

Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

## **Discrete Event Simulation**

## IN2045

Dr. Alexander Klein Stephan Günther Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de





- Generation of Random Variables
  - Inversion, Composition, Convolution, Accept-Reject
- Distributions Continuous
  - Uniform, Normal, Triangle, Lognormal
  - Exponential, Erlang-k, Gamma,
- Distributions Discrete
  - Uniform(discrete), Bernoulli, Geom, Poisson, General Discrete
- Random Number Generator (RNG)
- □ Linear Congruential Generator (LCG)
- X<sup>2</sup> Test
- Serial Test
- Spectral Test
- Shift Register
- Generalized Feedback Shift Register
- Mersenne Twister

## Introduction - Random variates

#### Generation of U(0,1) random numbers

- Generation approaches
- "Real", "natural" random numbers: sampling from radioactive material or white noise from electronic circuits, throwing dice, drawing from an urn, ...
  - Problems:
    - If used online: not reproducible
    - Tables: uncomfortable, not enough samples
- USB Random Number Generator Developed at TUM http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-

Sekunde-1125288.html

- Pseudo random numbers: recursive arithmetic formulas with a given starting value (seed)
  - in hardware: shift register with feedback (based on primitive polynomials as feedback patterns)
  - in software: linear congruential generator (LCG) (Lehmer, 1951), ...



- $\Box$  All algorithms are based on U(0,1) random variates
- Selection criteria
  - Exactness (generation of the desired distribution)
  - Efficiency
    - Storage requirements (large tables required?)
    - Execution time
      - Marginal execution time (for each sample)
      - Setup time (at start time)
  - Robustness (characteristics do not change for different parameters)
  - Complexity (you have to understand before you implement it)
- □ Huge literature available



#### Measurement

- Samples of a random variable X
- What is the distribution function of random variable X?

#### Simulation

- Distribution function of the random variable is known in advance
- How to generate samples which follow the distribution of the random variable?

#### 🗆 Idea

- Generation of uniform distributed random numbers U(0,1) (Random number generator)
- Transformation of the generated numbers according to the desired distribution of the random variable





- **\Box** Random variable y<sub>i</sub> ~ U(0,1)
- Transformation of yi according to a distribution function F(x) in a random variable Xi

• 
$$y_i = F(x_i) \rightarrow x_i = F^{-1}(y_i)$$



Example: Generation of an exponential distribution with a mean value of  $\lambda$ 

- □ Algorithm:
  - Generate U~U(0,1) (pseudo random numbers)
  - Return  $X = F^{-1}(U)$
- **\Box** Random variable y<sub>i</sub> ~ U(0,1)
- Transformation of yi according to a distribution function F(x) in a random variable Xi

$$F(x) = \begin{cases} 1 - e^{-\frac{x}{\lambda}} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$F^{-1}(u) = -\lambda \ln(1-u)$$
 symmetry  $F^{-1}(u) = -\lambda \ln u$ 



 Desired distribution function expressed as a convex combination of other distribution function

$$F(x) = \sum_{j=1}^{\infty} p_j F_j(x) \quad \text{where} \quad p \ge 0, \sum_{j=1}^{\infty} p_j = 1$$

• Generate positive random integer J

$$P(J = j) = p_j$$
 for  $j = 1, 2, ....$ 

• Return X with distribution function  $F_{\rm J}$ 



- Desired random variable can be described as the sum of other random variable
  - 1. Generate  $Y_1, Y_2, Y_3, ..., Y_k$
  - Return  $X = Y_1 + Y_2 + Y_3 + \dots + Y_k$

- □ Example:
  - k- Erlang distributed random variable with a mean ε can be expressed as the sum of k exponential random variables with a common mean k/ε
- □ Advantage: simple and intuitive approach
- Disadvantage: slow since multiple random number have to be generated in order to get a single sample



- Inverse transform, combination, and convolution are **direct** methods (work directly with the distribution function)
- □ Accept-Reject is used when other methods fail or are inefficient
- □ Density function is complex  $\rightarrow$  select a "simpler" density function *r*

## Accept-Reject-Method (LK 8.2.4)

Geometrical interpretation

Y will be accepted if the point  $(Y, U \cdot t(Y))$  falls under the curve f.

- □ The acceptance probability is high if t(Y)-f(Y) is small.
- □ Majorante von f(x) →  $\forall x : t(x) \ge f(x)$





#### Indirect approach:

- Preparation:
  - We need a function *t* that **majorizes** density *f*

 $t(x) \ge f(x)$  for all x $c = \int_{-\infty}^{\infty} t(x) dx \ge \int_{-\infty}^{\infty} f(x) dx = 1$ 

• We obtain a density *r* by  $r(x) = \frac{t(x)}{x}$ 

#### Algorithm

- 1. Generate a random variable Y according to a density r
- 2. Generate a random number  $U \sim U(0,1)$  (independent of Y)

3. Return 
$$X = Y$$
 if  $U \le \frac{f(Y)}{t(Y)}$  (ACCEPT)

Otherwise, go back to step 1 and try again

(REJECT)



□ Example: beta(4,3) distribution (6th order polynomial, hard to invert)







- □ Efficiency:
  - Depends on the majorant series (x)
  - Probability of acceptance is 1/c Average number of iterations

- □ Advantage:
  - Works for arbitrary density functions

#### Disadvantage:

- Number of required U(0,1) random numbers depends on the generated numbers (may causes problems with some statistics and may result variations of the simulation duration)
- Requires at two U(0,1) random numbers in each iterations



How to generate random numbers according to different distributions?



- Uniform distribution:
  - Density function:

- $RV \ X \sim U(a,b) \qquad (LK 8.3.1)$  $f(x) = \frac{1}{b-a}, X \in [a;b]$ [a;b] $F(x) = \frac{x-a}{b-a}$
- Distribution function:

• Expectation:

Range:

$$E(X) = \frac{a+b}{2}$$

Variance:

$$VAR(X) = \frac{(b-a)^2}{12}$$

• Generation:  $U \sim U(0,1), X = a + (b-a)U$ 

#### **Triangle distribution (1/4)**: $RV X \sim triang(a,b,c)$ (LK 8.3.15)

• Density function: 
$$f(x) = \begin{cases} \frac{2 \cdot (x-a)}{(b-a) \cdot (c-a)} & \text{if } a \le x \le c \\ \frac{2 \cdot (b-x)}{(b-a) \cdot (b-c)} & \text{if } c \le x \le b \\ 0 & \text{otherwise} \end{cases}$$
• Distribution function: 
$$f(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{(x-a)^2}{(b-a) \cdot (c-a)} & \text{if } a \le x \le c \\ 1 - \frac{(b-x)^2}{(b-a) \cdot (b-c)} & \text{if } c \le x \le b \\ 1 & \text{if } b < x \end{cases}$$

### **Triangle distribution (2/4):** $RV X \sim triang(a,b,c)$ (LK 8.3.15)

- Use case: Project management / business simulations where only the minimum, maximum and mode are known
- Mode
   c
- Range [a;b]
- Expectation:  $E(X) = \frac{a+b+c}{3}$

• Variance: 
$$VAR(X) = \frac{(a^2 + b^2 + c^2 - ab - ac - bc)}{18}$$

#### **Triangle distribution (3/4):** $RV X \sim triang(a,b,c)$ (LK 8.3.15)

Generation: Inversion

$$U \sim U(0,1), X = \begin{cases} a + \sqrt{U(b-a) \cdot (c-a)} & 0 < U < F(c) \\ b - \sqrt{(1-U) \cdot (b-a) \cdot (b-c)} & F(c) < U < 1 \end{cases}$$



Probability Density Function

**Cumulative Density Function** 



### **Triangle distribution (4/4):** $RV X \sim triang(a,b,c)$ (LK 8.3.15)

Use case: risk management / project management



Normal distribution(1/4):  $RV X \sim N(\mu, \sigma^2)$  (LK 8.3.6)  $f(x) = \frac{1}{\sqrt{2 \cdot \pi \cdot \sigma^2}} \cdot e^{-\left(\frac{(x-\mu)^2}{2 \cdot \sigma^2}\right)}$  $F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2} dt$  $\int_{-\infty}^\infty \infty [$ Density function: Distribution function: Range: Mode: μ  $E(X) = \mu$ Expectation:  $VAR(X) = \sigma^2$ Variance:  $X \sim N(0,1) \Longrightarrow (\mu + \sigma X) \sim N(\mu, \sigma^2)$ Scalability:

- Normal distribution(2/4):  $RV X \sim N(\mu, \sigma^2)$  (LK 8.3.6)
  - Generation Accept-Reject
    - Two independent random variables  $U_1, U_2 \sim U(0,1)$
    - $V_i = 2U_i 1$
    - $W = V_1^2 + V_2^2$
    - Algorithm:

Accept if  $W \leq 1$ 

$$Y = \sqrt{\frac{-2\ln W}{W}} \quad , \quad X_1 = V_1 \cdot Y \quad , \quad X_2 = V_2 \cdot Y$$

**Reject otherwise** 



### • Normal distribution(3/4): $RV X \sim N(\mu, \sigma^2)$ (LK 8.3.6)





## • Normal distribution(4/4): $RV X \sim N(\mu, \sigma^2)$ (LK 8.3.6)

Use case: distribution of errors / sizes (nature)

| Körpergröße | Frauen | Männer |
|-------------|--------|--------|
| <150 cm     | 0,6 %  | 0,1 %  |
| 150–154 cm  | 4 %    | 0,1 %  |
| 155–159 cm  | 12,7 % | 0,3 %  |
| 160–164 cm  | 27,0 % | 2,3 %  |
| 165–169 cm  | 29,1 % | 9,0 %  |
| 170–174 cm  | 17,6 % | 19,2 % |
| 175–179 cm  | 6,9 %  | 26,1 % |
| 180–184 cm  | 1,8 %  | 23,9 % |
| 185–189 cm  | 0,2 %  | 12,8 % |
| ≥ 190 cm    | <0,1 % | 6,3 %  |



Körpergröße der Deutschen Statistik des Sozio-oekonomischen Panels (SOEP), aufbereitet durch statista.org



### **Lognormal distribution(1/3):** RV $X \sim LN(\mu, \sigma^2)$ (LK 8.3.7)

Special property of the lognormal distribution

if 
$$Y \sim N(\mu, \sigma^2)$$
  $\longrightarrow$   $e^Y \sim LN(\mu, \sigma^2)$ 

- Range:  $[0,\infty)$
- Algorithm: Composition

- 
$$Y \sim N(\mu, \sigma^2)$$
  $\longrightarrow X = e^Y$ 

• Expectation:  $E(X) = e^{\mu + \frac{1}{2}}$ 

• Variance: 
$$VAR(X) = e^{2\mu + \sigma^2} \left( e^{\sigma^2} - 1 \right)$$

Note that  $\mu$  and  $\sigma$  are NOT the mean and the variance of the lognormal distribution!



### **Lognormal distribution(2/3):** RV $X \sim LN(\mu, \sigma^2)$ (LK 8.3.7)

Parameters of the normal distribution which is used to generate LN

$$- \mu = E[Y] = \ln\left(\frac{E[X]^2}{\sqrt{E[X]^2 + VAR[X]}}\right)$$

$$- \sigma^2 = VAR[Y] = \ln\left(\frac{E[X]^2}{\sqrt{E[X]^2 + VAR[X]}}\right)$$



**Lognormal distribution(3/3):**  $RV X \sim LN(\mu, \sigma^2)$  (LK 8.3.7)

Use case: risk management (insurance companies)



Probability Density Function

**Cumulative Density Function** 

Random numbers

### **Exponential distribution(1/2):** $RV X \sim \exp(\lambda)$ (LK 8.3.2)

• Density function:  $f(x) = \lambda \cdot e^{-\lambda x}$  für  $x \ge 0$ 

 $E(X) = \frac{1}{\lambda}$ 

- Distribution function:  $F(x) = 1 e^{-\lambda x}$
- Range: [0,∞[
- Expectation:
- Variance:  $VAR(X) = \frac{1}{r^2}$
- Coefficient of variation:  $c_{Var} = 1$
- Generation: Inversion

$$U \sim U(0,1), X = \frac{-\ln(U)}{\lambda}$$

Mode:

0



□ Exponential distribution(2/2):  $RV X \sim \exp(\lambda)$  (LK 8.3.2) Use case: life time of structures, time between calls/requests



Pictures taken from Wikipedia

**Erlang-k distribution(1/3):**  $RV X \sim k - Erlang(\lambda)$  (LK 8.3.3)

• 
$$RV \ X = Y_1 + Y_2 + Y_3 + \dots + Y_k$$

where the Yi's are IID exponential random variables

• Density function:

$$f(x) = \begin{cases} \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!} & \text{for } x \ge 0\\ 0 & \text{Otherwise} \end{cases}$$

• Distribution function: 
$$F(x) = \begin{cases} 1-e \\ e \\ e \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x} \cdot \sum_{i=0}^{k-1} \frac{(\lambda x)^i}{i!} & \text{for } x \ge 0\\ 0 & \text{Otherwise} \end{cases}$$

RV X represents the sum of k exponential random variables

#### **Erlang-k distribution(2/3):** $RV X \sim k - Erlang(\lambda)$ (LK 8.3.3)

Г

Г

- Range:
- Expectation:
- Variance:
- Mode:
- Coefficient of variatio
- Generation:

» Inversio

$$\begin{bmatrix} 0, \infty \end{bmatrix}$$
  
n:  

$$E(X) = \frac{k}{\lambda}$$

$$VAR(X) = \frac{k}{\lambda^2}$$

$$\frac{k-1}{\lambda}$$
of variation:  

$$c_{Var} = \frac{1}{\sqrt{k}}$$
n:  

$$U_i \sim U(0,1), X = \frac{-\ln\left(\prod_{0 \le i < k} U_i\right)}{\lambda}$$

$$RV X = Y_1 + Y_2 + Y_3 + \dots + Y_k$$

#### **Erlang-k distribution(3/3):** $RV X \sim k - Erlang(\lambda)$ (LK 8.3.3)

Use case: lifetime of structures, delay in transport networks, dimensioning of systems (e.g. call center)



**Gamma distribution(1/3):** *RV X* ~ *gamma*( $\alpha, \beta$ ) (LK 8.3.4)

Density function:

Distribution function:

$$f(x) = \begin{cases} \frac{\beta^{-\alpha} \cdot x^{\alpha-1} e^{-\frac{x}{\beta}}}{\Gamma(\alpha)} & \text{for } x \le 0\\ 0 & \text{Otherwise} \end{cases}$$
$$F(x) = \begin{cases} 1 - e^{\frac{-x}{\beta}} \cdot \sum_{0 \le i < \alpha} \frac{\left(\frac{-x}{\beta}\right)^{i}}{i!} & \text{for } x > 0\\ 0 & \text{Otherwise} \end{cases}$$

- Parameter description:
  - Location parameter γ:
  - Scale parameter β:
  - Shape parameter α:
- Shifting the distribution along the x-axis Linear impact on the expectation
- Changes the shape of the distribution

**Gamma distribution(2/3):** *RV X* ~ *gamma*( $\alpha, \beta$ ) (LK 8.3.4)

Gamma function:

$$\Gamma(z) = \begin{cases} \int_{0}^{\infty} t^{z-1} e^{-t} dt & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

$$F(X) = \alpha \beta$$

- Expectation:  $E(X) = \alpha \cdot \beta$
- Coefficient of variation:  $c_{Var} = 1$

• Mode: 
$$\begin{cases} 0 & \text{if } \alpha < 1 \\ \beta \cdot (\alpha - 1) & \text{if } \alpha \ge 1 \end{cases}$$

- Generation:
  - Step 1  $X \sim gamma(\alpha, \beta) \rightarrow X = \beta \cdot Y$   $Y \sim gamma(\alpha, 1)$
  - Step 2 Generation of  $X \sim gamma(\alpha, 1)$  with Accept-Reject

# □ Gamma distribution(3/3): $RV X \sim gamma(\alpha, \beta)$ (LK 8.3.4) Use cases: risk management (insurance companies), service time, down time



**Random numbers - Discrete** 

- **Uniform (discrete) (1/2)**  $RV X \sim DU(i, j)$  (LK 8.4.2)  $p(k) = \begin{cases} \frac{1}{j-i+1} & \text{if } k \in \{i, i+1, i+2, ..., j\} \\ 0 & Otherwise \end{cases}$ 
  - **Distribution:**

Range:

 $i \leq k \leq j$  $E(X) = \frac{(i+j)}{2}$ 

- **Expectation:**
- Variance:

$$VAR(X) = \frac{(j-i+1)^2 - 1}{12}$$

Generation: Inversion

IJ

$$\sim U(0,1)$$
  $X = i + \lfloor (j-i+1) \cdot U \rfloor$ 

DU(0,1) and Bernoulli(0.5) distributions are the same
Random numbers - Discrete

# **Uniform (discrete) (2/2)** $RV X \sim DU(i, j)$ (LK 8.4.2)

Use case: backoff distribution, simulation (dice, roulette, ...)





#### **Bernoulli (1/2)** $RV X \sim Bernoulli (p)$ (LK 8.4.1)

- Example: Flipping a coin
- Distribution:
- Range:  $i \le k \le j$
- Expectation: E(X) = p
- Variance:  $VAR(X) = p \cdot (1-p)$

Coefficient of variation:

$$c_{Var} = \sqrt{\frac{1-p}{n \cdot p}}$$

 $\begin{aligned}
\mathbf{\hat{p}}(k) &= \begin{cases} 1-p & \text{if } k = 0 \\ p & \text{if } k = 1 \\ 0 & Otherwise \end{aligned}
\end{aligned}$ 



### **Bernoulli (2/2)** $RV X \sim Bernoulli (p)$ (LK 8.4.1)

- Mode:
- Generation:

0 or 1 (depends on the definition of the outcome) Inversion  $U \sim U(0,1)$  $X = \begin{cases} 0 \text{ if } U$ 

Distribution
 Bernoulli (0.3)





## **D** N-Bernoulli (1/2) $RV X \sim Bernoulli (n, p)$ (LK 8.4.4)

 Example: Flipping a coin n times



Distribution:

$$p(k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \qquad 0 \le k \le n$$

- Range:  $0 \le k \le n$
- Expectation: E(X) = np
- Variance:

$$VAR(X) = n \cdot p \cdot (1 - p)$$
$$c_{Var} = \sqrt{\frac{1 - p}{n \cdot p}}$$

- Coefficient of variation:
- Use case: quality management, wrong/right decisions



#### **N-Bernoulli (2/2)** $RV X \sim Bernoulli (n, p)$ (LK 8.4.4)

- Mode: 0 or 1 (depends on the definition of the outcome)
- Generation: Composition

Bernoulli 
$$(n, p) \approx \sum_{0 \le i < n} Bernoulli (p)$$





### **Geom (1/2)** $RV X \sim Geom (p)$ (LK 8.4.5)

- Example: Number of unsuccessful Bernoulli Experiments until a successful outcome (e.g. number of retransmissions)
- Distribution:

$$p(x) = p \cdot (1-p)^x$$

Distribution function:

$$F(x) = 1 - (1 - p)^{\lfloor x \rfloor + 1}$$

• Expectation:

$$E(X) = \frac{1-p}{p}$$

Variance:

$$VAR(X) = \frac{1-p}{p^2}$$

• Coefficient of variation:  $c_{Var} =$ 



## **Geom (2/2)** $RV X \sim Geom (p)$ (LK 8.4.5)

- Mode: 0
- Generation: Inversion  $U \sim U(0,1)$

$$X = \left\lfloor \frac{\ln(U)}{\ln(1-p)} \right\rfloor$$





#### **D** Poisson(1/3) RV $X \sim Poisson(\lambda)$ (LK 6.2.4)

- Example: Number of events that occur in an interval of time when the events are occurring at a constant rate (number of items in a batch of random size)
- Distribution:  $p(x) = \frac{\lambda^{x}}{x!} \cdot e^{-\lambda} \quad \text{if } x \in \{0, 1, 2, ...\}$ Distribution function:  $F(x) = \begin{cases} e^{-\lambda} \sum_{i=0}^{\lfloor x \rfloor} \frac{\lambda^{i}}{i!} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$
- Parameter:  $\lambda > 0$



## **D** Poisson(2/3) RV $X \sim Poisson(\lambda)$ (LK 6.2.4)

- Range:  $\{0,1,2,3,...\}$
- Expectation:  $E(X) = \lambda$
- Variance:
- Coefficient of variation:
- Mode
- Special characteristics:
  - x = 0

exponential distribution

 $\begin{cases} \lambda \cap \lambda - 1 & \lambda \text{ is an integer} \\ |\lambda| & \text{otherwise} \end{cases}$ 

(time interval between two consecutive events)

- Number of events until a certain point in time is Poisson distributed
- Period of time until n events have occurred is Erlang distributed

 $VAR(X) = \lambda$ 

 $c_{Var} = \frac{1}{\sqrt{\lambda}}$ 



## **D** Poisson(3/3) RV $X \sim Poisson(\lambda)$

Use case: number of (independent) arrivals in a certain time interval

(LK 6.2.4)



Random numbers - Discrete

- **General Discrete(1/1)**  $RV X \sim GD$  (LK 8.4.3)
  - Distribution:  $p(x) = \begin{cases} p_k & \text{if } x = x_k, \ 0 \le k < n \\ 0 & Otherwise \end{cases}$
  - Generation: Inversion  $U \sim U(0,1)$

$$X = x_k$$
 , falls  $\sum_{j=0}^{k-1} p_j \le U < \sum_{j=0}^k p_j$ 



Chair for Network Architectures and Services – Prof. Carle Department of Computer Science TU München

# Random number generator algorithms and their quality



Some slides/figures taken from: Oliver Rose Averill Law, David Kelton Wikimedia Commons (user Matt Crypto) Dilbert







- □ Generating U(0,1) random numbers
  - Motivation
  - Overview on RNG families
- □ Linear Congruential Generators (LCG)
- Statistical properties, statistical (empirical) tests
  - χ2 test for uniformity
  - Correlation tests: Runs-up, sequence
- □ Theoretical aspects, theoretical tests
  - Period length
  - Spectral test
- RNG that are better than LCG





- □ Generate uniformly distributed numbers  $\in$  0.0 ... 1.0
- **Compute inverse**  $A^{-1}(t)$  of PDF A(t)
- □ Generate samples

# Generating U(0,1) random numbers is crucial

- □ For all random number generation methods, we need uniformly distributed random numbers from ]0,1[
   ⇒ U(0,1) random numbers are required
- Mandatory characteristics
  - Random (...obviously)
  - Uniform (make use of the whole distribution function)
  - Uncorrelated (no dependencies): difficult!
  - Reproducible (for verification of experiments)
     → use pseudo random numbers
  - Fast (usually, there is a need for a lot of samples)

# RNG in simulation vs. RNG in cryptography

- □ Also need for random numbers in cryptography
  - Key generation
  - Challenge generation in challenge-response systems
  - ...
- □ Additional requirement:
  - Prediction of future "random" values by sampling previous values must not be possible
  - (In simulation: not an issue if there is no real correlation)
- Lighter requirement:
  - RNs are not used constantly, only in ~start-up phases
     ⇒ speed is not of much importance
  - In simulation: need lots of numbers
     ⇒ speed is very important)

Generation of U(0,1) random numbers

#### □ Generation approaches

- "Real", "natural" random numbers: sampling from radioactive material or white noise from electronic circuits, throwing dice, drawing from an urn, ...
  - Problems:
    - If used online: not reproducible
    - Tables: uncomfortable, not enough samples
- Pseudo random numbers: recursive arithmetic formulae with a given starting value (seed)
  - In hardware: shift register with feedback (based on primitive polynomials as feedback patterns)
  - In software: Linear Congruential Generator (LCG) [Lehmer, 1951], ...

# Generation of U(0,1) pseudo-random numbers

#### Main families:

- □ Linear Congruential Generator (LCG): the simplest
- General Congruential Generators
  - Quadratic Congruential Generator
  - Multiple recursive generators
- □ Shift register with feedback (Tausworthe)
  - E.g., Mersenne Twister: state-of-the-art
- Composite generators: output of multiple RNG
  - E.g., use one to shuffle ("twist") the output of the other

# RNG: alternatives unsuitable for simulation

- □ Algorithms from cryptography
  - For example: counter $\rightarrow$ AES, counter $\rightarrow$ SHA1, counter $\rightarrow$ MD5, etc.
  - Usually way too slow
- Calculate transcendent numbers (e.g., π or e), view their digits as random
  - E.g.: digits of 100,000<sup>th</sup> decimal place of π onwards
  - Problem: Are they really random?
- Physical generators (cf. previous lecture)
  - Not reproducible, no seed
- □ Tables with pre-computed random numbers
  - We need too many random numbers, the tables would have to be huge...

# Linear Congruential Generators

□ Calculate RN from previous RN using some formula □ Sequence of integers  $Z_1, Z_2, \ldots$  defined by

$$Z_i = (a \cdot Z_{i-1} + c) \pmod{m}$$

- with modulus m, multiplier a, increment c, and seed  $Z_0$
- c=0: multiplicative LCG
   Example:

$$Z_i = 16807 \cdot Z_{i-1} \pmod{2^{31} - 1}$$

(Lewis, Goodman, Miller, 1969)

 $\Box$  *c*>0: mixed LCG



# ...but they don't create floats, but integers > 1?!

Obviously,

 $Z_i$  = something mod m

and

something mod m < m

- $\Box \Rightarrow$  Just normalise the result!
  - Divide by m? But then, 1.0 cannot be attained.
  - Better: Divide by m–1.

# Do they really generate uniformly distributed random numbers?

- □ Test for uniformity:
  - Create a number of samples from RNG
  - Test if these numbers are uniformly distributed
- □ A number of statistical tests to do this:

  - Kolmogorov-Smirnov test
  - ... and a whole lot of others! For example:
    - Cramér-von Mises test
    - Anderson-Darling test
- □ Graphical examination (not real tests):
  - Plot histogram / density / PDF
  - Distribution-function-difference plot
  - Quantile-quantile plot (Q-Q plot)
  - Probability-probability plot (P-P plot)

(later in course)



- $\Box$  Given a series of n measurements X<sub>i</sub>
- □ Partition the domain min{X<sub>i</sub>} ... max{X<sub>i</sub>} into m intervals  $I_1...I_m$



□ ~discretised density function □ Recommendation:  $m \approx \sqrt{n}$ 



# Obviously not U(0,1) random variables:



(...okay, we could have calculated min and max instead of plotting the histogram)



# Obviously not U(0,1) random variables:

**Histogram of RN** 





# Looks like a U(0,1) random variable at first sight...:

Histogram of RN





# ...but is obviously no U(0,1) random variables: huge gaps!

**Histogram of RN** 



# Is a histogram just a bar plot?

□ Gummibears – Original Haribo 300g (~130 Gummibears per package)



"Histograms" are based on samples taken from a 300g package

# Is a histogram just a bar plot?

# □ Gummibears – Eaten by students during the lecture





□ Gummibears – Original – 1500g



Based on samples taken from 5 x 300g packages

# Is a histogram just a bar plot? – No!

#### Histogram

- X axis:
  - some scalar value, e.g., [0...1], or ]-∞...+∞[, etc.
  - Divided into bins ("classes")
- Y axis: number of occurrences per class

#### □ Barplot

- X axis: Some *categorical* value, e.g., colour, or student name, etc.
- Y axis: number of occurrences per class







Does the analytical distribution correspond to the empirical distribution calculated from the sample set?



Picture taken from Law/Kelton: "Simulation Modeling and Analysis", 3rd Edition, S. 348)



- Scenario: Given a set of measurements, we want to check if they conform to a distribution; here: U(0,1)
- Graphs like presented before are nice indicators, but not really tangible: "How straight is that line?" etc.
- □ We want clearer things: Numbers or yes/no decisions
- □ Statistical tests can do the trick, but...
  - Warning #1: Tests only can tell if measurements do not fit a particular distribution—i.e., no "yes, it fits" proof!
  - Warning #2: The result is never absolutely certain, there is always an error margin.
  - Warning #3: Usually, the input must be 'iid':
    - Independent
    - Identically distributed
  - ⇒You never get a 'proof', not even with an error margin!



- □ Input:
  - Series of n measurements X<sub>1</sub> ... X<sub>n</sub>
  - A distribution function f (the 'theoretical function')
- Measurements will be tested against the distribution
  - ~formal comparison of a histogram with the density function of the theoretical function
- □ Null hypothesis H0:

The  $X_i$  are IID random variables with distribution function f



- Divide the sample range into k intervals of equal probability
- Count how many  $X_i$  fall into which interval (histogram):

 $N_j :=$  number of  $X_i$  in *j*-th interval  $[a_{j-1} \dots a_j]$ 

Calculate how many X<sub>i</sub> would fall into the *j*-th interval if they were sampled from the theoretical distribution:

$$p_j \coloneqq \int_{a_{j-1}}^{a_j} f(x) dx$$
 (*f:* density of theor. dist.)

 Calculate squared normalised difference between the observed and the expected samples per interval:

$$\chi^2 \coloneqq \sum_{j=1}^k \frac{(N_j - np_j)^2}{np_j}$$

- □ Obviously, if  $\chi^2$  is "too large", the differences are too large, and we must reject the null hypothesis
- But what is "too large"?

# $\chi^2$ test: Using the $\chi^2$ distribution

- **u** The  $\chi^2$  distribution
  - A test distribution
  - Parameter: degrees of freedom (short df)
  - $\chi^2(k-1 \text{ df}) = \Gamma(\frac{1}{2}(k-1), 2)$  (gamma distribution)
  - Mathematically: The sum of n independent squared normal distributions
- Compare the calculated  $\chi^2$  against the  $\chi^2$  distribution
  - If we use k intervals, then  $\chi^2$  is distributed corresponding to the  $\chi^2$  distribution with k–1 degrees of freedom
  - Let  $\chi^2_{k-1,1-\alpha}$  be the (1- $\alpha$ ) quantile of the distribution
  - α is called the confidence level
  - Reject H0 if  $\chi^2 > \chi^2_{k-1,1-\alpha}$  (i.e., the X<sub>i</sub> do not follow the theoretical distribution function)


□ The  $\chi^2$  distribution with k-1 degrees of freedom



Picture adopted from Law/Kelton: "Simulation Modeling and Analysis", 3rd Edition, S. 359)

## $\chi^2$ test and degrees of freedom

- $\Box \chi^2$  test can be used to test against *any* distribution
- □ Easy in our case: We know the parameters of the theoretical distribution f —it's U(0,1)
- Different in the general case:
  - For example, we may know it's  $N(\mu, \sigma)$  (normal distribution) but we know neither  $\mu$  nor  $\sigma$
  - Fitting a distribution: Find parameters for *f* that make *f* fit the measurements X<sub>i</sub> best
  - Topic of a later lecture
- □ Theoretically:
  - Have to estimate m parameters  $\Rightarrow$  Also have to take  $\chi^2_{k-m-1,1-\alpha}$  into account
- □ Practically:
   m≤2 and large k
   ⇒ Don't care...



- □ How many intervals (k)?
  - A difficult problem for the general case
  - Warning: A smaller or a greater k may change the outcome of the test!
  - As a general rule, use k between n/5 and  $\sqrt{n}$
  - As a general rule, make the intervals equal-sized
  - As another general rule, make sure that ∀j: np<sub>j</sub> ≥ 5 (i.e., have enough samples that we expect to have at least 5 samples in each interval)
- $\Rightarrow$  As a general rule, you need a lot of measurements!
- The larger the number of measurements, the higher the chance that the assumption is rejected.
- What confidence level?
  - At most α=0.10 (almost too much); typical values: 0.001, 0.01, 0.05 [, and 0.10]
  - The smaller, the higher confidence in the test result

# Kolmogorov-Smirnov test (KS test)

- $\Box \quad \text{Samples } X_i, i \in 0 \le i < n$
- □ Hypothesis:

Samples  $X_i$  are iid and follow the distribution  $\hat{F}(x)$ 

**Definition:** empirical distribution  $X_i$ 

$$F_n(x) = \frac{\#X_i \le x}{n} \qquad (F_n(x) \text{ step function})$$

□ Test  $D_n(x)$ : largest vertical difference between  $F_n(x)$  and  $\hat{F}_n(x)$ :

$$D_{n}(x) = \sup_{x} \left\{ F_{n}(n) - \hat{F}(x) \right\}$$
$$D_{n}^{+} = \max_{1 \le i \le n} \left\{ \frac{i}{n} - \hat{F}(X_{(i)}) \right\}, D_{n}^{-} = \max_{1 \le i \le n} \left\{ \hat{F}(X_{(i)}) - \frac{i-1}{n} \right\}, D_{n} = \max\left\{ D_{n}^{+}, D_{n}^{-} \right\}$$

Note:  $X_i$  represents the sorted samples in ascending order



□ Example 1: n=4, samples are iid and follow the distribution  $\hat{F}(x)$ 



Picture adopted from Law/Kelton: "Simulation Modeling and Analysis", 3rd Edition, S. 364



□ Example 2:



Picture adopted from Law/Kelton: "Simulation Modeling and Analysis", 3rd Edition, S. 365



 $\Box$  H<sub>0</sub> is accepted if

$$\left(\sqrt{n} + 0.12 + \frac{0.11}{\sqrt{n}}\right) D_n < c_{1-\alpha}$$

| 1-α  | 0.850 | 0.900 | 0.950 | 0.975 | 0.990 |
|------|-------|-------|-------|-------|-------|
| c1-α | 1.138 | 1.224 | 1.358 | 1.480 | 1.628 |

- Advantages:
  - No grouping into intervals required
  - Valid for any sample size, not only for large n
  - More powerful than  $\chi^2$  for a number of distributions
- Disadvantages:
  - Applicability more limited than  $\chi^2$
  - Difficult to apply to discrete data
  - If distribution needs to be fitted (unknown parameters), then K-S works only for a number of distributions



- □ Other tests:
  - Anderson–Darling test (A–D test)
    - Higher power than K-S for some distributions
  - ...a lot of other tests
    - Rule of thumb: The more specialised the test, the higher its power compared to other tests – but the less generally applicable

## Tests for uniformity: limitations

□ Consider this sequence of drawn "random numbers":



 $\Box$  They are in U(0,1) ... but do they seem random!?

IN2045 – Discrete Event Simulation, WS 2011/2012

# Recall our requirements for RNG

- □ RNs have to be uncorrelated how should we test this?
- Statistical tests:
   Draw some random numbers and examine them
  - Runs-up test
  - Serial test
- □ Theoretical parameters and theoretical tests:
  - Length of period
  - Spectral test
  - Lattice test



- Run up := the length of a contiguous sequence of monotonically increasing X<sub>i</sub>.
- Example sequence:
   0.86 >
   0.11 < 0.23 >
   0.03 < 0.13 >
   0.06 < 0.55 < 0.64 < 0.87 >
   0.10

- length: 1 length: 2 length: 2 length: 4 length: 1
- □ Calculate r<sub>i</sub> (number of runs up of length i)
- Compute a test statistic value R, using the r<sub>i</sub> and a bestranging zoo of esoteric constants a<sub>ii</sub> and b<sub>i</sub>
- **\square** R will have an approximate  $\chi^2$  distribution with 6 df.
  - You just have to believe me there and I have to believe the literature...



- Find possible correlations between subsequently drawn values
- □ Visual "tests":
  - 2D plot of X<sub>i</sub> and X<sub>i-1</sub>
  - 3D plot of X<sub>i</sub> and X<sub>i-1</sub> and X<sub>i-2</sub>
- □ Generalisation: Serial test





IN2045 – Discrete Event Simulation, WS 2011/2012





IN2045 – Discrete Event Simulation, WS 2011/2012





IN2045 – Discrete Event Simulation, WS 2011/2012





 $X(n+1)=(262145^{*}X(n)+1) \mod 2^{35}, X(0)=47594188, 0 < n < 50000$ 

IN2045 – Discrete Event Simulation, WS 2011/2012





IN2045 – Discrete Event Simulation, WS 2011/2012

#### Serial test: like a multidimensional $\chi^2$ test

Serial test: "a generalised and formalised version of the plots"

Consider non-overlapping d-tuples of subsequently drawn random variables X<sub>i</sub>:

$$J_1 = (X_1, X_2, \dots, X_d)$$
  $U_2 = (X_{d+1}, X_{d+2}, \dots, X_{2d})$ 

- $\hfill\square$  These U<sub>i</sub>'s are vectors in the d-dimensional space
- If the X<sub>i</sub> are truly iid random variables, then the U<sub>i</sub> are truly random iid vectors in the space [0...1]<sup>d</sup>
   (the d-dimensional hypercube)
- □ Test for d-dimensional uniformity (rough outline):
  - Divide [0...1]<sup>d</sup> into k equal-sized sub intervals
  - Calculate a value  $\chi^2(d)$  based on the number of U<sub>i</sub> for each possible interval combination
  - $\chi^2(d)$  has approximate distribution  $\chi^2(k^d-1 df)$
  - Rest: same as  $\chi^2$  test above



- □ A LCG with setup:
  - $Z_i = 65,539 \cdot Z_{i-1} \mod 2^{31}$
- □ Advantage: It's fast.
  - mod 2<sup>31</sup> can be calculated with a simple AND operation
  - 65,539 is a bit more than 2<sup>16</sup>; thus the multiplication (=expensive operation) can be replaced by a bit shift of 16 bit plus three additions (=cheap operations)
  - Why 65,539? It's a prime number.
- Disadvantage:
  - An infamously bad RNG! Never, ever use it!
  - d≥3: The tuples are clumped into 15 plains (remember the animated 3D cube? That was RANDU!)
- □ A lot of simulations in the 1970s used RANDU
   ⇒ sceptical view on simulation results from that time

## Theoretical parameters, theoretical tests

- Tests so far: Based on drawing samples from RNG
- □ No absolute certainty!
  - Usually, only a small subset of entire period is used
  - Remember the  $\chi^2$  test

#### □ Theoretical parameters and tests

- Based directly on the algorithm and its parameters
- No samples to be drawn not a real "statistical test"
- Usually quite complicated



 After some time, the "random" numbers must repeat themselves.

Why?

- LCG: Z<sub>i</sub> is entirely determined by Z<sub>i-1</sub>
- The same Z<sub>i-1</sub> will always produce the same Z<sub>i</sub>
- There are only finitely many different Z<sub>i</sub>
- How many?
   We take mod m ⇒ at most m different values
- Call this the period length

# Theorem by Hull and Dobell 1962

- A LCG has full period if and only if the following three conditions hold:
  - c is relatively prime to m (i.e., they do not have a prime factor in common)
  - 2. If m has a prime factor q, then (a–1) must have a prime factor q, too
  - If m is divisible by 4, then (a–1) must be divisible by 4, too
- $\Box \Rightarrow$  Prime numbers play an important role
  - Remember RANDU? At least, it used a prime number...
- Multiplicative RNGs (i.e., no increment Z<sub>i</sub>+c) cannot have period m.
   (But period (m–1) is possible if m and a are chosen carefully.)

# LCG and period length considerations

- □ On 32 bit machines,  $m \le 2^{31}$  or  $m \le 2^{32}$  due to efficiency reasons  $\Rightarrow$  period length 4.3 billion
- Calculating that many random numbers only takes a couple of seconds on today's hardware
- □ Theory suggests to use only √period \_length numbers; that's only 65,000 random numbers
- How many random numbers do we need? Example:
  - Simulate behaviour of 1,000 Web hosts
  - Each host consumes on average 1 random number per simulation second
  - Result: We can only simulate for one minute!
- $\square$   $\Rightarrow$ We need much longer period lengths
  - Okay... so let's just use a 64-bit LCG, no?

# Spectral test (coarse description)

- □ ~ The theoretical variant of the serial test
- Observation by Marsaglia (1968):
   "Random numbers fall mainly in planes."
  - Subsequent overlapping (!) tuples U<sub>i</sub>: U<sub>1</sub>=(X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>d</sub>) U<sub>2</sub>=(X<sub>2</sub>, X<sub>3</sub>, ..., X<sub>d+1</sub>) ... fall on a relatively small number of (d–1)-dimensional hyperplanes within the d-dimensional space
  - Note the difference to the serial test! (overlapping)
  - 'Lattice' structure
- □ Consider hyperplane families that cover all tuples U<sub>i</sub>
- □ Calculate the maximum distance between hyperplanes. Call it  $\delta_{d}$ .
- $\hfill \label{eq:stable}$  If  $\delta_{\rm d}$  is small, then the generator can ~uniformly fill up the d-dimensional space



- □ For LCG, it is possible to give a theoretical lower bound  $\delta_d^*$ :  $\delta_d \ge \delta_d^* = 1 / (\gamma_d m^{1/d})$
- □ γ<sub>d</sub> is a constant whose exact value is only known for d≤8 (dimensions up to 8)
- □ LCG do not perform very well in the spectral test:
  - All points lie on at most m<sup>1/n</sup> hyperplanes (Marsaglia's theorem)
  - Serial test: similar
  - There are way better random number generators than linear congruential generators.



#### □ Advantages:

- Easy to implement
- Reproducible
- Simple and fast

#### Disadvantages:

- Period (length of a cycle) depends on parameters a, c, and m
- Distribution and correlation properties of generated sequences are not obvious
- A value can occur only once per period (unrealistic!)
- By making a bad choice of parameters, you can screw up things massively
- Bad performance in serial test / spectral test even for good choice of parameters



- □ Why linear?
  - Quadratic congruential generator:

 $Z_{i} = (a \cdot (Z_{i-1})^{2} + a' \cdot Z_{i-1}) \mod m$ 

- But: period is still at most m
- $\square$  Why only use one previous X<sub>i</sub>?
  - Multiple recursive generator:

 $Z_i = (a_1 Z_{i-1} + a_2 Z_{i-2} + a_3 Z_{i-3} + \dots + a_q Z_{i-q}) \mod m$ 

- Period can be m<sup>q</sup>-1 if parameters are chosen properly
- Why not change multiplier a and increment c dynamically, according to some other congruential formula?
  - Seems to work ~alright

### Feedback Shift Register Generators (1/2)

- Linear feedback shift register generator (LFSR) introduced by Tausworthe (1965)
- Operate on binary numbers (bits), not on integers
- □ Mathematically, a multiple recursive generator:

$$b_i = (c_1b_{i-1} + c_2b_{i-2} + c_3b_{i-3} + \dots + c_qb_{i-q}) \mod 2$$

- c<sub>i</sub>: constants that are either 0 or 1
- c<sub>q</sub> = 1 (why?)
- Observe that + mod 2 is the same as XOR (makes things faster)
- In hardware:



### Feedback Shift Register Generators (2/2)

□ Usually only two c<sub>i</sub> coefficients are 1, thus:

$$b_i = (b_{i-r} + b_{i-q}) \operatorname{mod} 2$$

- □ LFSR create random bits, not integers
  - Easy solution: Concatenate l bits to form an l-bit integer
- Properties
  - Period length [of the b<sub>i</sub> bits] = 2<sup>q</sup>-1, if parameters chosen accordingly (Note: characteristic polynomial has to be primitive over Galois field *F*2...)
  - Period length of the generated ints accordingly lower?
    - Depends on whether  $l \mid 2^q-1$  or not
    - This is probably not the case
    - In general: period length =  $2^{q}-1 / gcd(2^{q}-1, \ell)$  [deutsch: ggT]
    - But there may be some correlation after one 2q-1 "bit period"
  - Statistical properties not very good
  - Combining LFSRs improves statistics and period

- □ Lewis and Payne (1973)
- □ To obtain sequence of *l*-bit integers  $Y_1, Y_2, ...$ :
  - Leftmost bit of Y<sub>i</sub> is filled with LFSR-generated bit b<sub>i</sub>
  - Next bit of Yi is filled with LFSR-generated bit after some "delay" d: b<sub>i+d</sub>
  - Repeat that with same delay for remaining bits up to length l
- Mathematical properties
  - Period length can be very large if q is very large, e.g., Fushimi (1990): period length = 2<sup>521</sup>-1 = 6.86 · 10<sup>156</sup>
  - If 2<sup>l</sup><2<sup>q</sup>-1, then many Y<sub>i</sub>'s will repeat during one period run
  - If two bits (as with LFSR), then  $Y_i = Y_{i-r} \oplus Y_{i-q}$

## Long period lengths and repeated values

 $\Box$  "If 2<sup>*l*</sup><2<sup>*q*</sup>-1, then many Y<sub>*i*</sub>'s will repeat during a period run."

- l: number of bits of the integer output
- 2q-1: period length
- □ Is that good or bad?
  - This is a general question it relates to all RNGs, not only GFSR
- □ Consider this example:
  - $l=2 \Rightarrow$  only 4 different numbers
  - If q=4 as well, then we always would get, e.g.
    1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3
  - But we would want something like
    1, 4, 2, 2, 1, 4, 3, 1, 1, 4, 3, 3, 1, 4, 2, 3, 2, 2, 4, 1, 4, 3, 2, 3

□ Clearly, it's good that numbers repeat during one period

 $\Box \Rightarrow$  Clearly, it's good that we have a very long period length



- □ Before we go into the mathematical details...
  - Very, very long period length: 2<sup>19,937</sup>-1 > 10<sup>6,000</sup>
  - Very good statistical properties: OK in 623 dimensions
  - Quite fast
- □ ~State of the art: One of the best we have right now
  - The RNG of choice for simulations
  - Default RNG in Python, Ruby, Matlab, GNU R
  - Admittedly, there are even (slightly) better RNGs, cf. TestU01 paper
- □ Three warnings:
  - Not suitable for cryptographic applications: Draw 624 random numbers and you can predict all others!
  - Can take some time ("warm-up period") until the stream generates good random numbers
    - Usually hidden from programmer through library
    - If in doubt, discard the first 10,000 ... 100,000 drawn numbers
  - There also are other good modern RNGs, e.g., WELL



- □ Twisted GFSR (TGFSR)
  - Matsumoto, Kurita (1992, 1994)
  - Replace the recurrence of the GFSR by

 $\mathsf{Y}_{\mathsf{i}} = \mathsf{Y}_{\mathsf{i}-\mathsf{r}} \oplus \mathsf{A} \cdot \mathsf{Y}_{\mathsf{i}-\mathsf{q}}$ 

where:

- the  $Y_i$  are  $\ell \ge 1$  binary vectors
- A is an l x l binary matrix
- Period length = 2<sup>ql</sup>-1 with suitable choices for r, q, A
- □ Mersenne Twister (MT19937)
  - Matsumoto, Nishimura (1997, 1998)
  - Clever choice of r, q, A and the first Y<sub>i</sub> to obtain good statistical properties
  - Period length  $2^{19,937}-1 = 4.3 \cdot 10^{6001}$  (Mersenne prime:  $2^{n}-1$ )



- □ Even better alternative: WELL
  - Well Equidistributed Long-period Linear
  - Panneton, L'Écuyer, Matsumoto: <u>Improved Long-Period</u> <u>Generators Based on Linear Recurrences Modulo 2</u>, 2006
  - Period length:  $2^k 1$  where  $k \in \{512, 1024, 19937, 44497\}$
  - Better statistical properties than Mersenne twister
  - Speed comparable to Mersenne Twister
  - No warm-up period

- SIMD-oriented Fast Mersenne Twister (SFMT)
  - Faster than Mersenne Twister
  - Uses features of modern CPUs: 128 bit instructions, Pipelining
  - Also has better statistical properties than Mersenne Twister

# Digression: Period lengths revisited

What period lengths do we actually require?

□ Estimate #1:

- A cluster of 1 million hosts
- each of which draws 1,000,000 · 2<sup>32</sup> per second (~1,000,000 times as fast as today's desktop PCs)
- for ten years

will require...

- 5.6 · 10<sup>27</sup> random numbers
- (Make the PCs again  $10^6$  times faster  $\Rightarrow 5.6 \cdot 10^{33}$ )
- Estimate #2: What's the estimated number of electrons within the observable universe (a sphere with a radius of ~46.5 billion light years)
  - About 10<sup>80</sup> (± take or leave a few powers of 10)



- □ A lot of tests, a lot of different RNGs
- □ How to compare them?
- Benchmark suites ('Test batteries')
   that bundle many statistical tests:
  - TestU01 (L'Écuyer)
  - DIEHARD suite (Marsaglia)
  - NIST test suite (National Institute of Standards and Technologies;
    - ≙ Physikalisch-Technische Bundesanstalt)
## Conclusion: Quality tests for RNG

- □ Empirical tests (based on generated samples)
  - For U(0,1) distribution:  $\chi^2$  test
  - For independence: autocorrelation, serial, run-up tests
- □ Theoretical tests (based on generation formula)
  - Basic idea: test for k-dimensional uniformity
  - Points of sequence form system of hyperplanes
  - Computation of distance of hyperplanes for several dimensions k
  - Rather difficult optimization problem
- □ Conclusion
  - Implement/use only tested random number generators from literature, no "home-brewed" generators!
  - When in doubt, use the Mersenne Twister (but not for cryptography!)



- □ A wide research field, still somewhat active
  - Many more algorithms exist
  - Many more tests for randomness exist
  - More are being developed
- If you are interested in this topic, you might want to have a look at this quite readable paper:
  - L'Écuyer, Simard TestU01: a C library for empirical testing of random number generators ACM Transactions on Mathematical Software, Volume 33, No. 4, 2007