Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Prof. Dr.-Ing. Wolfgang Utschick Stephan M. Günther Maximilian Riemensberger

Tutorials for Network Coding (IN3300) Tutorial 4 – 2014/11/20

Problem 1 Lossy wireless networks

We consider the four-node wireless relay network G = (N, H) depicted in Figure 1 in the lossy hypergraph model with orthogonal MAC. The solution of most subproblems can be written as table (see pre-printed Table 1).

Figure 1: Four-node relay network

a)* Explicitly state the set of hyperarcs H.
See column (a, B) ∈ H in Table 1.

b) Number the hyperarcs $(a, B) \in H$ in lexicographic ascending order, i.e., (a, B) < (a', B') if

1.
$$a < a'$$
 or

2.
$$a = a' \land |B| < |B'|$$
 or

3.
$$a = a' \wedge |B| = |B'| \wedge \min B < \min B'$$
,

such that $j \equiv (a, B)$ with $j \in \{1, 2, ...\}$ for all $(a, B) \in H$. See column $j \equiv (a, B)$ in Table 1. c)* Explicitly state all arcs $(a, b) \in A$ that are induced by each of the hyperarcs $(a, B) \in H$. See column (a, b) in Table 1.

d) Draw the graph G' = (N, A) that is induced by G.

- e) Number the arcs $(a, b) \in A$ in lexicographic ascending order, i.e., (a, b) < (a', b') if
 - 1. a < a' or
 - 2. $a = a' \land b < b'$,

such that $k \equiv (a, b)$ with $k \in \{1, 2, ...\}$ for all $(a, b) \in A$. Also state by which hyperarc $j \equiv (a, B) \in H$ a given arc $k \equiv (a, b) \in A$ is induced by.

$(a,b) \in A$	$k\equiv (a,b)$
(1,2)	1
(1,3)	2
(2,1)	3
(2,3)	4
(2,4)	5
(3,1)	6
(3,2)	7
(3,4)	8
(4,2)	9
(4, 3)	10

f) Enumerate the sets A_j for all $j \equiv (a, B) \in H$ such that $(a, b) \equiv k \in A_j$ if hyperarc j induces arch k. See solution of (c), fourth column.

g) State the hyperarc-arc incidence matrix N.

h) State the hyperarc-hyperarc incidence matrix Q.

We now consider a bidirectionally coded session between nodes 1 and 4. Assume that each arch $k \in A$ has unit capacity and a link error probability of $0 \le \epsilon_k \le 1$.

i) Determine the hyperarc capacity region $\ensuremath{\mathcal{Z}}$ assuming that

$$\begin{aligned} \tau_1 &= \tau_4 = \tau, \\ \tau_2 &= \tau_3 = \theta, \\ \epsilon_{13} &= \epsilon_{31} = \epsilon_{24} = \epsilon_{42} = \xi, \\ \epsilon_{12} &= \epsilon_{21} = \epsilon_{34} = \epsilon_{43} = 0, \text{ and} \\ \epsilon_{23} &= \epsilon_{32} = \delta. \end{aligned}$$

Re-print with of G' with loss probabilities:

See column z_i in Table 1. The capacity region is then given by

$$igcup_{\substack{ au, heta\geq 0 \\ au+rac{1}{2} heta\leq 1}}\{m{z}\}$$

j) Determine the broadcast capacity region \mathcal{Y} .

See column y_j in Table 1.

k) Enumerate all s-t cuts S and their capacities $v(S_i)$.

S	v(S)
$S_1 = \{1\}$	$y_{3} = \tau$
$S_2 = \{1, 2\}$	$y_{2} + y_{9} = \tau(1 - \xi) + \theta(1 - \delta\xi)$
$S_3 = \{1, 3\}$	$y_{1} + y_{16} = \tau + \theta$
$S_4 = \{1, 2, 3\}$	$y_{6} + y_{13} = \theta(1 - \xi) + \theta$
$S_{5} = \{4\}$	$y_{20} = \tau$
$S_{6} = \{4, 2\}$	$y_{19} + y_7 = \tau + \theta$
$S_{7} = \{4, 3\}$	$y_{18} + y_{14} = \tau(1 - \xi) + \theta(1 - \delta\xi)$
$S_{8} = \{4, 3, 2\}$	$y_4 + y_{11} = \theta + \theta(1 - \xi)$

1) Which cuts are redundant, i.e., which cut can not be the min cut?

The cut S_3 is redundant since $v(S_3) = \tau + \theta \ge \tau(1 - \xi) + \theta(1 - \delta\xi) = v(S_2)$ for all values of $\delta, \xi \in [0, 1]$ and all τ, θ . Similarly, S_6 is redundant.

m) Find the maximum bidirectional communication rate $r = \min(r_1, r_4)$ assuming that $\theta = \frac{1}{2} - \tau$ by computing the min-cut value.

The three potential min-cut values are

$$v(S_1) = v(S_5) = \tau \tag{1}$$

$$v(S_4) = v(S_8) = (\frac{1}{2} - \tau)(2 - \xi) = \frac{1}{2}(2 - \xi) - \tau(2 - \xi)$$
(2)

$$v(S_2) = v(S_7) = \tau(1-\xi) + (\frac{1}{2}-\tau)(1-\delta\xi) = \frac{1}{2}(1-\delta\xi) - \tau\xi(1-\delta)$$
(3)

n) Determine τ such that r is maximized.

The min cut is achieved for τ^* defined as the minimum of the intersection points of $v(S_1)$ with $v(S_4)$ and $v(S_2)$ since $v(S_1)$ is increasing and the other two are decreasing. This means that either S_1 and S_4 or S_1 and S_4 are minimum cuts. Therefore, we compute the intersection points $\tau^{(1)}$ and $\tau^{(2)}$ defined as the τ where $v(S_1) = v(S_4)$ and $v(S_1) = v(S_2)$, respectively:

$$\tau^{(1)} = \frac{2-\xi}{6-2\xi} \tag{4}$$

$$\tau^{(2)} = \frac{1 - \delta\xi}{2 + 2\xi(1 - \delta)}$$
(5)

(6)

The τ^* is given by $\tau^* = \min\{\tau^{(1)}, \tau^{(2)}\}$ and the min-cut value r is given by the cut value $v(S_1)$ for $\tau = \tau^*$, i.e.,

$$r = \min\left\{\frac{2-\xi}{6-2\xi}, \frac{1-\delta\xi}{2+2\xi(1-\delta)}\right\}.$$
(7)

o) Discuss the extreme cases $\xi \in \{0, 1\}$ and $\delta \in \{0, 1\}$.

CASE 1 $\xi = 0$:

$$r = \tau^{\star} = \min\{\frac{2}{6}, \frac{1}{2}\} = \frac{1}{3}$$

There is are two lossless paths from 1 to 4 over nodes 2 and 3. Nodes 1 and 4 get each $\frac{1}{3}$ of the resources (time), nodes 2 and 3 get $\frac{1}{6}$ each.

CASE 2
$$\xi = 1$$
:

$$r = \tau^{\star} = \min\{\frac{1}{4}, \frac{1-\delta}{4-2\delta}\} = \frac{1}{2 + \frac{2}{1-\delta}} \le \frac{1}{4}$$

There is only on path with nonzero capacity between 1 and 4, namely, 1-2-3-4. The link between 2 and 3 is lossy if $\delta > 0$. The higher δ , the more resources are allocated to 2 and 3 and the less are allocated to 1 and 4, i.e., τ^* gets smaller the larger δ is.

CASE 3 $\delta = 0$:

$$r = \tau^{\star} = \min\{\frac{2-\xi}{6-2\xi}, \frac{1}{2+2\xi}\} = \frac{2-\xi}{6-2\xi} \in \begin{bmatrix}\frac{1}{4}, \frac{1}{3}\end{bmatrix}$$

Case 4 $\delta = 1$:

$$r = \tau^* = \min\{\frac{2-\xi}{6-2\xi}, \frac{1-\xi}{2}\} \in [0, \frac{1}{3}]$$

$(a,B) \in H$	$j \equiv (a, B)$	(a,b)	A_j	z_j	y_j
$(1, \{2\})$	1	(1, 2)	{1}	$ au\xi$	τ
$(1, \{3\})$	2	(1,3)	{2}	0	$\tau(1-\xi)$
$(1, \{2, 3\})$	3	(1, 2), (1, 3)	$\{1, 2\}$	$\tau(1-\xi)$	τ
$(2, \{1\})$	4	(2,1)	{3}	$\theta \delta \xi$	θ
$(2, \{3\})$	5	(2,3)	{4}	0	$ heta(1-\delta)$
$(2, \{4\})$	6	(2,4)	{5}	0	$\theta(1-\xi)$
$(2, \{1, 3\})$	7	(2,1), (2,3)	$\{3, 4\}$	$\theta(1-\delta)\xi$	θ
$(2, \{1, 4\})$	8	(2,1), (2,4)	$\{3, 5\}$	$\theta \delta(1-\xi)$	θ
$(2, \{3, 4\})$	9	(2,3), (2,4)	$\{4, 5\}$	0	$\theta(1-\delta\xi)$
$(2, \{1, 3, 4\})$	10	(2,1), (2,3), (2,4)	$\{3, 4, 5\}$	$\theta(1-\delta)(1-\xi)$	θ
$(3, \{1\})$	11	(3,1)	<i>{</i> 6 <i>}</i>	0	$\theta(1-\xi)$
$(3, \{2\})$	12	(3, 2)	{7}	0	$\theta(1-\delta)$
$(3, \{4\})$	13	(3, 4)	{8}	θδξ	θ
$(3, \{1, 2\})$	14	(3,1),(3,2)	$\{6,7\}$	0	$\theta(1-\xi\delta)$
$(3, \{1, 4\})$	15	(3,1), (3,4)	$\{6, 8\}$	$\theta(1-\xi)\delta$	θ
$(3, \{2, 4\})$	16	(3,2),(3,4)	$\{7, 8\}$	$\theta(1-\delta)\xi$	θ
$(3, \{1, 2, 4\})$	17	(3, 1), (3, 2), (3, 4)	$\{6, 7, 8\}$	$\theta(1-\delta)(1-\xi)$	θ
$(4, \{2\})$	18	(4, 2)	{9}	0	$\tau(1-\xi)$
$(4, \{3\})$	19	(4,3)	{10}	$ au\xi$	τ
$(4, \{2, 3\})$	20	(4, 2), (4, 3)	$\{9, 10\}$	$\tau(1-\xi)$	τ

Table 1: Fill in values from different subproblems.