., TCP window size), condition, structural assumption (e.g., TCP congestion control algorithm)
- level: one factor value that is used in our experiments
- response: system parameter of interest that depends on given set of factors (e.g., achieved TCP throughput)
- run: evaluation of response for a given set of factor values
 - i.e., the analysed simulation result
 - There will (should!) be multiple runs

Remember:

- In simulation experiments, responses vary for runs of the same factor values due to random effects
- □ Therefore: several runs have to be performed!

Comparing two alternative systems

Comparison of two systems: Is there a difference in value for a given response variable?

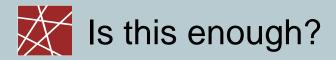
e.g., difference in achieved network throughput

□ Test criterion:

- 1. Calculate difference between the two response variables
- 2. This difference is statistically significant if its confidence interval (CI) does not contain 0

e.g.: CI (throughputTCP Reno - throughputTCP Vegas) ∌ 0

→ We can assume that the difference in throughput which the two congestion control algorithms TCP Reno and TCP Vegas achieve is statistically significant



- Good: Very simple
- Bad: Quite restricted applicability
 - Only should be applied if the response has the same variance for the two levels – not often the case
 - Better: Modified or Welch two-sided t confidence intervals
 - Calculating the confidence interval for the response differences only can tell us if two levels of one factor make a difference
 - What if we want to analyse more than two levels for a given factor?
 - E.g., TCP Reno vs. TCP Vegas vs. TCP Cubic: 3 levels
 - What if we have more than one factor?
 - E.g., TCP congestion control algorithm, TCP window size, network delay, link bandwidth: 4 factors

Linear model and regression

- \Box Have n samples $x_{1...n}$ and $y_{1...n}$ of two random variables x and y
- y is 'not really' a random variable:it's also dependent on x
- □ Linear model: $y = a \cdot x + b + e$
 - a: slope
 - b: intercept
 - e: error
- Idea: Chose a and b such that e is minimised
 - Calculate sum of squared errors:

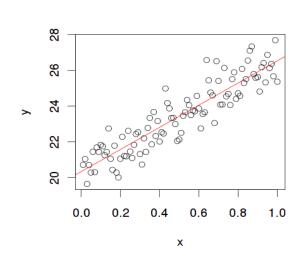
Minimise Sum of Squared Errors (SSE)

Calculating a and b

$$a = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - mean(x))(y_i - mean(y))}{\frac{1}{n} \sum_{i=1}^{n} (x_i - mean(x))^2} = \frac{Cov(x, y)}{Var(x)}$$

$$b = mean(y) - a \cdot mean(x)$$

- N.B.: different, but equivalent formulae in literature (you can omit dividing by n-1 in var and cov)
- Usually built into statistical programs
- Graphical interpretation:
 Fit a straight line that goes through the points in the (x,y) scatterplot
 - b: intercept (Achsenabschnitt)
 - a: slope (Steigung)



How good is our regression?

Correlation coefficient r:

$$r = \frac{\sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{S_x} \right) \left(\frac{y_i - \overline{y}}{S_y} \right)}{n-1}$$

- □ Coefficient of determination: r²
 - i.e., simply square above result
 - Can be better compared than non-squared r, because it is proportional to the correlation, e.g.:
 - $r^2 = 0.4$ provides double the correlation than $r^2 = 0.2$
 - Can be simply added up if multiple independent factors are combined
- Do not mix these two with the covariance!

Are we actually allowed to apply regression?

- Warning:
 - The residuals e (as in $y = a \cdot x + b + e$) must be normally distributed!
 - Exploit the central limit theorem: Calculate averages of multiple independent simulation runs with the same factor level
 - Check that it looks normal: QQ plots or some normality test
- N.B.: This check has, of course, nothing to do with the "quality" of the regression expressed as r²
 - Normality check: Are we allowed to look for linearity?
 - r²: How much linearity is there?

Regression and experiment planning

- \Box In our nomenclature: y = response, x = factor level
- Regression can tell us how much the factor influences the response. Answers questions like:
 - Does it make sense to explore further factor levels in a given direction?
 - Does it make sense to check factor levels in between?
- □ Good:
 - We now can have multiple factor levels
- □ Bad:
 - We still have only one factor
 - It must be linearly proportional
 - The residuals must be normally distributed (but that constraint won't go away with ANOVA either)

Nonlinear Regression 1/2

- Often, the relationship between x and y is not linear
- Solution: Try to find a suitable transformation
 - Let y be the simulation outcome (response)
 - Then apply the model y* = a·x + b + e where y* = f(y)
 - Transformation function f can be, for example:
 - Logarithm
 - Exponential
 - Square root
 - Square
 - Some other polynomial (usually quadratic or cubic)
 - Logistic function (logistic regression)
 - Inverse (1/x)
 - ...

Nonlinear Regression 2/2

- Which transformation function is the right one?
 - Careful consideration of the system: You have to think!
 - Check if the y* are normally distributed the y are probably not normally distributed in this case
- QQ plots can help
- Admittedly, a matter of experience
- Warning:
 - Overfitting, arbitrary curve fitting: "Just try around with some transformations and pick the one that matches best" – no, try to avoid that!
 - A correlation can be coincidence
 - Correlation does not imply causation
 - Example: Decreasing number of pirates leads to increasing global temperatures (Church of the Flying Spaghetti Monster)
 - Again: First think about the system, then postulate a meaningful transformation

Multiple [linear] Regression

- We want to look at multiple factors
- □ For historic reasons, we relabel our 'old' values a and b from the regression formulae as

 $\beta_0 \dots \beta_m$ and the error as ε

Linear model is now:

$$y = \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + \dots + \beta_m \cdot x_m + \beta_0 + \varepsilon$$

- Warning about the indices:
 Now, x₁ means 'the first factor', not 'the first simulation run' (there may be many simulation runs for the same choice of the x_i)
- Will not go into detail here

- Short for 'ANalysis Of VAriances'
 - Historical term
 - Explained in next slides
- Be careful: "variance analysis" is a more general term!

Often, that term describes a slightly different analysis:

- Calculate variances of the responses for different levels of one (or several) factors
- Analyse statistically if the variances are the same
- Very similar to ANOVA, but slightly different!

- Factor has a levels ('treatments' for historical reasons: ANOVA was developed in pharmaceutical research)
- □ Each level is replicated/observed *n* times
- □ Data:

level	1	replication L	n
1	Y ₁₁	L	y_{1n}
M	M	M	
a	y _{a1}	L	$oldsymbol{\mathcal{Y}}_{an}$

- Question we want to answer:
 - Is there an effect of factor levels on system responses?
 - If so: how much?

Similar to linear regression:

- One factor, multiple levels
- yij = μ + αi + εi
- µ: population mean (of the total population, i.e., across all different factor levels – in other words, across all simulation runs, regardless of their parameters!), also called grand average
- αi: the influence of the different factor levels (how much do they contribute to a diversion from the mean?)
- εi: errors, also called 'residuals' or 'noise'

Important things to note about the model:

- Factor levels α_i
 - We do not require them to have a linear relationship on the response y
 - They even can be categorical data, e.g.: {male, female} or {child, student, employed, unemployed, retired, other}
- Residuals εi
 - Any deviation from the model that cannot be explained
 - Usually, the index is dropped for the errors, as ε is an independent random variable that must not (!) depend on the factor level
 - If that is not the case, we do not have a truly random but a systematic error.
 That's bad it violates our assumptions!

- We suspect that the αi are different and influence the response variable y
- Formulate this as a statistical test

Statistical Tests

- So far, we've seen the χ2 distribution fitting test and the Kolmogorov-Smirnov test (KS)
- Both test if a given set of measurements is consistent with a theoretical distribution
 - Note the wording: "Consistent with", but not "comes from"
- There are many, many other statistical tests for many, many other applications

Statistical Tests = Hypothesis Tests

- We would like to "prove" some statement, based on statistical calculations
 Examples:
 - Measurements x_i are consistent with a normal distribution
 - The mean of the measurements xi is greater than 5
- Call this statement our 'work hypothesis' or 'alternative hypothesis'
 (Arbeitshypothese) H_A
- Formulate the contrary: null hypothesis H₀
- \Box H_A and H₀ need to be:
 - Exclusive: Either H_A is true or H₀ is true
 - Exhaustive: All possible results will satisfy one of the two

Test Statistic

- Hope to find statistical evidence that H₀ is highly improbable
- Mathematically:
 - Input data = x_i (...rather arbitrary label)
 - Calculate a so-called test statistic: TS(x_i)
 - Usually: If test statistic is above some threshold, then refuse H₀
 - Test statistic depends on specific test
 - Threshold depends on specific test and on desired accuracy

Test Accuracy: Error Types

- As mentioned before: No test can give a 100% guarantee we're talking about statistics here, and statistics always deals with the unknown
- Differentiate between two types of errors:

	Test rejects H ₀	Test accepts H ₀
In reality, H ₀ is false	Correct decision	Type II error, β error, false negative
In reality, H ₀ is true	Type I error, α error, false positive	Correct decision (albeit not the one that we wanted in most cases)

Error types explained by example (1/2)

- Suppose you have developed a medical drug. Development has cost an enormous amount of money. Now you want to test if the drug is harmful to your patients
- \Box Type I error (α error)
 - Probability that people get harmed
 - Can cost lives: Invest a lot of effort to avoid it.
- \Box Type II error (β error)
 - Probability that you reject a drug that is actually perfectly safe
 - Can waste money: Unpleasant, but more acceptable.

Error types explained by example (2/2)

- Suppose you have developed a new network protocol. By applying a statistical test to the output of some network simulations, you hope to show that the protocol increases network performance ($=H_{\Delta}$).
- \Box Type I error (α error)
 - Probability that you claim that the protocol is great, whereas it is actually rubbish
 - If you do not specify your α error, or if it is too large (i.e., your confidence level is too low), then nobody will believe your results!
- \Box Type II error (β error)
 - Probability that you wrongly assume that your great protocol does not help anything
 - Presumably interesting to you, but the reader of your paper does not care about the risk that you might have failed detecting the performance increase: Obviously, you did not fail, since otherwise the paper would not have been written...

Balancing error types

- Problem:
 - Reducing one error increases the other and vice versa. Damn.
 - Only solution to reduce both: Increase the sample size. Usually a superlinear factor (e.g., to reduce one error by 1/2 while keeping the other constant, we must increase sample size by 4)
- \Box In the majority of the cases, keeping the α error low is more important
 - α = 5% has been accepted for years (although there has been some criticism), 1% is better, 0.1% is extremely good
 - β = 10% or 20% is usually acceptable; but usually, it is not calculated
 - Do not choose α too small if there are only few samples: Small sample size and small α both will increase β to unacceptable values – then you would almost always accept the null hypothesis and thus (wrongly) reject your work hypothesis

- \square 'Power' of a test := (1β)
 - Obviously the higher, the better
- Can be used to compare tests:
 - Fix an α and a number of measurements
 - The better test will feature a higher power for this input
- □ Rules of thumb:
 - Parametric tests (make assumptions about input distribution) are stronger than nonparametric tests (work with any distribution)
 - One-sided tests are stronger than two-sided tests (later slide).
 - The more general the test, the weaker it is.

- Usually, Type-1 errors (α errors) are the more serious ones.
- In order to minimise one type of error (e.g., Type 1 error), you only have the choice between...:
 - Increasing the Type 2 error
 - Increasing the sample size
 - Picking a different statistical test that has better error properties

An "Alternative": Significance Tests

P-value (R. A. Fisher): How likely is the result to happen?

- Test statistic is a dependent random variable that follows a specific distribution (test distribution, e.g., Student's t distribution or χ^2 distribution) if the null hypothesis holds
- Using the theoretical distribution, calculate the probability that our measurements attain our given values or even more extreme values if the null hypothesis holds:
 - This is defined as the p value
 - Note that the p value itself is uniformly distributed in [0...1] if the null hypothesis holds, and it is near 0 if it does not hold.
- Refuse H0 if this seems unlikely: i.e., refuse if p ≤ α
- In other words: Our threshold for the test statistic is the point where its distribution "has no meat", i.e., the p value gets too low

We have two types of tests?

- In theory, distinguish:
 - Hypothesis test that we just explained:
 Fix an α, calculate the test statistic and accept or reject the null hypothesis
 - Fisher's probability test:
 For the given data, calculate the p value for the null hypothesis, and decide how likely the null hypothesis is
- In practice, combine both!
 - p value is more expressive
 - Fixed α is more commonly known/accepted; often allows better comparisons to other studies

How to combine both types of a test?

- With modern statistical programs, this is possible in most cases, it is even done automatically!
- Good practice:
 - Tell the reader your p value (especially if null hypothesis sounds quite likely!)
 - Traditionally, the p value is judged with star symbols within braces:
 - [***] means: P ≤ 0.1%
 - [**] means: $0.1\% < P \le 1\%$
 - [*] means: 1% < P ≤ 5%
- \Box If possible, calculate the p value and derive statements about α
 - e.g.: "The null hypothesis could be refused at a confidence level of α =0.5, but not at a confidence level of α =0.1"

One-sided tests, two-sided tests

One-sided test:

$$H_A$$
: $\mu < \mu_0$ (or $\mu > \mu_0$)

- Example: "With the new routing protocol, network latency is significantly reduced from the old value"
- □ Two-sided test:

$$H_A$$
: $\mu \neq \mu_0$

- Example: "With the new routing protocol, network throughput has significantly changed from the old value (either better or worse)"
- Which one to choose?
 - One-sided tests are stronger than two-sided tests
 - Two-sided tests are more expressive

Back to one-way ANOVA! (4)

- □ Recall our model: $y_{ij} = \mu + \alpha_i + \epsilon_i$
- $\ \square$ We suspect that the α_i are different and influence the response variable y
- Formulate this as a statistical test:
 - Hypothesis: At least one of the α_i influences y
 - Null hypothesis: $\alpha_1 = \alpha_2 = \dots = 0$
 - Equivalent formulation of null hypothesis:
 The means of the factor levels are equal

- Analysis of variance: Analyse total sum of squares
- Introduce these variables (SS = sum of squares):
 - SS_{Total}
 - The total variation across all samples
 - I.e.: the total sum of squared deviations from the general mean μ
 - How much variability is in the general population?
 - SS_{Between}
 - The variation between the different sample groups (i.e., one group for each different factor level)
 - How much variability can be attributed to the different factor levels?
 - SS_{Within}
 - The variation between the samples of one factor group (i.e., all samples that hold for the same factor)
 - As we can see, we need to do multiple simulation runs for one factor level
 - How much variability can be attributed to the errors (,noise')?

- □ Important observation: SS_{Total} = SS_{Between} + SS_{Within}
- Coarse idea:
 - If SSBetween (the treatment variability) is much larger than SSWithin (the error variability), then the overall variability is likely to be caused by the factor
 - Otherwise, the overall variability is likely to be caused by ,random' noise
 - Take care: The errors also can be unexplained effects
- More precisely: If H₀ holds, then SS_{Between} and SS_{Within} have the same value
- Check this by applying the F test

- Developed by R. A. Fisher
- Input: two samples from two different populations
 - Populations have to be normally distributed (!)
- F test tells if the populations have a large difference in variance
- Test statistic: the F value

$$F = \frac{Var(X_1)}{Var(X_2)}$$

- If the null hypothesis holds, then the F value is F distributed
 - F distribution: a test distribution
 - As usual: degrees of freedom = #samples 1

- Further mathematical details...?
 - Usually, the F test is built into statistical software
 - Usually, ANOVA is built into statistical software
 - We want to apply statistics, not learn any proofs of theorems → For more details, refer to literature

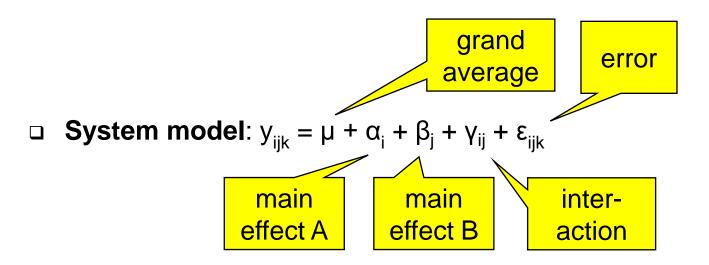
Pre-requisites similar to linear regression:

- The measurements have to be normally distributed
 - Easy if the response can be expected to be normally distributed (but that's generally not the case)
 - Easy if means are sampled from several (i.e., enough!) simulation runs:
 central limit theorem
- The residuals have to be normally distributed
 - Residuals: $e_{ij} = y_{ij} \overline{y}_i$ (i.e., the deviation from the group mean)
 - Warning: You must ensure that this is really the case!
 - If not, the result is meaningless!
- The variances of the α_i need to be equal
 - F test
- How to check for normality?
 - QQ-plots
 - or some statistical test for normality

- □ Two factor response analysisFactor A and B at levels a and b, n replications
- Change in quality of the results compared to one-way ANOVA?
 Yes!

Both factor effects and effects from interacting factors

- main effect of each factor
- interaction of the two factors!



Data

		Factor A		
		1	L	b
	1	$y_{111}L y_{11n}$	L	$y_{1b1}L y_{1bn}$
Factor B	M	M		M
	а	$y_{a11}L y_{a1n}$	L	$y_{ab1} L y_{abn}$

- □ Three null hypotheses:
 - $\alpha i = 0$
 - $\beta j = 0$
 - yij = 0
- □ Sums and averages similar to one-way ANOVA:
 - SSTotal = SSA + SSB + SSAB + SSWithin
- Usually built into statistical software packages

- Interpretation of the results: Check the p-values corresponding to the individual tests; F_0 if they are small, there are significant effects.
- Note: statistical significance does not tell anything about practical relevance! Decide yourself!
- Check model adequacy by analysis of residuals:
 - They should be consistent with a normal distribution
 - They should be free of structure (e.g., check that a higher response value does not usually imply higher error values)

- □ Generalisation: n-way ANOVA
- Usually performed using a statistical program
- Usually only two levels per factor.Examples:
 - Small window size, large window size
 - TCP Reno, TCP Cubic
- Tests if one or several factors have or have no influence on some response variable
 - E.g.: Does TCP window size affect TCP throughput?
- Can tell how much influence the individual factors have
- Can tell how much influence the interactions of the factors have
 - E.g.: Window size and congestion control algorithm taken together have significant influence

ANOVA and experiment planning

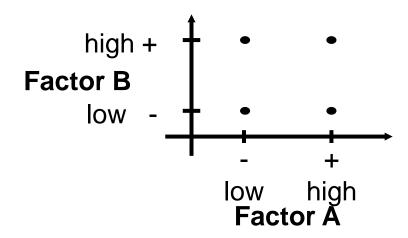
- Usually many factors
 - Example: TCP window size, TCP congestion control algorithm, network bandwidth, network delay, packet loss rate
- Which factor combinations should we try out? ANOVA can give answers to these questions:
 - Which factors are interesting factors (i.e., have much influence), so we should try out more levels for them?
 - Which factors have interesting interactions, so we should try out more factor level combinations for them?
 - Which factors, which interactions can be left out?
- Structuring the experiments like this is called factorial design
 - Of course, not limited to simulation experiments

- Problem with general factorial designs:
 explosion of number of runs for multi-factor multi-level designs
- Solution:
 Two levels are often enough for detecting general trends and to screen out important factors
- □ k factors, each one with 2 levels: 2^k design points
- Underlying assumption: effects depend linearly on factors

2k factorial designs (2)

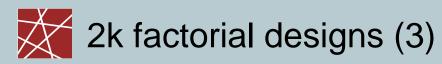
□ Example: 2 factors, i.e., a 2² design

→ 4 design points:



□ Design matrix:

Run	Factor A	Factor B	Response
1	-	-	r_1
2	+	-	r_2
3	-	+	r_3
4	+	+	r_4



- Construction of the "+/-" area of the design matrix:
 - Each row is the binary coding of the run number minus 1
 - with the least significant bit on the left side
 - where '-' represents 0 and '+' represents 1

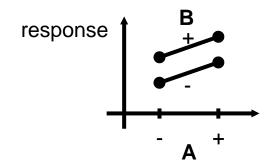
2k factorial designs (4)

- Computation of the effects:
 - Main effect of factor A: how does the response change if A is changed while B is left constant?
 - effect_A = $\frac{1}{2}$ (($r_2 r_1$) + ($r_4 r_3$))
 - Main effect of factor B: how does the response change if B is changed while A is left constant?
 - effect_B = $\frac{1}{2}$ (($r_3 r_1$) + ($r_4 r_2$))
 - Main effect equations for other designs: Similar (Use factor column as signs for responses and sum up, then divide sum by γ^{k-1})
- Usually, the ANOVA module of a statistical program will help

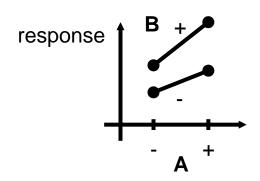
2k factorial designs (5)

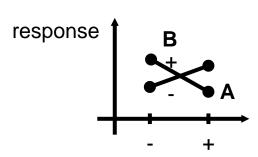
• Interaction of factors A and B: Is there a difference in the changes of the response if A is changed while B is kept either on level '+' or '-'?

no interaction, i.e.
 no (or small) difference in changes:



interaction, difference in changes:





 \Box Example: main effects and interactions of the 2^3 design

average	Α	В	С	AB	AC	ВС	ABC
+	-	-	-	+	+	+	-
+	+	-	-	-	-	+	+
+	-	+	-	-	+	-	+
+	+	+	-	+	-	-	-
+	-	-	+	+	-	-	+
+	+	-	+	-	+	-	-
+	-	+	+	-	-	+	-
+	+	+	+	+	+	+	+

Fractional factorial designs (1)

- Full factorial design can be costly for larger number of factors
- In most cases, we are only interested in main effects and two-way interactions
- Example: Full 2⁷ design requires 128 times replications runs! (And each needs to be run multiple times.)
 Effects obtained:

Avg.	Main effects	2-way	3-way	4-way	5-way	6-way	7-way
1	7	21	35	35	21	7	1

- More than 75% of the effects are 3-way interactions and higher
- Obtain the main effects and two-way interactions with less runs? Yes, by using fractional factorial designs!

Fractional factorial designs (2)

☐ Example: Full 2³ design requires 8 runs

Average	Main effects	2-way inter.	3-way inter.
1	3	3	1

- Only interested in main effects let's do only 4 runs and ignore the interactions
- \square 2³⁻¹ design requires 4 runs, but: how to accommodate 3 factors with a 2 factor design?

Factor A	Factor B	Factor C	C = AB
-	-	+	
+	-	-	
-	+	-	
+	+	+	

Fractional factorial designs (3)

- Did we get information for free?Half the runs to obtain the same result?
- □ NO! There are confounded (or aliased) effects!
- Main effects and two-way interactions are confounded, i.e.:
 - Influence of C indistinguishable from influence of interaction AB
 - Influence of B indistinguishable from influence of interaction AC
 - Influence of A indistinguishable from influence of interaction BC
- What does this mean?
 - Main effect of factor C is only useful if interaction of A and B is small, i.e.,
 2³⁻¹ design is a bad choice if two-way interactions are significant.
- □ N.B. There also is a graphical explanation for this (→later slides)

Fractional factorial designs (4)

- Resolution of a fractional design (denoted in Roman numbers)
 - III: only main effects are not confounded
 - IV: main effects/two-way interactions not confounded
 - V: main effects/two-way interactions and two-way/two-way interactions not confounded
 - Higher order effects are confounded!
- Practical advice:
 - Use resolution III designs only in complete desperation!
 - Interactions of more than 3 factors are rarely relevant
- \square Notation: $2_{resolution}^{k-p}$, e.g., 2_{IV}^{4-1}
 - Examples:
 - III: $2_{III}^{3-1}, 2_{III}^{5-2}, 2_{III}^{6-3}, K$
 - IV: $2_N^{4-1}, 2_N^{6-2}, 2_N^{7-3}, K$
 - V: $2_V^{5-1}, 2_V^{8-2}, 2_V^{10-3}, K$

Fractional factorial designs (5)

- Construction of the design matrix
 - Basis is always full factorial design for k-p factors,
 e.g., a 2³ matrix for a fractional 2⁵⁻² design
 - Missing columns are computed from existing ones by rules from DOE text books. These rules guarantee fractional designs of maximum resolution.

Example: for 2^{5-2} design, columns D and E missing

rules: D = AB or -AB, E = AC or -AC

(AB: multiply signs of columns A and B)

- Resolution and construction of design matrix for fractional designs from DOE text books
- Often already built in run controllers of simulation tools or statistical programs

Fractional factorial design, graphically explained

Motivation for the graphical approach:

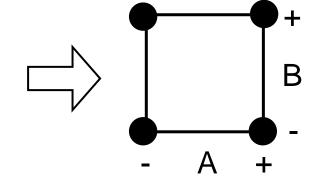
- Successful application of graphical methods in other areas of statistics, in particular, for data analysis and data mining
- Application of the creative potential of the right brain half
- Intuitive understanding of "good" characteristics of DOE
- Approach was used for the development of DOE methods, but no longer in the application phase
- Straightforward approach, often even without use of computers

From the design matrix to the design graph

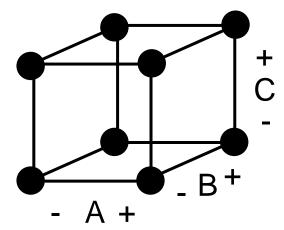
 Approach: Transform the design matrix into an appropriate and equivalent graphical representation

2 factors:

Run	Factor A	Factor B
1	-	-
2	+	-
3	-	+
4	+	+



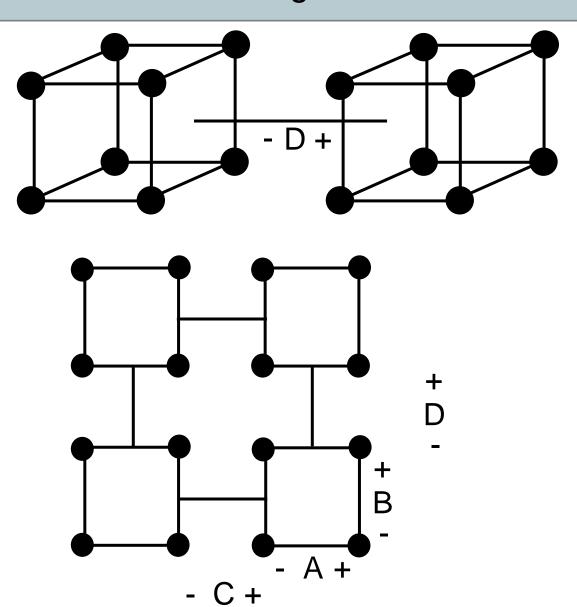
□ 3 factors:



Graphical representation of designs

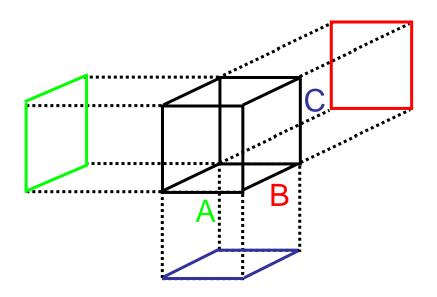
4 factors: (hypercube)

> (Problem: Humans do not have 4-D vision)



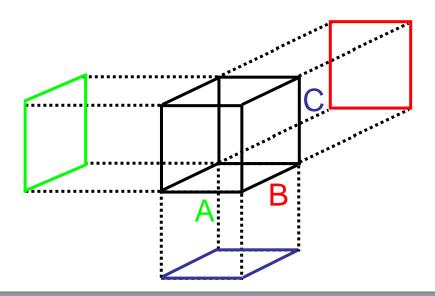
We are talking about an optimisation problem

- Goal: Minimize information loss of a fractional factorial design reduced by p factors
- Graphically: Projections of the design graph where p dimensions disappear (graph collapses)
- \Box Example: 1 factor of a 2^3 design disappears

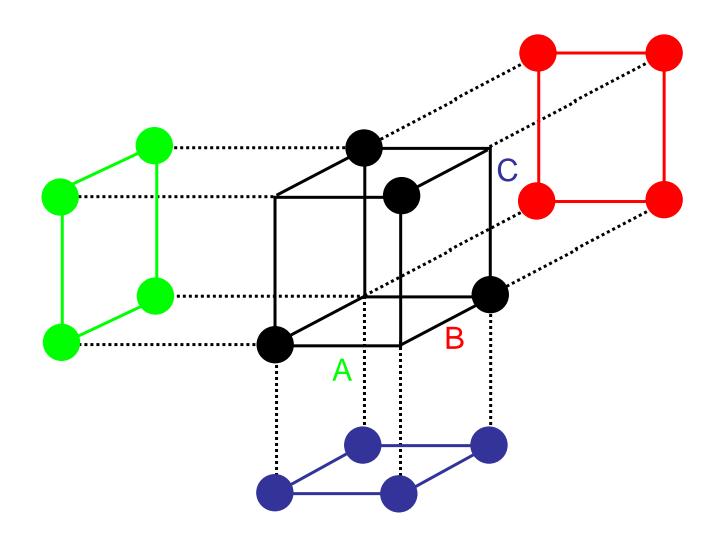


Optimum location of the design points

- Important graphical optimisation criteria for maximizing the information content in fractional designs:
 - Each projection must be a complete design graph
 - No multiple design points at the corners of the graph
- □ Example: Reduction of a 2^3 design to a 2^{3-1} design, i.e., from 8 to 4 design points \rightarrow optimum location?

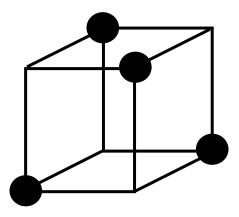


Optimum location of the design points



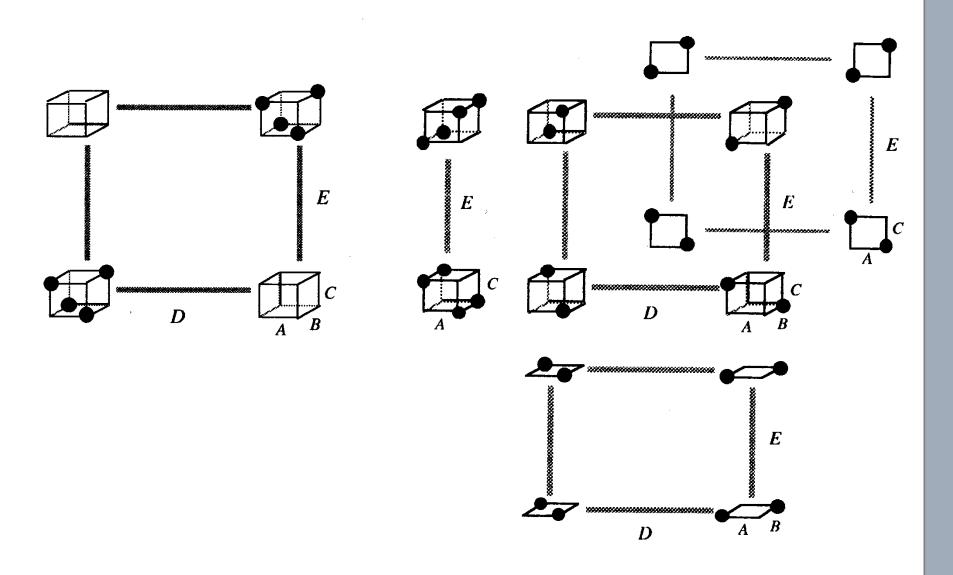
Criteria for larger 2k-p designs

□ Optimum 2³⁻¹ design as as basic building block ("DOE lego")

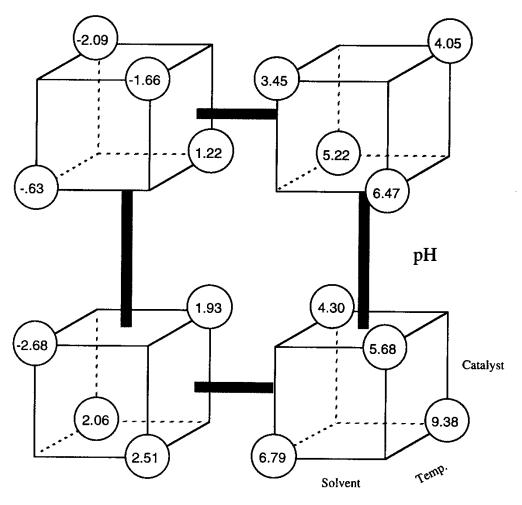


- Projections as complete as possible, but with single design points at the corners
- Maximising the minimum distance of the design points (even distribution of points)

Alternatives for a 25-2 design



Design graphs for presenting results



Purity

Design graphs for presenting results

