Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Prof. Dr.-Ing. Wolfgang Utschick Stephan M. Günther Maximilian Riemensberger

Tutorials for Network Coding (IN3300) Tutorial 4 – 2014/11/20

Problem 1 Lossy wireless networks

We consider the four-node wireless relay network G = (N, H) depicted in Figure 1 in the lossy hypergraph model with orthogonal MAC. The solution of most subproblems can be written as table (see pre-printed Table 1).

Figure 1: Four-node relay network

a)* Explicitly state the set of hyperarcs H.

- b) Number the hyperarcs $(a, B) \in H$ in lexicographic ascending order, i.e., (a, B) < (a', B') if
 - 1. a < a' or
 - 2. $a = a' \land |B| < |B'|$ or
 - 3. $a = a' \land |B| = |B'| \land \min B < \min B'$,

such that $j \equiv (a, B)$ with $j \in \{1, 2, \ldots\}$ for all $(a, B) \in H$.

c)* Explicitly state all arcs $(a, b) \in A$ that are induced by each of the hyperarcs $(a, B) \in H$.

- d) Draw the graph G' = (N, A) that is induced by G.
- e) Number the arcs $(a, b) \in A$ in lexicographic ascending order, i.e., (a, b) < (a', b') if
 - 1. a < a' or
 - 2. $a = a' \land b < b'$,

such that $k \equiv (a, b)$ with $k \in \{1, 2, ...\}$ for all $(a, b) \in A$. Also state by which hyperarc $j \equiv (a, B) \in H$ a given arc $k \equiv (a, b) \in A$ is induced by.

- f) Enumerate the sets A_j for all $j \equiv (a, B) \in H$ such that $(a, b) \equiv k \in A_j$ if hyperarc j induces arch k.
- g) State the hyperarc-arc incidence matrix N.
- h) State the hyperarc-hyperarc incidence matrix Q.

We now consider a bidirectionally coded session between nodes 1 and 4. Assume that each arch $k \in A$ has unit capacity and a link error probability of $0 \le \epsilon_k \le 1$.

i) Determine the hyperarc capacity region \mathcal{Z} assuming that

$$\tau_{1} = \tau_{4} = \tau,$$

$$\tau_{2} = \tau_{3} = \theta,$$

$$\epsilon_{13} = \epsilon_{31} = \epsilon_{24} = \epsilon_{42} = \xi,$$

$$\epsilon_{12} = \epsilon_{21} = \epsilon_{34} = \epsilon_{43} = 0, \text{ and }$$

$$\epsilon_{23} = \epsilon_{32} = \delta.$$

- j) Determine the broadcast capacity region \mathcal{Y} .
- k) Enumerate all s-t cuts S and their capacities $v(S_i)$.
- 1) Which cuts are redundant, i.e., which cut can not be the min cut?

m) Find the maximum bidirectional communication rate $r = \min(r_1, r_4)$ assuming that $\theta = \frac{1}{2} - \tau$ by computing the min-cut value.

- n) Determine τ such that r is maximized.
- o) Discuss the extreme cases $\xi \in \{0, 1\}$ and $\delta \in \{0, 1\}$.

Table 1: Fill in values from different subproblems.