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Topics 

 Generation of Random Variables 

 Inversion, Composition, Convolution, Accept-Reject 

 Distributions – Continuous 

 Uniform, Normal, Triangle, Lognormal 

 Exponential, Erlang-k, Gamma, 

 Distributions - Discrete  

 Uniform(discrete), Bernoulli, Geom, Poisson, General Discrete 

 Random Number Generator (RNG) 

 Linear Congruential Generator (LCG) 

 X² Test 

 Serial Test 

 Spectral Test 

 Shift Register 

 Generalized Feedback Shift Register 

 Mersenne Twister 

Chapter is based on LK 6+8) 
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Introduction - Random variates 

 Generation of U(0,1) random numbers 

 Generation approaches 

 

 ―Real‖, ―natural‖ random numbers: sampling from radioactive material or 

white noise from electronic circuits, throwing dice, drawing from an urn, … 

• Problems: 

– If used online: not reproducible 

– Tables: uncomfortable, not enough samples 

 USB – Random Number Generator – Developed at TUM 
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-

Sekunde-1125288.html 

 

 Pseudo random numbers: recursive arithmetic formulas with a given 

starting value (seed) 

• in hardware: shift register with feedback (based on primitive 

polynomials as feedback patterns) 

• in software: linear congruential generator (LCG) (Lehmer, 1951), … 
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Generating random variates 

 All algorithms are based on U(0,1) random variates 

 

 Selection criteria 

 Exactness (generation of the desired distribution) 

 Efficiency 

• Storage requirements (large tables required?) 

• Execution time 

– Marginal execution time (for each sample) 

– Setup time (at start time) 

 Robustness (characteristics do not change for different parameters) 

 Complexity (you have to understand before you implement it) 

 

 Huge literature available 
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Random variates 

 Measurement 

 Samples of a random variable X 

 

 What is the distribution function 

of random variable X?  

 Simulation 

 Distribution function of the 

random variable is known in 

advance 

 How to generate samples 

which follow the distribution of 

the random variable? 

 Idea  

 Generation of uniform distributed random numbers U(0,1)          

(Random number generator) 

 

 Transformation of the generated numbers according to the desired 

distribution of the random variable 
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Inversion (LK 8.2) 

 Random variable yi ~ U(0,1) 

 Transformation of yi according to a distribution function F(x) in a 

random variable Xi  

 

   )()( 1

iiii yFxxFy 
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Inversion (LK 8.2) 

Example: Generation of an exponential distribution with a mean value of λ 

 

 Algorithm: 

 Generate U~U(0,1) (pseudo random numbers) 

 Return  

 

 Random variable yi ~ U(0,1) 

 Transformation of yi according to a distribution function F(x) in a 

random variable Xi  

 

 

)1ln()(1 uuF  

)(1 UFX 

uuF ln)(1 
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Composition  

 Desired distribution function expressed as a convex combination of 

other distribution function 











11

1,0)()(
j

j

j

jj ppwherexFpxF

• Generate positive random integer J 

 

 

 

• Return X with distribution function FJ  

,....2,1)(  jforpjJP j
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Convolution 

 Desired random variable can be described as the sum of other random 

variable 

 1. Generate  

 

 Return 

 

  

 Example: 

• k- Erlang distributed random variable with a mean ε can be expressed 

as the sum of k exponential random variables with a common mean 

k/ε 

 

 Advantage: simple and intuitive approach 

 Disadvantage: slow since multiple random number have to be  

     generated in order to get a single sample 

kYYYY ,...,,, 321

kYYYYX  321
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Accept-Reject-Method (LK 8.2.4)  

 Inverse transform, combination, and convolution are direct methods 

(work directly with the distribution function) 

 

 Accept-Reject is used when other methods fail or are inefficient 

 

 Density function is complex  select a ―simpler‖ density function r 
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Accept-Reject-Method (LK 8.2.4)  

 Geometrical interpretation 

Y will be accepted if the point                     falls under the curve f .  

 The acceptance probability is high if t(Y)-f(Y) is small. 

 Majorante von f(x) 

 

x 

f(x) 

r(x) 

t(x) 

Y 

Reject 

Accept 

( , ( ))Y U t Y

)()(: xfxtx 
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Accept-Reject-Method (LK 8.2.4)  

 Indirect approach: 

 Preparation: 

 We need a function t that majorizes density f 

 

 

 

 

 We obtain a density r by 

 Algorithm 

1. Generate a random variable Y according to a density r 

 

2. Generate a random number                            (independent of Y) 

 

3. Return                  if  

 

 Otherwise, go back to step 1 and try again 

 

)1,0(~ UU

)(

)(

Yt

Yf
U YX  (ACCEPT) 

(REJECT) 

( ) ( ) for all

( ) ( ) 1

t x f x x

c t x dx f x dx
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Accept-Reject-Method (LK 8.2.4)  

 Example: beta(4,3) distribution (6th order polynomial, hard to invert) 

 
 

23  60 1           if 0 1

  0                            otherwise

x x x
f x

   
 


Majoring 

function 

of (x) 
2.0736
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Accept-Reject-Method (LK 8.2.4)  

 Efficiency: 

 Depends on the majorant series (x) 

 Probability of acceptance is 1/c                      Average number of iterations 

 

 

 Advantage: 

 Works for arbitrary density functions 

 

 

 Disadvantage: 

 Number of required U(0,1) random numbers depends on the generated 

numbers (may causes problems with some statistics and may result 

variations of the simulation duration) 

 Requires at two U(0,1) random numbers in each iterations 
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Random number generation 

How to generate random numbers according to different distributions? 
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Random numbers - Continuous 

 Uniform distribution:                                             (LK 8.3.1) 

 

 Density function: 

 

 Range:   

 

 Distribution function: 

 

 

 Expectation:  

 

 

 Variance: 

 

 

 Generation:    
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Random numbers - Continuous 

 Triangle distribution (1/4):                                                 (LK 8.3.15) 

 
 

 

 

 Density function: 

 

 
 

 

 

 

 Distribution function: 
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Random numbers - Continuous 

 Triangle distribution (2/4):                                                (LK 8.3.15) 

 Use case:  Project management / business simulations where only the  

  minimum, maximum and mode are known 

 

 Mode            c 

 

 Range   

 

 

 Expectation:  

 

 

 Variance: 
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Random numbers - Continuous 

 Triangle distribution (3/4):                                                (LK 8.3.15) 

 Generation:         Inversion 
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Probability Density Function Cumulative Density Function 
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Random numbers - Continuous 

 Triangle distribution (4/4):                                                (LK 8.3.15) 

 Use case: risk management / project management 
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Random numbers - Continuous 

 Normal distribution(1/4):                                             (LK 8.3.6) 

 
 Density function: 

 

 Distribution function: 

 

 Range:   

 

 Mode:              

 

 Expectation:  

 

 Variance: 

 

 Scalability: 
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Random numbers - Continuous 

 Normal distribution(2/4):                                             (LK 8.3.6) 

 

 Generation         Accept-Reject 

• Two independent random variables  

 

•   

 

•    

 

• Algorithm:     

             Accept if  

 

 

                                    ,                           ,  

                          

             Reject otherwise   
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Random numbers 

 Normal distribution(3/4):                                             (LK 8.3.6) 

  

 

Probability Density Function Cumulative Density Function 

),(~ 2NXRV
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Random numbers 

 Normal distribution(4/4):                                             (LK 8.3.6) 

 Use case: distribution of errors / sizes (nature) 

  

 

),(~ 2NXRV

Körpergröße Frauen Männer 

<150 cm 0,6 % 0,1 % 

150–154 cm 4 % 0,1 % 

155–159 cm 12,7 % 0,3 % 

160–164 cm 27,0 % 2,3 % 

165–169 cm 29,1 % 9,0 % 

170–174 cm 17,6 % 19,2 % 

175–179 cm 6,9 % 26,1 % 

180–184 cm 1,8 % 23,9 % 

185–189 cm 0,2 % 12,8 % 

≥ 190 cm <0,1 % 6,3 % 

Körpergröße der Deutschen Statistik des Sozio-oekonomischen Panels (SOEP), aufbereitet durch statista.org 

http://de.statista.org/statistik/diagramm/studie/341/filter/478/fcode/1,2/umfrage/koerpergroe%DFe/
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/Statista
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Random numbers 

 Lognormal distribution(1/3):                                             (LK 8.3.7) 

 

 Special property of the lognormal distribution  

    

          if  

 

 Range: 

 

 Algorithm:  Composition 

 

–   

 

 Expectation: 

 

 Variance: 
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Note that μ and σ are NOT the mean and the variance of the lognormal distribution! 
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Random numbers 

 Lognormal distribution(2/3):                                             (LK 8.3.7) 

 

 Parameters of the normal distribution which is used to generate LN 

 

 

–   

 

 

 

 

–   
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Random numbers 

 Lognormal distribution(3/3):                                             (LK 8.3.7) 

 Use case: risk management (insurance companies) 

 

Probability Density Function Cumulative Density Function 

),(~ 2LNXRV
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Random numbers 

 Exponential distribution(1/2):                                             (LK 8.3.2) 

 

 Density function: 

 

 Distribution function: 

 

 Range:                                                           Mode: 0 

 

 Expectation:                                        

 

 Variance: 

 

 Coefficient of variation: 

 

 Generation:         Inversion 
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Random numbers - Continuous 

 Exponential distribution(2/2):                                             (LK 8.3.2) 

 Use case: life time of structures, time between calls/requests 

 

 

    

 

)exp(~ XRV

Probability Density Function Cumulative Density Function 

Pictures taken from Wikipedia 
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Random numbers - Continuous 

 Erlang-k distribution(1/3):                                                   (LK 8.3.3) 

 

                                                           where the Yi‘s are IID exponential       

                random variables               

 

 

 Density function: 

 

 

 

 

 Distribution function: 
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Random numbers - Continuous 

 Erlang-k distribution(2/3):                                                   (LK 8.3.3) 

 

 Range:   

 

 Expectation:  

 

 Variance: 

 

 Mode:   

 

 Coefficient of variation: 

 

 Generation:  

» Inversion 

 

» Convolution  
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Random numbers - Continuous 

 Erlang-k distribution(3/3):                                                   (LK 8.3.3) 

 Use case: lifetime of structures, delay in transport networks,                          

          dimensioning of systems (e.g. call center) 

 

 

    

 

Probability Density Function Cumulative Density Function 

)(~ ErlangkXRV 
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Random numbers - Continuous 

 Gamma distribution(1/3):                                                   (LK 8.3.4) 

 

 

 Density function: 

 

 

 

 

 Distribution function: 

 

 

 Parameter description: 

• Location parameter γ:  Shifting the distribution along the x-axis 

• Scale parameter β:  Linear impact on the expectation 

• Shape parameter α:  Changes the shape of the distribution 
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Random numbers - Continuous 

 Gamma distribution(2/3):                                                   (LK 8.3.4) 

 

 

 Gamma function: 

 

 

 Expectation: 

 

 Coefficient of variation: 

 

 Mode: 

 

 

 Generation: 

• Step 1 

 

• Step 2     Generation of                                       with Accept-Reject 
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Random numbers - Continuous 

 Gamma distribution(3/3):                                                   (LK 8.3.4) 

 Use cases: risk management (insurance companies), service time,   

            down time  

 

 

    

 

),(~ gammaXRV

Probability Density Function 
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Random numbers - Discrete 

 Uniform (discrete) (1/2)                          (LK 8.4.2) 

 

 

 Distribution: 

 

 

 Range:     

 

 Expectation: 

 

 

 Variance: 

 

 Generation: Inversion 
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Random numbers - Discrete 

 Uniform (discrete) (2/2)                          (LK 8.4.2) 

 Use case: backoff distribution, simulation (dice, roulette, …) 

 

 

 

),(~ jiDUXRV

Distribution 
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Random numbers - Discrete 

 Bernoulli (1/2)                          (LK 8.4.1) 

 

 Example: Flipping a coin 

 

 Distribution: 

 

 

 Range:     

 

 Expectation: 

 

 Variance: 

 

 

 Coefficient of variation:  

 

)(~ pBernoulliXRV















Otherwise

kifp

kifp

kp

0

1

01

)(

jki 

)1()( ppXVAR 

pXE )(

pn

p
cVar






1



Network Security, WS 2008/09, Chapter 9   39 IN2045 – Discrete Event Simulation, WS 2011/2012   39 

Random numbers - Discrete 

 Bernoulli (2/2)                          (LK 8.4.1) 

 

 Mode:   0 or 1  (depends on the definition of the  

                outcome)    

 Generation:  Inversion 

 

 

 

 

 Distribution    
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Random numbers - Discrete 

 N-Bernoulli (1/2)                                                 (LK 8.4.4) 

 

 Example: Flipping a coin 

                n times 

 

 Distribution: 

 

 Range:     

 

 Expectation: 

 

 Variance: 

 

 Coefficient of variation: 

 

 Use case: quality management, wrong/right decisions 
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Random numbers - Discrete 

 N-Bernoulli (2/2)                                                 (LK 8.4.4) 

 

 Mode:  0 or 1  (depends on the definition of the   

               outcome)    

 Generation: Composition 

 

 

 

 Distribution 
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Random numbers - Discrete 

 Geom (1/2)                                         (LK 8.4.5) 

 

 Example: Number of unsuccessful Bernoulli – Experiments until a  

               successful outcome (e.g. number of retransmissions) 

 

 Distribution: 

 

 Distribution function: 

 

 Expectation: 

 

 

 Variance: 

 

 

 Coefficient of variation: 
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Random numbers - Discrete 

 Geom (2/2)                                         (LK 8.4.5) 

 

 Mode:  0  

  

 Generation: Inversion 

 

 

 

 Use case:  delivery ratio in computer networks, risk management 

 Distribution 
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Random numbers - Discrete 

 Poisson(1/3)                                              (LK 6.2.4) 

 

 Example:  Number of events that occur in an interval of time when the  

  events are occurring at a constant rate (number of items in a  

  batch of random size) 

 

 Distribution: 

 

 

 

 Distribution function: 

 

 

 

 Parameter: 
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Random numbers - Discrete 

 Poisson(2/3)                                              (LK 6.2.4) 

 

 Range: 

 

 Expectation: 

 

 Variance: 

 

 Coefficient of variation:  

 

 Mode 

 

 Special characteristics: 

•                                    exponential distribution    

             (time interval between two consecutive events)  

• Number of events until a certain point in time is Poisson distributed 

• Period of time until n events have occurred is Erlang distributed 
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 1 λ is an integer 

otherwise 
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Random numbers - Discrete 

 Poisson(3/3)                                                (LK 6.2.4) 

 Use case: number of (independent) arrivals in a certain time interval 

)(~ PoissonXRV
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Random numbers - Discrete 

 General Discrete(1/1)                                         (LK 8.4.3) 

 

 

 Distribution: 

 

 

 

 Generation: Inversion 
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Structure of this lecture 

 Generating U(0,1) random numbers 

 Motivation 

 Overview on RNG families 

 Linear Congruential Generators (LCG) 

 Statistical properties, statistical (empirical) tests 

 χ2 test for uniformity 

 Correlation tests: Runs-up, sequence 

 Theoretical aspects, theoretical tests 

 Period length 

 Spectral test 

 RNG that are better than LCG 
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Recall the inversion method 

 Generate uniformly distributed numbers ∈ 0.0 … 1.0 

 Compute inverse A-1(t) of PDF A(t) 

 Generate samples 
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Generating U(0,1) random numbers is crucial 

 For all random number generation methods, we need uniformly 

distributed random numbers from ]0,1[ 

 ⇒ U(0,1) random numbers are required 

 

 Mandatory characteristics 

 Random (…obviously) 

 Uniform (make use of the whole distribution function) 

 Uncorrelated (no dependencies): difficult! 

 Reproducible (for verification of experiments)  

 use pseudo random numbers 

 Fast (usually, there is a need for a lot of samples) 



Network Security, WS 2008/09, Chapter 9   54 IN2045 – Discrete Event Simulation, WS 2011/2012   54 

RNG in simulation vs. RNG in cryptography 

 Also need for random numbers in cryptography 

 Key generation 

 Challenge generation in challenge-response systems 

 … 

 Additional requirement: 

 Prediction of future ―random‖ values by sampling previous values 

must not be possible 

 (In simulation: not an issue if there is no real correlation) 

 Lighter requirement: 

 RNs are not used constantly, only in ~start-up phases 

⇒ speed is not of much importance 

 (In simulation: need lots of numbers 

⇒ speed is very important) 
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Generation of U(0,1) random numbers 

 Generation approaches 

 ―Real‖, ―natural‖ random numbers: sampling from radioactive 

material or white noise from electronic circuits, throwing dice, 

drawing from an urn, … 

• Problems: 

– If used online: not reproducible 

– Tables: uncomfortable, not enough samples 

 Pseudo random numbers: recursive arithmetic formulae with a 

given starting value (seed) 

• In hardware: shift register with feedback (based on primitive 

polynomials as feedback patterns) 

• In software: Linear Congruential Generator (LCG) [Lehmer, 

1951], … 
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Generation of U(0,1) pseudo-random numbers 

Main families: 

 Linear Congruential Generator (LCG): the simplest 

 General Congruential Generators 

 Quadratic Congruential Generator 

 Multiple recursive generators 

 Shift register with feedback (Tausworthe) 

 E.g., Mersenne Twister: state-of-the-art 

 Composite generators: output of multiple RNG 

 E.g., use one to shuffle (―twist‖) the output of the other 
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RNG: alternatives unsuitable for simulation 

 Algorithms from cryptography 

 For example: counter→AES, counter→SHA1, counter→MD5, etc. 

 Usually way too slow 

 Calculate transcendent numbers (e.g., π or e), view their digits as 
random 

 E.g.: digits of 100,000th decimal place of π onwards 

 Problem: Are they really random?  

 Physical generators (cf. previous lecture) 

 Not reproducible, no seed 

 Tables with pre-computed random numbers 

 We need too many random numbers, the tables would have to be huge… 
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Linear Congruential Generators 

 Calculate RN  from previous RN using some formula 

 Sequence of integers                        defined by 

 

 

 

 with modulus m, multiplier a, 

increment c, and seed Z0 

 

 c=0: multiplicative LCG 

Example:  

 

                 

     (Lewis, Goodman, Miller, 1969) 

 

 c>0: mixed LCG 

1 2, ,Z Z

1( ) (mod )i iZ a Z c m  

 31

116807 mod 2 1i iZ Z   
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…but they don’t create floats, but integers > 1?! 

 Obviously, 

 Zi = something mod m 

and 

  something mod m < m 

 ⇒ Just normalise the result! 

 Divide by m? But then, 1.0 cannot be attained. 

 Better: Divide by m–1. 
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Do they really generate uniformly distributed random 

numbers? 

 Test for uniformity: 
 Create a number of samples from RNG 

 Test if these numbers are uniformly distributed 

 A number of statistical tests to do this: 
 χ2 test (deutsch: Chi-Quadrat-Anpassungstest) 

 Kolmogorov-Smirnov test 

 … and a whole lot of others! For example: 

• Cramér-von Mises test 

• Anderson-Darling test 

 Graphical examination (not real tests): 
 Plot histogram / density / PDF 

 Distribution-function-difference plot 

 Quantile-quantile plot (Q-Q plot) 

 Probability-probability plot (P-P plot) 

(later in course) 
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Histogram 

 Given a series of n measurements Xi 

 Partition the domain min{Xi} … max{Xi} 
into m intervals I1…Im 

 
 
 
 
 
 
 
 
 
 
 
 
 

 ~discretised density function 

 Recommendation:   nm 
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What the histogram can reveal (1) 

Obviously not U(0,1) random variables: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(…okay, we could have calculated min and max instead of plotting the 
histogram) 
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What the histogram can reveal (2) 

Obviously not U(0,1) random variables: 
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What the histogram can reveal (3a) 

Looks like a U(0,1) random variable at first sight…: 
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What the histogram can reveal (3b) 

…but is obviously no U(0,1) random variables: huge gaps! 
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Is a histogram just a bar plot? 

 Gummibears – Original Haribo 300g (~130 Gummibears per package) 

―Histograms‖ are based on samples taken from a 300g package 
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Is a histogram just a bar plot? 

 Gummibears – Eaten by students during the lecture 
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Is a histogram just a bar plot? 

 Gummibears – Original – 1500g 

Based on samples taken from 5 x 300g packages 

light+dark red 
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Is a histogram just a bar plot? – No! 

 Histogram 

 X axis: 

• some scalar value, e.g., 

[0…1], or ]−∞…+∞[, etc. 

• Divided into bins („classes―) 

 Y axis: number of occurrences 

per class 

 

 

 Barplot 

 X axis: Some categorical value, 

e.g., colour, or student name, 

etc. 

 Y axis: number of occurrences 

per class 
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Statistical tests 

 Does the analytical distribution correspond to the empirical distribution 

calculated from the sample set? 

Picture taken from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 348) 
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Statistical tests 

 Scenario: Given a set of measurements, we want to check if they 
conform to a distribution; here: U(0,1) 

 Graphs like presented before are nice indicators, 
but not really tangible: ―How straight is that line?‖ etc. 

 We want clearer things: Numbers or yes/no decisions 

 Statistical tests can do the trick, but… 

 Warning #1: Tests only can tell if measurements do not fit a 
particular distribution—i.e., no ―yes, it fits‖ proof! 

 Warning #2: The result is never absolutely certain, there is always 
an error margin. 

 Warning #3: Usually, the input must be ‗iid‘: 

• Independent 

• Identically distributed 

 ⇒You never get a ‗proof‘, not even with an error margin! 
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χ2 test (Pearson, 1900) 

 Input: 

 Series of n measurements X1 … Xn  

 A distribution function f (the ‗theoretical function‘) 

 Measurements will be tested against the distribution 

 ~formal comparison of a histogram with the density function of the 

theoretical function 

 Null hypothesis H0: 

The Xi are IID random variables with distribution function f 
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χ2 test: How it works 

 Divide the sample range into k intervals of equal probability 

 Count how many Xi fall into which interval (histogram): 

 Nj := number of Xi in j-th interval [aj-1 … aj[ 

 Calculate how many Xi would fall into the j-th interval if they were 

sampled from the theoretical distribution: 

      

      (f: density of theor. dist.) 

 

 Calculate squared normalised difference between the observed and 

the expected samples per interval: 

 

 

 

 Obviously, if χ2 is ―too large‖, the differences are too large, and we 

must reject the null hypothesis 

 But what is “too large”? 
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χ2 test: Using the χ2 distribution 

 The χ2 distribution 

 A test distribution 

 Parameter: degrees of freedom (short df) 

 χ2(k–1 df) = Γ(½(k–1) , 2)  (gamma distribution) 

 Mathematically: The sum of n independent 

squared normal distributions 

 Compare the calculated χ2 against the χ2 distribution 

 If we use k intervals, then χ2 is distributed corresponding to the χ2 

distribution with k–1 degrees of freedom 

 Let χ2
k–1,1–α be the (1–α) quantile of the distribution 

 α is called the confidence level 

 Reject H0 if χ2 > χ2
k–1,1–α (i.e., the Xi do not follow the theoretical 

distribution function) 
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χ2 test: 

 The χ2 distribution with k-1 degrees of freedom 

 

Picture adopted from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 359) 

f(x) 

0 

Chi-square density with k-1 df 

Χ 2 
k–1,1–α  

Reject Do not reject 

Shaded area = α 
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χ2 test and degrees of freedom 

 χ2 test can be used to test against any distribution 

 Easy in our case: We know the parameters of the theoretical 
distribution f —it‘s U(0,1) 

 Different in the general case: 

 For example, we may know it‘s N(μ, σ)    (normal distribution) 
but we know neither μ  nor σ 

 Fitting a distribution: Find parameters for f  that make f  fit the 
measurements Xi best 

 Topic of a later lecture 

 Theoretically: 
Have to estimate m parameters 
⇒ Also have to take χ2

k–m–1,1–α  into account 

 Practically: 
m≤2 and large k 
⇒ Don‘t care… 
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χ2: which parameters? 

 How many intervals (k)? 

 A difficult problem for the general case 

 Warning: A smaller or a greater k may change the outcome of the 
test! 

 As a general rule, use k between n/5 and  

 As a general rule, make the intervals equal-sized 

 As another general rule, make sure that ∀j: npj ≥ 5 
(i.e., have enough samples that we expect to have at least 5 
samples in each interval) 

 ⇒ As a general rule, you need a lot of measurements! 

 The larger the number of measurements, the higher the chance that 
the assumption is rejected. 

 What confidence level? 

 At most α=0.10 (almost too much); 
typical values: 0.001, 0.01, 0.05 [ , and 0.10] 

 The smaller, the higher confidence in the test result 

n
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Kolmogorov-Smirnov test (KS test) 

 Samples 

 Hypothesis:  

 Samples       are iid and follow the distribution 

 

 Definition: empirical distribution 

 

      (           step function)  

 

 Test           : largest vertical difference between          and          :             
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Kolmogorov-Smirnov test 

 Example 1: n=4, samples are iid and follow the distribution 

Picture adopted from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 364 

)(ˆ xF
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Kolmogorov-Smirnov test 

 Example 2: 

Picture adopted from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 365 
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Kolmogorov-Smirnov test 

 H0 is accepted if 

 

 

 

 

 

 

 

 Advantages: 

• No grouping into intervals required 

• Valid for any sample size, not only for large n 

• More powerful than χ2 for a number of distributions 

 Disadvantages: 

• Applicability more limited than χ2 

• Difficult to apply to discrete data 

• If distribution needs to be fitted (unknown parameters), 
then K-S works only for a number of distributions 









 1

11.0
12.0 cD

n
n n

1-α 0.850 0.900 0.950 0.975 0.990 

c1-α 1.138 1.224 1.358 1.480 1.628 
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Alternatives to χ2 test  

 Other tests: 

 Anderson–Darling test (A–D test) 

• Higher power than K-S for some distributions 

 …a lot of other tests 

• Rule of thumb: The more specialised the test, the higher its 
power compared to other tests – but the less generally 
applicable 
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Tests for uniformity: limitations 

 Consider this sequence of drawn ―random numbers‖: 

 

 

 

 

 

 

 

 

 

 

 

 They are in U(0,1) … but do they seem random!? 
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Recall our requirements for RNG 

 RNs have to be uncorrelated — how should we test this? 

 Statistical tests: 

Draw some random numbers and examine them 

 Runs-up test 

 Serial test 

 

 Theoretical parameters and theoretical tests: 

 Length of period 

 Spectral test 

 Lattice test 



Network Security, WS 2008/09, Chapter 9   85 IN2045 – Discrete Event Simulation, WS 2011/2012   85 

Runs-up test 

 Run up := the length of a contiguous sequence of 
monotonically increasing Xi. 

 Example sequence: 
0.86 >     length: 1 
0.11 < 0.23 >     length: 2 
0.03 < 0.13 >     length: 2 
0.06 < 0.55 < 0.64 < 0.87 >   length: 4 
0.10      length: 1 

 

 Calculate ri (number of runs up of length i) 

 Compute a test statistic value R, using the ri and 
a bestranging zoo of esoteric constants aij and bj 

 R will have an approximate χ2 distribution with 6 df. 

 You just have to believe me there – and I have to believe the 
literature… 
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Spectral test 

 Find possible correlations between subsequently drawn 

values 

 Visual ―tests‖: 

 2D plot of Xi and Xi–1 

 3D plot of Xi and Xi–1 and Xi–2 

 Generalisation: Serial test 
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LCG examples (1/5) 

 1 mod 61i iZ a Z  

a=7 a=43 

a=31 
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LCG examples (2/5) 

X(n+1)=(3141592653*X(n)+2718281829) mod 2^35, X(0)=5772156649, 0 < n < 10000 

X(n) (normalized to [0,1]) 

X
(n

+
1
) 

(n
o

rm
a

liz
e

d
 t
o

 [
0

,1
])
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LCG examples (3/5) 

X(n+1)=(129*X(n)+1) mod 2^35, X(0)=0, 0 < n < 50000 

X(n) (normalized to [0,1]) 

X
(n

+
1
) 
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0

,1
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Network Security, WS 2008/09, Chapter 9   90 IN2045 – Discrete Event Simulation, WS 2011/2012   90 

LCG examples (4/5) 

X(n+1)=(262145*X(n)+1) mod 2^35, X(0)=47594188, 0 < n < 50000 

X(n) (normalized to [0,1]) 

X
(n

+
1
) 
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n=81 

n=2197 n=19683 

n=729 

LCG examples (5/5) 
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Serial test: like a multidimensional χ2 test 

Serial test: ―a generalised and formalised version of the plots‖ 
 

 Consider non-overlapping d-tuples of subsequently 
drawn random variables Xi : 
U1 = (X1, X2, … Xd) U2 = (Xd+1, Xd+2, …, X2d)     … 

 These Ui‘s are vectors in the d-dimensional space 

 If the Xi are truly iid random variables, then the Ui are truly 
random iid vectors in the space [0…1]d 
(the d-dimensional hypercube) 

 Test for d-dimensional uniformity (rough outline): 
 Divide [0…1]d into k equal-sized sub intervals 

 Calculate a value χ2(d) based on the number of Ui 

for each possible interval combination 

 χ2(d) has approximate distribution χ2(kd–1 df) 

 Rest: same as χ2 test above 
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The infamous RANDU generator 

 A LCG with setup: 
Zi = 65,539 ∙ Zi–1 mod 231 

 Advantage: It‘s fast. 
 mod 231 can be calculated with a simple AND operation 

 65,539 is a bit more than 216; thus the multiplication (=expensive 
operation) can be replaced by a bit shift of 16 bit plus three 
additions (=cheap operations) 

 Why 65,539? It‘s a prime number. 

 Disadvantage: 
 An infamously bad RNG! Never, ever use it! 

 d≥3: The tuples are clumped into 15 plains (remember the 
animated 3D cube? That was RANDU!) 

 A lot of simulations in the 1970s used RANDU 
⇒ sceptical view on simulation results from that time 
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Theoretical parameters, theoretical tests 

 Tests so far: Based on drawing samples from 

RNG 

 No absolute certainty! 

 Usually, only a small subset of entire period is used 

 Remember the χ2 test 

 

 

 Theoretical parameters and tests 

 Based directly on the algorithm and its parameters 

 No samples to be drawn – not a real ―statistical test‖ 

 Usually quite complicated 
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Period length 

 After some time, the ―random‖ numbers must repeat 

themselves. 

Why? 

 LCG: Zi is entirely determined by Zi–1 

 The same Zi–1 will always produce the same Zi  

 There are only finitely many different Zi  

 How many? 

We take mod m ⇒ at most m different values 

 Call this the period length 
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Theorem by Hull and Dobell 1962 

 A LCG has full period if and only if the following three 
conditions hold: 
1.  c is relatively prime to m 

(i.e., they do not have a prime factor in common) 

2. If m has a prime factor q, 
then (a–1) must have a prime factor q, too 

3. If m is divisible by 4, 
then (a–1) must be divisible by 4, too 

 ⇒Prime numbers play an important role 
 Remember RANDU? 

At least, it used a prime number… 

 Multiplicative RNGs (i.e., no increment Zi+c) cannot have 
period m. 
(But period (m–1) is possible if m and a are chosen 
carefully.) 
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LCG and period length considerations 

 On 32 bit machines, m≤231 or m≤232 due to efficiency 
reasons ⇒ period length 4.3 billion 

 Calculating that many random numbers only takes a 
couple of seconds on today‘s hardware 

 Theory suggests to use only                                    
numbers; 
that‘s only 65,000 random numbers 

 How many random numbers do we need? 
Example: 
 Simulate behaviour of 1,000 Web hosts 

 Each host consumes on average 1 random number per simulation 
second 

 Result: We can only simulate for one minute! 

 ⇒We need much longer period lengths 
 Okay… so let‘s just use a 64-bit LCG, no? 

 

lengthperiod _
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Spectral test (coarse description) 

 ~ The theoretical variant of the serial test 

 Observation by Marsaglia (1968): 
―Random numbers fall mainly in planes.‖ 
 Subsequent overlapping (!) tuples Ui: 

   U1=(X1, X2, … Xd) U2=(X2, X3, …, Xd+1)  … 
fall on a relatively small number of (d–1)-dimensional hyperplanes 
within the d-dimensional space 

 Note the difference to the serial test! (overlapping) 

 ‗Lattice‘ structure 

 Consider hyperplane families that cover all tuples Ui  

 Calculate the maximum distance between hyperplanes. 
Call it δd. 

 If δd is small, then the generator can ~uniformly fill up the 
d-dimensional space 
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Spectral test and LCG 

 For LCG, it is possible to give a 

theoretical lower bound δd*: 

  δd ≥ δd* = 1 / (γd m
1/d) 

 γd  is a constant whose exact value is only known for d≤8 

(dimensions up to 8) 

 LCG do not perform very well in the spectral test: 

 All points lie on at most m1/n hyperplanes (Marsaglia‘s theorem) 

 Serial test: similar 

 There are way better random number generators than linear 

congruential generators. 
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Discussion of LCGs 

 Advantages: 
 Easy to implement 

 Reproducible 

 Simple and fast 

 Disadvantages: 
 Period (length of a cycle) depends on 

parameters a, c, and m 

 Distribution and correlation properties of generated sequences are 
not obvious 

 A value can occur only once per period (unrealistic!) 

 By making a bad choice of parameters, you can 
screw up things massively 

 Bad performance in serial test / spectral test even for good choice 
of parameters 
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Beyond LCGs 

 Why linear? 

 Quadratic congruential generator: 

  Zi = (a ∙ (Zi–1)
2

 + a‘ ∙ Zi–1) mod m 

 But: period is still at most m 

 Why only use one previous Xi? 

 Multiple recursive generator: 

  Zi = (a1Zi–1 + a2Zi–2 + a3Zi–3 + … + aqZi–q) mod m 

 Period can be mq–1 if parameters are chosen properly 

 Why not change multiplier a and increment c dynamically, 

according to some other congruential formula? 

 Seems to work ~alright 
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Feedback Shift Register Generators (1/2) 

 Linear feedback shift register generator (LFSR) introduced 

by Tausworthe (1965) 

 Operate on binary numbers (bits), not on integers 

 Mathematically, a multiple recursive generator: 

  bi = (c1bi–1 + c2bi–2 + c3bi–3 + … + cqbi–q) mod 2 

 ci: constants that are either 0 or 1 

 cq = 1 (why?) 

 Observe that + mod 2 is the same as XOR 

(makes things faster) 

 In hardware: 
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Feedback Shift Register Generators (2/2) 

 Usually only two cj coefficients are 1, thus: 

   

 

 LFSR create random bits, not integers 

 Easy solution: Concatenate ℓ bits to form an ℓ-bit integer 

 Properties 

 Period length [of the bi bits] = 2q–1, if parameters chosen 

accordingly (Note: characteristic polynomial has to be primitive 

over Galois field ℱ2 …) 

 Period length of the generated ints accordingly lower? 

• Depends on whether ℓ | 2q–1 or not 

• This is probably not the case 

• In general: period length = 2q–1 / gcd(2q–1, ℓ)    [deutsch: ggT] 

• But there may be some correlation after one 2q–1 ―bit period‖ 

 Statistical properties not very good 

 Combining LFSRs improves statistics and period 

2mod)( qirii bbb  
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Generalised feedback shift register (GFSR) 

 Lewis and Payne (1973) 

 

 To obtain sequence of ℓ-bit integers Y1, Y2, …: 

 Leftmost bit of Yi is filled with LFSR-generated bit bi  

 Next bit of Yi is filled with LFSR-generated bit after some ―delay‖ d: 

bi+d 

 Repeat that with same delay for remaining bits up to length ℓ 

 

 Mathematical properties 

 Period length can be very large if q is very large, e.g., Fushimi 

(1990): period length = 2521–1 = 6.86 ∙ 10156 

 If 2ℓ<2q–1, then many Yi‘s will repeat during one period run  

 If two bits (as with LFSR), then Yi = Yi–r ⊕ Yi–q 
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Long period lengths and repeated values 

 ―If 2ℓ<2q–1, then many Yi‘s will repeat during a period run.‖ 

 ℓ: number of bits of the integer output 

 2q–1: period length 

 Is that good or bad? 

 This is a general question – it relates to all RNGs, not only GFSR 

 

 Consider this example: 

 ℓ=2 ⇒ only 4 different numbers 

 If q=4 as well, then we always would get, e.g. 

1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3 

 But we would want something like 

1, 4, 2, 2, 1, 4, 3, 1, 1, 4, 3, 3, 1, 4, 2, 3, 2, 2, 4, 1, 4, 3, 2, 3 

 Clearly, it‘s good that numbers repeat during one period 

 ⇒ Clearly, it‘s good that we have a very long period length 
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Mersenne Twister (1/2) 

 Before we go into the mathematical details… 

 Very, very long period length: 219,937–1 > 106,000 

 Very good statistical properties: OK in 623 dimensions 

 Quite fast 

 ~State of the art: One of the best we have right now 

 The RNG of choice for simulations 

 Default RNG in Python, Ruby, Matlab, GNU R 

 Admittedly, there are even (slightly) better RNGs, cf. TestU01 
paper 

 Three warnings: 

 Not suitable for cryptographic applications: 
Draw 624 random numbers and you can predict all others! 

 Can take some time (―warm-up period‖) until the stream generates 
good random numbers 

• Usually hidden from programmer through library 

• If in doubt, discard the first 10,000 … 100,000 drawn numbers 

 There also are other good modern RNGs, e.g., WELL 
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Mersenne Twister (2/2) 

 Twisted GFSR (TGFSR) 

 Matsumoto, Kurita (1992, 1994) 

 Replace the recurrence of the GFSR by 

  Yi = Yi–r ⊕ A ∙ Yi–q 

where: 

• the Yi are ℓ x 1 binary vectors 

• A is an ℓ x ℓ binary matrix 

 Period length = 2qℓ–1 with suitable choices for r, q, A 

 Mersenne Twister (MT19937) 

 Matsumoto, Nishimura (1997, 1998) 

 Clever choice of r, q, A and the first Yi to obtain good statistical 

properties 

 Period length 219,937–1 = 4.3 ∙ 106001  (Mersenne prime: 2n–1) 
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Beyond Mersenne Twister 

 Even better alternative: WELL 

 Well Equidistributed Long-period Linear 

 Panneton, L‗Écuyer, Matsumoto: Improved Long-Period 

Generators Based on Linear Recurrences Modulo 2, 2006 

 Period length: 2k − 1 where k ∈ {512,1024,19937,44497} 

 Better statistical properties than Mersenne twister 

 Speed comparable to Mersenne Twister 

 No warm-up period 

 

 

 SIMD-oriented Fast Mersenne Twister (SFMT) 

 Faster than Mersenne Twister 

 Uses features of modern CPUs: 128 bit instructions, Pipelining 

 Also has better statistical properties than Mersenne Twister 

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
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Digression: Period lengths revisited 

What period lengths do we actually require? 

 Estimate #1: 
 A cluster of 1 million hosts 

 each of which draws 1,000,000 ∙ 232 per second (~1,000,000 times 
as fast as today‘s desktop PCs) 

 for ten years 

will require… 

 5.6 ∙ 1027 random numbers 

 (Make the PCs again 106 times faster ⇒ 5.6 ∙ 1033) 

 Estimate #2: What‘s the estimated number of electrons 
within the observable universe (a sphere with a radius of 
~46.5 billion light years) 
 About 1080 (± take or leave a few powers of 10) 
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Test batteries 

 A lot of tests, a lot of different RNGs 

 How to compare them? 

 Benchmark suites (‗Test batteries‘) 

that bundle many statistical tests: 

 TestU01 (L‘Écuyer) 

 DIEHARD suite (Marsaglia) 

 NIST test suite (National Institute of Standards and 

Technologies; 

≙ Physikalisch-Technische Bundesanstalt) 
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Conclusion: Quality tests for RNG 

 Empirical tests (based on generated samples) 
 For U(0,1) distribution: χ2 test 

 For independence: autocorrelation, serial, run-up tests 

 Theoretical tests (based on generation formula) 
 Basic idea: test for k-dimensional uniformity 

 Points of sequence form system of hyperplanes 

 Computation of distance of hyperplanes for several dimensions k 

 Rather difficult optimization problem 

 Conclusion 
 Implement/use only tested random number generators from 

literature, no ―home-brewed‖ generators! 

 When in doubt, use the Mersenne Twister 
(but not for cryptography!) 
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RNG: outlook 

 A wide research field, still somewhat active 

 Many more algorithms exist 

 Many more tests for randomness exist 

 More are being developed 

 If you are interested in this topic, you might want to have a 
look at this quite readable paper: 

 L‘Écuyer, Simard 
TestU01: a C library for empirical testing of random 
number generators 
ACM Transactions on Mathematical Software, 
Volume 33, No. 4, 2007 


