

Tempus IV – Modernization of Master Program Networks and Communication MoNetCom

TUM – Courses IN2045 Discrete Event Simulation

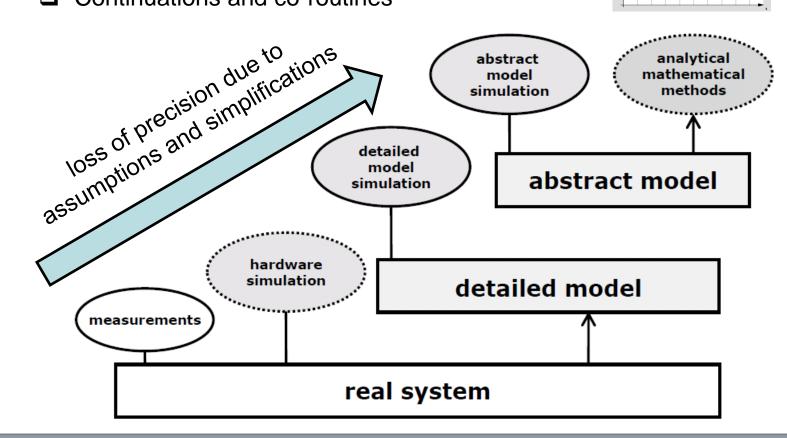
Dr. Alexander Klein Stephan Günther Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services Department of Computer Science Technische Universität München http://www.net.in.tum.de

- □ Lecturer
 - Dr. Alexander Klein, klein@net.in.tum.de
 Office hours: Monday 10-11 / after arrangement, Room 03.05.61
 - Stephan Günther, guenther@net.in.tum.de
 - Prof. Dr. Georg Carle, <u>carle@net.in.tum.de</u>
- Course
 - Lectures: 14 x 90/120 minutes, Tuesday 10–12 (c.t.), Room: 03.07.023
 - Exercises: 10 x 60 minutes, Wednesday 12:30–14 (s.t.), Room: 03.07.023
- □ ECTS:
 - 4 credits => 5 credits (currently under discussion)
- Exam:
 - Oral exam (approx. 20 minutes) at the end of the semester
- Course Material
 - http://www.net.in.tum.de/de/lehre/ws1112/vorlesungen/
- Login:
 - Username: simtech-ws20112012

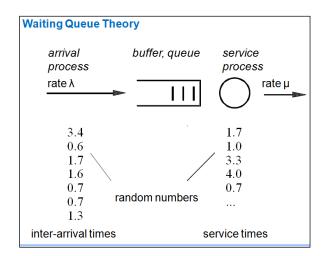
Password: iwantaccess

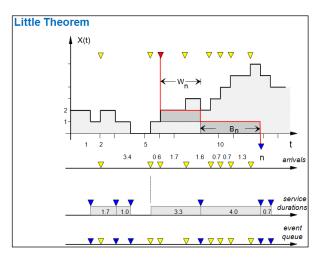

□ Exercises:


- Exercises are rated (+/0/-)
- Students have to pass 7 out of 10 exercises (+/0) to receive a 0.3 bonus
- Mainly programming and result evaluation
- Up to three students can and should submit their exercise together
- Registration for exercises will be available tomorrow on our web page
- A PDF is available on our web page which outlines information about the submission of exercises and the usage of the subversion system
- Figures and descriptions should be submitted as PDF
- III Exercises are part of the exam III
- □ Goal:
 - Get familiar with statistical issues (statistical significance)
 - Learn how to evaluate different systems (simulation/measurements)
 - Learn how to visualize simulation results and measurements

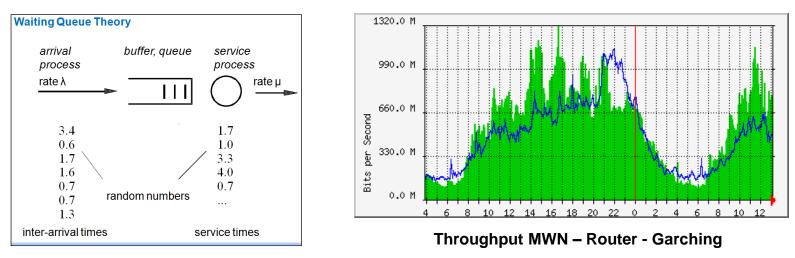
Prepare students for their BA/MA thesis

- 1. Simulation
 - □ Simulation: What it is and when to use it
 - Types of simulators
 - Internals of discrete event simulators
 - Continuations and co-routines

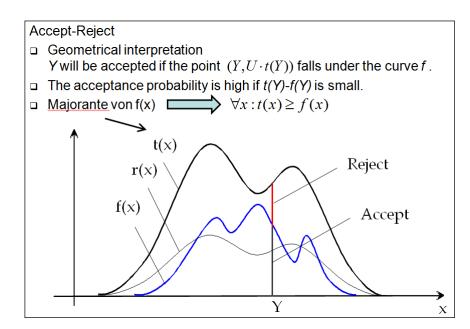


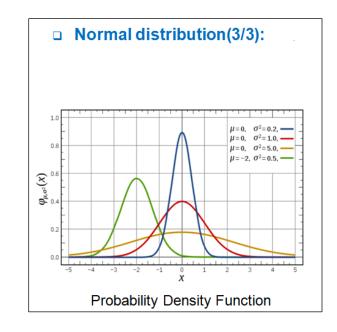


2. Statistics fundamentals


- Introduction to Waiting Queues
- Random Variable (RV), Discrete and Continuous RV
- □ Probability Space, Frequency Probability
- Distribution(discrete), Distribution Function(continuous)
- Probability Density Function, Cumulative Density Function
- Definitions: Expectation/Mean, Mode, Standard Deviation, Variance, Coefficient of Variation, p-percentile(quantile), Skewness, Scalability Issues, Covariance, Correlation, Autocorrelation Visualization of Correlation

2. Statistics fundamentals

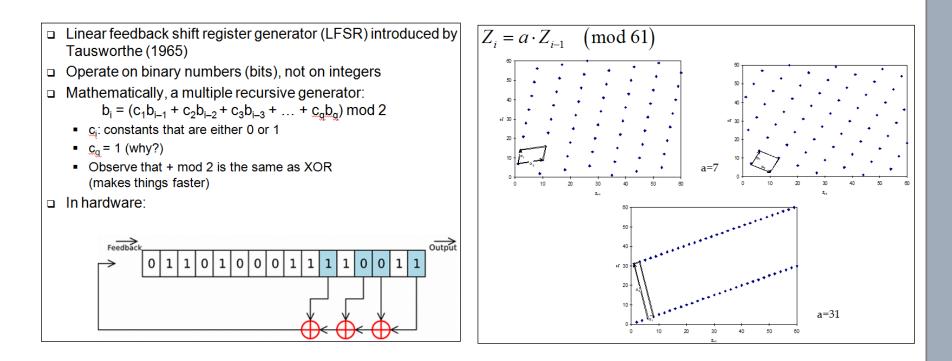

- Single high performance service process vs. multiple low performance service processes
- □ Impact for limited buffer size / storage capacity
- □ State / time dependent arrival process
- Performance parameters



3. Random Numbers

Duration: 140/240 minutes

- Random Variables:
 - Generation of Random Variables (RV) Inversion, Composition, Convolution, Accept-Reject
 - Distributions and their Characteristics
 Uniform(continuous), Normal, Triangle, Lognormal, Exponential, Erlang-k, Gamma, Uniform(discrete), Bernoulli, Geom, Poisson, General Discrete

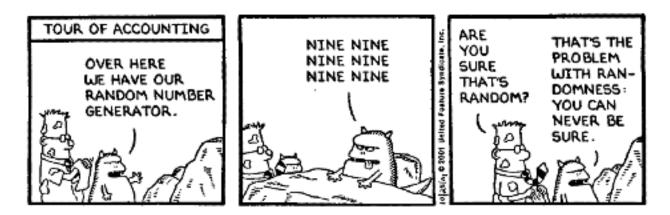


3. Random Numbers

Duration: 100/240 minutes

- Random Number Generators:
 - Linear Congruential Generator(LCG), Shift Register, Generalized Feedback Shift Register, Mersenne Twister
 - Tests χ^2 Test, Spectral Test, Serial Test

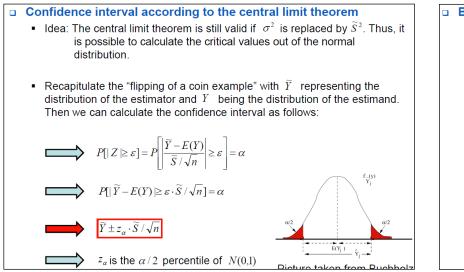
3. Random Numbers


Duration: 100/240 minutes

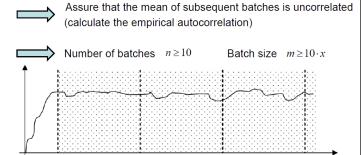
00101110101001101100010011101010100011

00101110101001101100010011101010100011

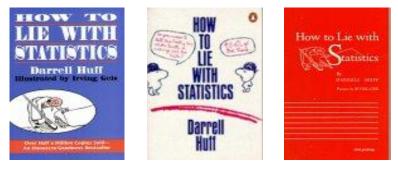
Autocorrelation Lag 4

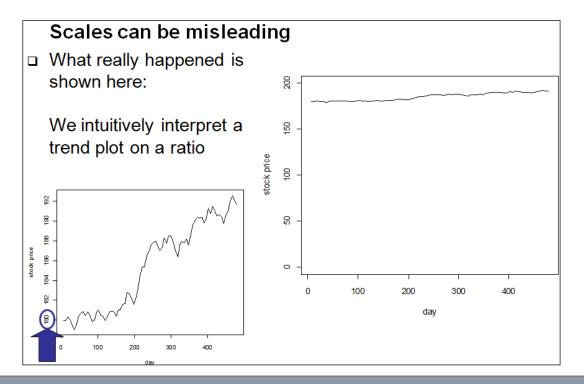


4. Evaluation of simulation results:

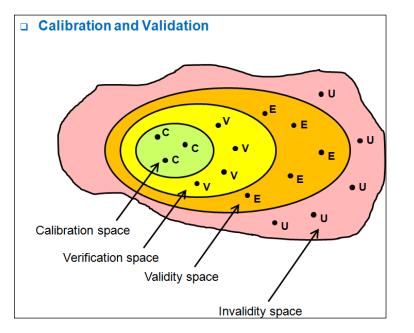

Duration: 150 minutes

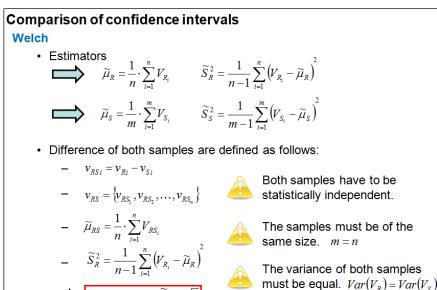
- Consistent Estimator, Unbiased Estimator, Variance of an Estimator, Bessel's Correction, Efficient Calculation
- Confidence Interval
 - Chebyshev
 - Central Limit Theorem
 - t-Distribution
- Evaluation and comparison of Simulation Results Replicate-Delete Method, Batch Means Method, Stationarity


Batch-Means Method (LK 9.5.3)


- Estimate the duration of the transient phase
- Perform a long simulation run
- Remove the transient phase
- Divide the gathered results in n intervals of equal length (Batches) which hold m samples

- 4. Evaluation of simulation results:
 - How to Lie with Statistics:
 - Lessons for Authors and Readers
 - Examples and Discussion

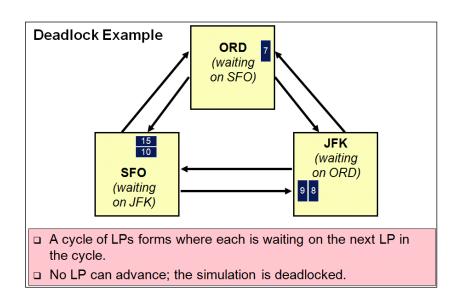


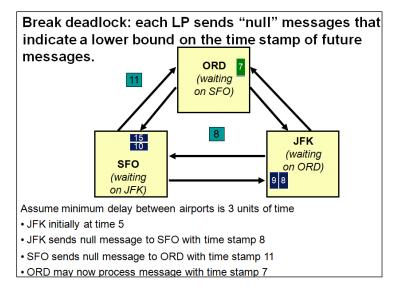


- 4. Evaluation of simulation results:
 - Model Validation:
 - · Calibration, Overfitting
 - Structural Change, Parameter Change
 - Comparison of Confidence Intervals: Welsh, Law & Kelton

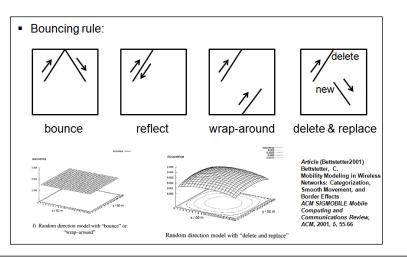
Duration: 90 minutes

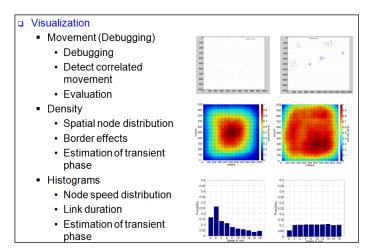
 $\widehat{\mu}_{\rm RS} \pm t_{n-1,1-\alpha/2} \cdot \widetilde{S}_{\rm RS} / \sqrt{n}$




- 5. Experiment planning:
 - Hypothesis Testing
 - Linear Regression
 - Factorial Design

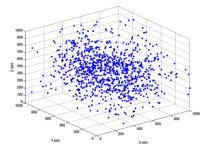
- 6. Parallel Simulation:
 - Conservative approach:
 - Deadlock avoidance
 - Deadlock detection
 - Deadlock recovery
 - Optimistic approach:
 - Time Warp
 - Alternatives to parallel simulation

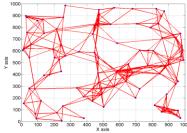




7. Mobility:

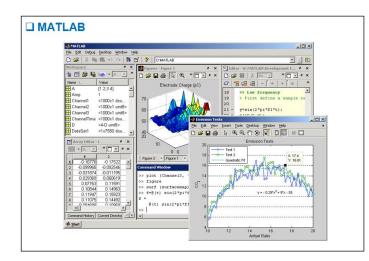
- Mobility in General
 - Human Mobility Pattern
 - Visualization:
 - Density, Speed Histograms, Bouncing Rule, Obstacles
- Characteristics of Mobility Pattern:
 - Link Duration, Transient Phase, Node Distribution, Speed Distribution, Correlated Movement
- Synthetic Mobility Models:
 - Random Waypoint, Random Direction, Random Walk, Levi-Flight, Brownian Motion, Group Mobility


- Advanced Topics: 8.
 - Point Fields:
 - Generation of Point Fields •
 - Homogeneous and Inhomogeneous Point Fields •
 - Poisson Field, Cluster fields, Matern Cluster Field
 - Random Graphs:
 - **Graph Definition** •
 - Generation of Random Graphs
 - Probabilistic Model, Waxman Model •
 - Random Graphs with Predefined Characteristics
 - Scale-free Graphs, Social-networks



Scale-free graph: A graph is called scale-free if its node degree k follows the power law. $P(k) = ck^{-\gamma}$ c and y are constants. Typical range 0 < c < 1, 2 < y < 3.

- Examples: Social networks
 - Collaboration networks
 - Computer networks
 - Disease transmission



- Exercises: Processing Time: 120/180 minutes Duration: 60 minutes(each)
 - Exercise 1:
 - Implementation of a GI / GI / 1 1 queuing system
 - Exercise 2:
 - Evaluation of waiting queues / Evaluation of medium access procedures
 - Exercise 3:
 - · Evaluation of waiting queues / Implementation of random variables
 - Exercise 4:
 - Implementation of histogram / Evaluation of system performance
 - Exercise 5:
 - Generation of random variates / Evaluation of samples
 - Exercise 6:
 - Implementation of random number generators / Evaluation of random numbers
 - Exercise 7:
 - State dependent service unit / Intelligent system initialization
 - Exercise 8:
 - Implementation of a 2D point field generator / Random Graphs
 - Exercise 9:
 - Random Graphs / Comparison of confidence intervals

Tutorial:

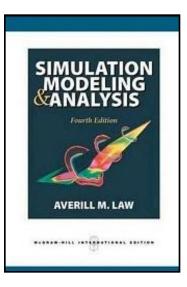
- Matlab / Octave / Gnuplot
 - Practical exercises
 - Evaluation of sample data
 - Visualization
- OPNET Modeler
 - Discrete Event Simulator
 - Development of waiting queue model
 - Evaluation of results

• OPNET

Duration: 180 minutes

print (mpt, "little opened

□ Book:


Simulation Modeling and Analysis 4th edition. Averill M. Law McGraw-Hill, 2007.

- Lecture:
 - Parallel and Distributed Simulation Systems CS4230 / CS 6236)
 Prof. Fujimoto
 College of Computing Coordination

College of Computing Georgia Institute of Technology

Atlanta, GA 30332-0280

 Modellgestützte Analyse und Optimierung Prof. Peter Buchholz Informatik IV Technische Universität Dortmund

