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Problem 1 Lossy wireless networks

We consider the three-node wireless relay network G = (N,H) depicted in Figure 1 in the lossy hypergraph
model with orthogonal MAC.
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Figure 1: Three-node relay network

a)* Explicitly state the set of hyperarcs H .

N H

1 (1, {2}), (1, {3}), (1, {2, 3})
2 (2, {1}), (2, {3}), (2, {1, 3})
3 (3, {2})

H = {(1, {2}), (1, {3}), (1, {2, 3}), (2, {1}), (2, {3}), (2, {1, 3}), (3, {1})}

b) Number the hyperarcs (a,B) ∈ H in lexicographic ascending order, i.e., (a,B) < (a′, B′) if

1. a < a′ or

2. a = a′ ∧ |B| < |B′| or

3. a = a′ ∧ |B| = |B′| ∧minB < minB′,

such that j ≡ (a,B) with j ∈ {1, 2, . . .} for all (a,B) ∈ H .
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(a,B) ∈ H j ≡ (a,B) (a, b) Aj

(1, {2}) 1 (1, 2) {1}
(1, {3}) 2 (1, 3) {2}
(1, {2, 3}) 3 (1, 2), (1, 3) {1, 2}
(2, {1}) 4 (2, 1) {3}
(2, {3}) 5 (2, 3) {4}
(2, {1, 3}) 6 (2, 1), (2, 3) {3, 4}
(3, {2}) 7 (3, 2) {5}

Note: The third column shows the solution for (c). The fourth column denotes the arc indices of (a, b) ∈ A as
determined in (e).

c)* Explicitly state all arcs (a, b) ∈ A that are induced by each of the hyperarcs (a,B) ∈ H .

See solution of (b).

d) Draw the graph G′ = (N,A) that is induced by G.
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(Numbers next to arcs denote the arc index k ≡ (a, b) ∈ A, which is done in (e).)
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e) Number the arcs (a, b) ∈ A in lexicographic ascending order, i.e., (a, b) < (a′, b′) if

1. a < a′ or

2. a = a′ ∧ b < b′,

such that k ≡ (a, b) with k ∈ {1, 2, . . . } for all (a, b) ∈ A. Also state by which hyperarc j ≡ (a,B) ∈ H a
given arc k ≡ (a, b) ∈ A is induced by.

(a, b) ∈ A k ≡ (a, b)

(1, 2) 1
(1, 3) 2
(2, 1) 3
(2, 3) 4
(3, 2) 5

f) Enumerate the sets Aj for all j ≡ (a,B) ∈ H such that (a, b) ≡ k ∈ Aj if hyperarc j induces arch k.

See solution of (c), fourth column.

g) State the hyperarc-arc incidence matrix N .

N =



1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 1



h) State the incidence matrix M for G′.

M =

 1 1 −1 0 0
−1 0 1 1 −1
0 −1 0 −1 1



i) State the hyperarc-hyperarc incidence matrix Q.

Q =



1 0 1 0 0 0 0
0 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0
0 0 0 1 1 1 0
0 0 0 0 0 0 1


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Assume that each arch k ∈ A has unit capacity and a link error probability of 0 ≤ εk ≤ 1.

j) Determine the hyperarc capacity region Z .

Z =
⋃
τ≥0

1T τ≤1

z : zj = τTail(j)
∏
l∈Aj

(1− εl)
∏
l /∈Aj

tail(l)=Tail(j)

εl ∀j ∈ H



z =

z1...
z7

 =



τ1(1− ε1)ε2
τ1(1− ε2)ε1

τ1(1− ε1)(1− ε2)
τ2(1− ε3)ε4
τ2(1− ε4)ε3

τ2(1− ε3)(1− ε4)
τ3(1− ε5)



k) Determine the broadcast capacity vector y.

y = Qz =



1 0 1 0 0 0 0
0 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0
0 0 0 1 1 1 0
0 0 0 0 0 0 1





z1
z2
z3
z4
z5
z6
z7


=



z1 + z3
z2 + z3

z1 + z2 + z3
z4 + z6
z5 + z6

z4 + z5 + z6
z7


=



τ1(1− ε1)
τ1(1− ε2)
τ1(1− ε1ε2)
τ2(1− ε3)
τ2(1− ε4)
τ2(1− ε3ε4)
τ3(1− ε5)



l) Explicitly state the lossy hyperarc flow bound.

Nx =



1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 1




x1
x2
x3
x4
x5

 =



x1
x2

x1 + x2
x3
x4

x3 + x4
x5


≤



z1 + z3
z2 + z3

z1 + z2 + z3
z4 + z5
z5 + z6

z4 + z5 + z6
z7



m) Enumerate all s− t cuts S and their respective capacities v(Si) for s = 1 and t = 3.
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S1 = {1}
S2 = {1, 2}

v(S1) = y3 = z1 + z2 + z3

= τ1 ((1− ε1)ε2 + (1− ε2)ε1 + (1− ε1)(1− ε2))
= τ1(1− ε1ε2)

v(S2) = y2 + y5 = z2 + z3 + z5 + z6

= τ1 ((1− ε2)ε1 + (1− ε1)(1− ε2)) + τ2 ((1− ε4)ε3 + (1− ε3)(1− ε4))
= τ1(1− ε2) + τ2(1− ε4)

n) State the min-cut capacity r for a flow from s to t in dependency of τ1 and τ2.

r = min
{
v(S1), v(S2)

}
= min {τ1(1− ε1ε2), τ1(1− ε2) + τ2(1− ε4)}

o) Determine τ1 and τ2 such that r is maximized.

We need to solve the optimization problem

r∗ = max
τ1,τ2≥0
τ1+τ2=1

min {τ1(1− ε1ε2), τ1(1− ε2) + τ2(1− ε4)} .

In case that v(S1) 6= v(S2) we will increase the smaller one, which might decrease the larger one. The optimal
solution is found when we either cannot further increase the value of the smaller cut or when v(S1) = v(S2).

From the induced graph (see solution of (d)) we see that node 2 cannot contribute if ε4 > ε2. In this case only
node 1 will transmit and thaus τ1 = 1 and τ2 = 0. The same is obviously true when ε1 = 1 since node 2 cannot
receive anything from node 1 in this case.
For ε4 ≤ ε2, ε1 < 1, and τ1 = 1 we find that v(S1) > v(S2). We therefore increase τ2 at the cost of τ1 until
v(S1) = v(S2), which is the optimal solution:

τ1 + τ2 = 1 ⇒ τ2 = 1− τ1
v(S1) = τ1(1− ε1ε2)
v(S2) = τ1(1− ε2) + τ2(1− ε4)

= τ1(ε4 − ε2) + 1− ε4

v(S1)
!
= v(S2)

τ1(1− ε1ε2) = τ1(ε4 − ε2) + 1− ε4
τ1(1− ε4 − ε1ε2 + ε2) = 1− ε4

τ1 =
1− ε4

1− ε4 − ε1ε2 + ε2
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We therefore get the following solution:

τ1 =

{
1 ε1 = 1 ∨ ε2 ≤ ε4,

1−ε4
1−ε4−ε1ε2+ε2 ε2 > ε4.

Note that we could modify the cases such that ε2 < ε4 and ε2 ≥ ε4 without affecting the capacity.

We now consider the multicast s = 1 and T = {2, 3}.

p) Determine the missing s− T cut and its capacity.

S3 = {1, 3} with

v(S3) = y1 + y7 = z1 + z3 + z7 = τ1(1− ε1) + τ3(1− ε5)

q) State the optimization problem to maximize the multicast capacity r′.

max
τ≥0

1T τ=1

min {v(S1), v(S2), v(S3)}

r) Determine the maximum multicast rate r′∗ by solving the problem.
Hint: It is sufficient to differentiate between cases and to express τ2, τ3 by means of τ1. Except for the trivial
case, the expression for τ1 is not nice.

τ1 + τ2 + τ3 = 1

v(S1) = τ1(1− ε1ε2)
v(S2) = τ1(1− ε2) + τ2(1− ε4)
v(S3) = τ1(1− ε1) + τ3(1− ε5)

From the solution of (d) we can derive the following four cases:

1. ε2 ≤ ε4 ∧ ε1 ≤ ε5:
In this case neither node 3 can help relaying data to node 2 nor node 2 can help relaying data to node 3
since in any case the arcs originating at 1 have the lowest erasure probabilities. Consequently we have
that τ1 = 1 and τ2 = τ3 = 0.

2. ε2 ≤ ε4 ∧ ε1 > ε5:
Node 2 is still unable to help realying but node 3 now has a better link to node 2. Therefore, we have that
τ1, τ3 > 0 and τ3 = 0. This gives the following set of equations:

τ1 + τ3 = 1 ⇒ τ3 = 1− τ1
v(S1) = τ1(1− ε1ε2)
v(S2) = τ1(1− ε2)
v(S3) = τ1(1− ε1) + τ3(1− ε5)
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We now see that v(S1) ≥ v(S2). We therefore set v(S2) = v(S3) which gives the opimal solution:

τ1 =
1− ε5

1− ε2 − ε5 + ε1
,

τ2 = 0,

τ3 = 1− τ1.

3. ε2 > ε4 ∧ ε1 ≤ ε5: This case is similar to the previous: node 2 can now help relaying messages to node
3 but node 3 is unable to help relaying to node 2. Consequently we have that τ3 = 0 and τ1, τ2 > 0,
which gives the following equations:

τ1 + τ2 = 1 ⇒ τ2 = 1− τ2
v(S1) = τ1(1− ε1ε2)
v(S2) = τ1(1− ε2) + τ2(1− ε4)
v(S3) = τ1(1− ε1)

Now we se that v(S1) ≥ v(S3). Therefore, we again set v(S2) = v(S3) and obtain:

τ1 =
1− ε4

1− ε1 − ε4 + ε2
,

τ2 = 1− τ1,
τ3 = 0.

4. ε2 > ε4 ∧ ε1 > ε5: Now both nodes 2 and 3 can help relaying messages to each other. Therefore, we
have that τ1, τ2, τ3 > 0:

τ1 + τ2 + τ3 = 1

v(S1) = τ1(1− ε1ε2)
v(S2) = τ1(1− ε2) + τ2(1− ε4)
v(S3) = τ1(1− ε1) + τ3(1− ε5)

We now set v(S1) = v(S2) = v(S3), i.e., all three cuts are binding, and express τ2 and τ3 by means of
τ1:

τ2 = τ1
ε2(1− ε1)
1− ε4

,

τ3 = τ1
ε1(1− ε2
1− ε5

.

Using τ1 + τ2 + τ3 = 1 we finally obtain

τ1 =
(1− ε4)(1− ε5)

ε
,

τ2 =
ε2(1− ε1)(1− ε5)

ε
,

τ3 =
ε1(1− ε2)(1− ε4)

ε
,

with ε = (1− ε4)(1− ε5) + ε1(1− ε2)(1− ε4) + ε2(1− ε1)(1− ε5).
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