Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Prof. Dr.-Ing. Wolfgang Utschick Stephan M. Günther Maximilian Riemensberger

Tutorials for Network Coding (IN3300) Tutorial 3 – 2014/11/18

Problem 1 Lossy wireless networks

We consider the three-node wireless relay network G = (N, H) depicted in Figure 1 in the lossy hypergraph model with orthogonal MAC.

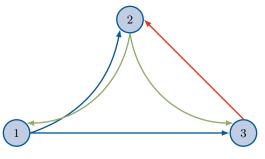


Figure 1: Three-node relay network

- a)* Explicitly state the set of hyperarcs H.
- b) Number the hyperarcs $(a, B) \in H$ in lexicographic ascending order, i.e., (a, B) < (a', B') if
 - 1. a < a' or
 - 2. $a = a' \land |B| < |B'|$ or
 - 3. $a = a' \wedge |B| = |B'| \wedge \min B < \min B'$,

such that $j \equiv (a, B)$ with $j \in \{1, 2, ...\}$ for all $(a, B) \in H$.

- c)* Explicitly state all arcs $(a, b) \in A$ that are induced by each of the hyperarcs $(a, B) \in H$.
- d) Draw the graph G' = (N, A) that is induced by G.

- e) Number the arcs $(a, b) \in A$ in lexicographic ascending order, i.e., (a, b) < (a', b') if
 - 1. a < a' or
 - 2. $a = a' \land b < b'$,

such that $k \equiv (a, b)$ with $k \in \{1, 2, ...\}$ for all $(a, b) \in A$. Also state by which hyperarc $j \equiv (a, B) \in H$ a given arc $k \equiv (a, b) \in A$ is induced by.

- f) Enumerate the sets A_j for all $j \equiv (a, B) \in H$ such that $(a, b) \equiv k \in A_j$ if hyperarc j induces arch k.
- g) State the hyperarc-arc incidence matrix N.
- h) State the incidence matrix M for G'.
- i) State the hyperarc-hyperarc incidence matrix Q.

Assume that each arch $k \in A$ has unit capacity and a link error probability of $0 \le \epsilon_k \le 1$.

- j) Determine the hyperarc capacity region \mathcal{Z} .
- k) Determine the broadcast capacity vector \boldsymbol{y} .
- 1) Explicitly state the lossy hyperarc flow bound.
- m) Enumerate all s t cuts S and their respective capacities $v(S_i)$ for s = 1 and t = 3.
- n) State the min-cut capacity r for a flow from s to t in dependency of τ_1 and τ_2 .
- o) Determine τ_1 and τ_2 such that r is maximized.

We now consider the multicast s = 1 and $T = \{2, 3\}$.

p) Determine the missing s - T cut and its capacity.

q) State the optimization problem to maximize the multicast capacity r'.

r) Determine the maximum multicast rate r'^* by solving the problem.

Hint: It is sufficient to differentiate between cases and to express τ_2 , τ_3 by means of τ_1 . Except for the trivial case, the expression for τ_1 is not nice.